Coverage Report

Created: 2024-10-29 12:15

/root/bitcoin/src/node/eviction.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2022 The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <node/eviction.h>
6
7
#include <algorithm>
8
#include <array>
9
#include <chrono>
10
#include <cstdint>
11
#include <functional>
12
#include <map>
13
#include <vector>
14
15
16
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
17
0
{
18
0
    return a.m_min_ping_time > b.m_min_ping_time;
19
0
}
20
21
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
22
0
{
23
0
    return a.m_connected > b.m_connected;
24
0
}
25
26
0
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
27
0
    return a.nKeyedNetGroup < b.nKeyedNetGroup;
28
0
}
29
30
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
31
0
{
32
    // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
33
0
    if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
34
0
    if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
35
0
    return a.m_connected > b.m_connected;
36
0
}
37
38
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
39
0
{
40
    // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
41
0
    if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
42
0
    if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
43
0
    if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
44
0
    return a.m_connected > b.m_connected;
45
0
}
46
47
// Pick out the potential block-relay only peers, and sort them by last block time.
48
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
49
0
{
50
0
    if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
51
0
    if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
52
0
    if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
53
0
    return a.m_connected > b.m_connected;
54
0
}
55
56
/**
57
 * Sort eviction candidates by network/localhost and connection uptime.
58
 * Candidates near the beginning are more likely to be evicted, and those
59
 * near the end are more likely to be protected, e.g. less likely to be evicted.
60
 * - First, nodes that are not `is_local` and that do not belong to `network`,
61
 *   sorted by increasing uptime (from most recently connected to connected longer).
62
 * - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
63
 */
64
struct CompareNodeNetworkTime {
65
    const bool m_is_local;
66
    const Network m_network;
67
0
    CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
68
    bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
69
0
    {
70
0
        if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
71
0
        if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
72
0
        return a.m_connected > b.m_connected;
73
0
    };
74
};
75
76
//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
77
template <typename T, typename Comparator>
78
static void EraseLastKElements(
79
    std::vector<T>& elements, Comparator comparator, size_t k,
80
0
    std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
81
0
{
82
0
    std::sort(elements.begin(), elements.end(), comparator);
83
0
    size_t eraseSize = std::min(k, elements.size());
84
0
    elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
85
0
}
Unexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidate22CompareNodeNetworkTimeEvRSt6vectorIT_SaIS3_EET0_mSt8functionIFbRKS0_EE
Unexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidatePFbRKS0_S2_EEvRSt6vectorIT_SaIS6_EET0_mSt8functionIFbS2_EE
86
87
void ProtectNoBanConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
88
0
{
89
0
    eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
90
0
                                             [](NodeEvictionCandidate const& n) {
91
0
                                                 return n.m_noban;
92
0
                                             }),
93
0
                              eviction_candidates.end());
94
0
}
95
96
void ProtectOutboundConnections(std::vector<NodeEvictionCandidate>& eviction_candidates)
97
0
{
98
0
    eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(),
99
0
                                             [](NodeEvictionCandidate const& n) {
100
0
                                                 return n.m_conn_type != ConnectionType::INBOUND;
101
0
                                             }),
102
0
                              eviction_candidates.end());
103
0
}
104
105
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
106
0
{
107
    // Protect the half of the remaining nodes which have been connected the longest.
108
    // This replicates the non-eviction implicit behavior, and precludes attacks that start later.
109
    // To favorise the diversity of our peer connections, reserve up to half of these protected
110
    // spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
111
    // overall. This helps protect these higher-latency peers that tend to be otherwise
112
    // disadvantaged under our eviction criteria.
113
0
    const size_t initial_size = eviction_candidates.size();
114
0
    const size_t total_protect_size{initial_size / 2};
115
116
    // Disadvantaged networks to protect. In the case of equal counts, earlier array members
117
    // have the first opportunity to recover unused slots from the previous iteration.
118
0
    struct Net { bool is_local; Network id; size_t count; };
119
0
    std::array<Net, 4> networks{
120
0
        {{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
121
122
    // Count and store the number of eviction candidates per network.
123
0
    for (Net& n : networks) {
124
0
        n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
125
0
                                [&n](const NodeEvictionCandidate& c) {
126
0
                                    return n.is_local ? c.m_is_local : c.m_network == n.id;
127
0
                                });
128
0
    }
129
    // Sort `networks` by ascending candidate count, to give networks having fewer candidates
130
    // the first opportunity to recover unused protected slots from the previous iteration.
