/root/bitcoin/src/node/eviction.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2022 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <node/eviction.h> |
6 | | |
7 | | #include <algorithm> |
8 | | #include <array> |
9 | | #include <chrono> |
10 | | #include <cstdint> |
11 | | #include <functional> |
12 | | #include <map> |
13 | | #include <vector> |
14 | | |
15 | | |
16 | | static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
17 | 0 | { |
18 | 0 | return a.m_min_ping_time > b.m_min_ping_time; |
19 | 0 | } |
20 | | |
21 | | static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
22 | 0 | { |
23 | 0 | return a.m_connected > b.m_connected; |
24 | 0 | } |
25 | | |
26 | 0 | static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { |
27 | 0 | return a.nKeyedNetGroup < b.nKeyedNetGroup; |
28 | 0 | } |
29 | | |
30 | | static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
31 | 0 | { |
32 | | // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. |
33 | 0 | if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; |
34 | 0 | if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; |
35 | 0 | return a.m_connected > b.m_connected; |
36 | 0 | } |
37 | | |
38 | | static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
39 | 0 | { |
40 | | // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. |
41 | 0 | if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time; |
42 | 0 | if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs; |
43 | 0 | if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; |
44 | 0 | return a.m_connected > b.m_connected; |
45 | 0 | } |
46 | | |
47 | | // Pick out the potential block-relay only peers, and sort them by last block time. |
48 | | static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) |
49 | 0 | { |
50 | 0 | if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs; |
51 | 0 | if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; |
52 | 0 | if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; |
53 | 0 | return a.m_connected > b.m_connected; |
54 | 0 | } |
55 | | |
56 | | /** |
57 | | * Sort eviction candidates by network/localhost and connection uptime. |
58 | | * Candidates near the beginning are more likely to be evicted, and those |
59 | | * near the end are more likely to be protected, e.g. less likely to be evicted. |
60 | | * - First, nodes that are not `is_local` and that do not belong to `network`, |
61 | | * sorted by increasing uptime (from most recently connected to connected longer). |
62 | | * - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime. |
63 | | */ |
64 | | struct CompareNodeNetworkTime { |
65 | | const bool m_is_local; |
66 | | const Network m_network; |
67 | 0 | CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {} |
68 | | bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const |
69 | 0 | { |
70 | 0 | if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local; |
71 | 0 | if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network; |
72 | 0 | return a.m_connected > b.m_connected; |
73 | 0 | }; |
74 | | }; |
75 | | |
76 | | //! Sort an array by the specified comparator, then erase the last K elements where predicate is true. |
77 | | template <typename T, typename Comparator> |
78 | | static void EraseLastKElements( |
79 | | std::vector<T>& elements, Comparator comparator, size_t k, |
80 | 0 | std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; }) |
81 | 0 | { |
82 | 0 | std::sort(elements.begin(), elements.end(), comparator); |
83 | 0 | size_t eraseSize = std::min(k, elements.size()); |
84 | 0 | elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end()); |
85 | 0 | } Unexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidate22CompareNodeNetworkTimeEvRSt6vectorIT_SaIS3_EET0_mSt8functionIFbRKS0_EE Unexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidatePFbRKS0_S2_EEvRSt6vectorIT_SaIS6_EET0_mSt8functionIFbS2_EE |
86 | | |
87 | | void ProtectNoBanConnections(std::vector<NodeEvictionCandidate>& eviction_candidates) |
88 | 0 | { |
89 | 0 | eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), |
90 | 0 | [](NodeEvictionCandidate const& n) { |
91 | 0 | return n.m_noban; |
92 | 0 | }), |
93 | 0 | eviction_candidates.end()); |
94 | 0 | } |
95 | | |
96 | | void ProtectOutboundConnections(std::vector<NodeEvictionCandidate>& eviction_candidates) |
97 | 0 | { |
98 | 0 | eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), |
99 | 0 | [](NodeEvictionCandidate const& n) { |
100 | 0 | return n.m_conn_type != ConnectionType::INBOUND; |
101 | 0 | }), |
102 | 0 | eviction_candidates.end()); |
103 | 0 | } |
104 | | |
105 | | void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates) |
106 | 0 | { |
107 | | // Protect the half of the remaining nodes which have been connected the longest. |
108 | | // This replicates the non-eviction implicit behavior, and precludes attacks that start later. |
109 | | // To favorise the diversity of our peer connections, reserve up to half of these protected |
110 | | // spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime |
111 | | // overall. This helps protect these higher-latency peers that tend to be otherwise |
112 | | // disadvantaged under our eviction criteria. |
113 | 0 | const size_t initial_size = eviction_candidates.size(); |
114 | 0 | const size_t total_protect_size{initial_size / 2}; |
115 | | |
116 | | // Disadvantaged networks to protect. In the case of equal counts, earlier array members |
117 | | // have the first opportunity to recover unused slots from the previous iteration. |
118 | 0 | struct Net { bool is_local; Network id; size_t count; }; |
119 | 0 | std::array<Net, 4> networks{ |
120 | 0 | {{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}}; |
121 | | |
122 | | // Count and store the number of eviction candidates per network. |