131
0
    std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
132
133
    // Protect up to 25% of the eviction candidates by disadvantaged network.
134
0
    const size_t max_protect_by_network{total_protect_size / 2};
135
0
    size_t num_protected{0};
136
137
0
    while (num_protected < max_protect_by_network) {
138
        // Count the number of disadvantaged networks from which we have peers to protect.
139
0
        auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
140
0
        if (num_networks == 0) {
141
0
            break;
142
0
        }
143
0
        const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
144
0
        const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
145
        // Early exit flag if there are no remaining candidates by disadvantaged network.
146
0
        bool protected_at_least_one{false};
147
148
0
        for (Net& n : networks) {
149
0
            if (n.count == 0) continue;
150
0
            const size_t before = eviction_candidates.size();
151
0
            EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
152
0
                               protect_per_network, [&n](const NodeEvictionCandidate& c) {
153
0
                                   return n.is_local ? c.m_is_local : c.m_network == n.id;
154
0
                               });
155
0
            const size_t after = eviction_candidates.size();
156
0
            if (before > after) {
157
0
                protected_at_least_one = true;
158
0
                const size_t delta{before - after};
159
0
                num_protected += delta;
160
0
                if (num_protected >= max_protect_by_network) {
161
0
                    break;
162
0
                }
163
0
                n.count -= delta;
164
0
            }
165
0
        }
166
0
        if (!protected_at_least_one) {
167
0
            break;
168
0
        }
169
0
    }
170
171
    // Calculate how many we removed, and update our total number of peers that
172
    // we want to protect based on uptime accordingly.
173
0
    assert(num_protected == initial_size - eviction_candidates.size());
174
0
    const size_t remaining_to_protect{total_protect_size - num_protected};
175
0
    EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
176
0
}
177
178
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
179
0
{
180
    // Protect connections with certain characteristics
181
182
0
    ProtectNoBanConnections(vEvictionCandidates);
183
184
0
    ProtectOutboundConnections(vEvictionCandidates);
185
186
    // Deterministically select 4 peers to protect by netgroup.
187
    // An attacker cannot predict which netgroups will be protected
188
0
    EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
189
    // Protect the 8 nodes with the lowest minimum ping time.
190
    // An attacker cannot manipulate this metric without physically moving nodes closer to the target.
191
0
    EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
192
    // Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
193
    // An attacker cannot manipulate this metric without performing useful work.
194
0
    EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
195
    // Protect up to 8 non-tx-relay peers that have sent us novel blocks.
196
0
    EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
197
0
                       [](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
198
199
    // Protect 4 nodes that most recently sent us novel blocks.
200
    // An attacker cannot manipulate this metric without performing useful work.
201
0
    EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
202
203
    // Protect some of the remaining eviction candidates by ratios of desirable
204
    // or disadvantaged characteristics.
205
0
    ProtectEvictionCandidatesByRatio(vEvictionCandidates);
206
207
0
    if (vEvictionCandidates.empty()) return std::nullopt;
208
209
    // If any remaining peers are preferred for eviction consider only them.
210
    // This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
211
    //  then we probably don't want to evict it no matter what.
212
0
    if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
213
0
        vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
214
0
                                  [](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
215
0
    }
216
217
    // Identify the network group with the most connections and youngest member.
218
    // (vEvictionCandidates is already sorted by reverse connect time)
219
0
    uint64_t naMostConnections;
220
0
    unsigned int nMostConnections = 0;
221
0
    std::chrono::seconds nMostConnectionsTime{0};
222
0
    std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
223
0
    for (const NodeEvictionCandidate &node : vEvictionCandidates) {
224
0
        std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
225
0
        group.push_back(node);
226
0
        const auto grouptime{group[0].m_connected};
227
228
0
        if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
229
0
            nMostConnections = group.size();
230
0
            nMostConnectionsTime = grouptime;
231
0
            naMostConnections = node.nKeyedNetGroup;
232
0
        }
233
0
    }
234
235
    // Reduce to the network group with the most connections
236
0
    vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
237
238
    // Disconnect from the network group with the most connections
239
0
    return vEvictionCandidates.front().id;
240
0
}