123 | 0 | for (Net& n : networks) { |
124 | 0 | n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(), |
125 | 0 | [&n](const NodeEvictionCandidate& c) { |
126 | 0 | return n.is_local ? c.m_is_local : c.m_network == n.id; |
127 | 0 | }); |
128 | 0 | } |
129 | | // Sort `networks` by ascending candidate count, to give networks having fewer candidates |
130 | | // the first opportunity to recover unused protected slots from the previous iteration. |
131 | 0 | std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; }); |
132 | | |
133 | | // Protect up to 25% of the eviction candidates by disadvantaged network. |
134 | 0 | const size_t max_protect_by_network{total_protect_size / 2}; |
135 | 0 | size_t num_protected{0}; |
136 | |
|
137 | 0 | while (num_protected < max_protect_by_network) { |
138 | | // Count the number of disadvantaged networks from which we have peers to protect. |
139 | 0 | auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; }); |
140 | 0 | if (num_networks == 0) { |
141 | 0 | break; |
142 | 0 | } |
143 | 0 | const size_t disadvantaged_to_protect{max_protect_by_network - num_protected}; |
144 | 0 | const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))}; |
145 | | // Early exit flag if there are no remaining candidates by disadvantaged network. |
146 | 0 | bool protected_at_least_one{false}; |
147 | |
|
148 | 0 | for (Net& n : networks) { |
149 | 0 | if (n.count == 0) continue; |
150 | 0 | const size_t before = eviction_candidates.size(); |
151 | 0 | EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id), |
152 | 0 | protect_per_network, [&n](const NodeEvictionCandidate& c) { |
153 | 0 | return n.is_local ? c.m_is_local : c.m_network == n.id; |
154 | 0 | }); |
155 | 0 | const size_t after = eviction_candidates.size(); |
156 | 0 | if (before > after) { |
157 | 0 | protected_at_least_one = true; |
158 | 0 | const size_t delta{before - after}; |
159 | 0 | num_protected += delta; |
160 | 0 | if (num_protected >= max_protect_by_network) { |
161 | 0 | break; |
162 | 0 | } |
163 | 0 | n.count -= delta; |
164 | 0 | } |
165 | 0 | } |
166 | 0 | if (!protected_at_least_one) { |
167 | 0 | break; |
168 | 0 | } |
169 | 0 | } |
170 | | |
171 | | // Calculate how many we removed, and update our total number of peers that |
172 | | // we want to protect based on uptime accordingly. |
173 | 0 | assert(num_protected == initial_size - eviction_candidates.size()); |
174 | 0 | const size_t remaining_to_protect{total_protect_size - num_protected}; |
175 | 0 | EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect); |
176 | 0 | } |
177 | | |
178 | | [[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates) |
179 | 0 | { |
180 | | // Protect connections with certain characteristics |
181 | |
|
182 | 0 | ProtectNoBanConnections(vEvictionCandidates); |
183 | |
|
184 | 0 | ProtectOutboundConnections(vEvictionCandidates); |
185 | | |
186 | | // Deterministically select 4 peers to protect by netgroup. |
187 | | // An attacker cannot predict which netgroups will be protected |
188 | 0 | EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); |
189 | | // Protect the 8 nodes with the lowest minimum ping time. |
190 | | // An attacker cannot manipulate this metric without physically moving nodes closer to the target. |
191 | 0 | EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); |
192 | | // Protect 4 nodes that most recently sent us novel transactions accepted into our mempool. |
193 | | // An attacker cannot manipulate this metric without performing useful work. |
194 | 0 | EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); |
195 | | // Protect up to 8 non-tx-relay peers that have sent us novel blocks. |
196 | 0 | EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8, |
197 | 0 | [](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; }); |
198 | | |
199 | | // Protect 4 nodes that most recently sent us novel blocks. |
200 | | // An attacker cannot manipulate this metric without performing useful work. |
201 | 0 | EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); |
202 | | |
203 | | // Protect some of the remaining eviction candidates by ratios of desirable |
204 | | // or disadvantaged characteristics. |
205 | 0 | ProtectEvictionCandidatesByRatio(vEvictionCandidates); |
206 | |
|
207 | 0 | if (vEvictionCandidates.empty()) return std::nullopt; |
208 | | |
209 | | // If any remaining peers are preferred for eviction consider only them. |
210 | | // This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks) |
211 | | // then we probably don't want to evict it no matter what. |
212 | 0 | if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) { |
213 | 0 | vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(), |
214 | 0 | [](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end()); |
215 | 0 | } |
216 | | |
217 | | // Identify the network group with the most connections and youngest member. |
218 | | // (vEvictionCandidates is already sorted by reverse connect time) |
219 | 0 | uint64_t naMostConnections; |
220 | 0 | unsigned int nMostConnections = 0; |
221 | 0 | std::chrono::seconds nMostConnectionsTime{0}; |
222 | 0 | std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes; |
223 | 0 | for (const NodeEvictionCandidate &node : vEvictionCandidates) { |
224 | 0 | std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup]; |
225 | 0 | group.push_back(node); |
226 | 0 | const auto grouptime{group[0].m_connected}; |
227 | |
|
228 | 0 | if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) { |
229 | 0 | nMostConnections = group.size(); |
230 | 0 | nMostConnectionsTime = grouptime; |
231 | 0 | naMostConnections = node.nKeyedNetGroup; |
232 | 0 | } |
233 | 0 | } |
234 | | |
235 | | // Reduce to the network group with the most connections |
236 | 0 | vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); |
237 | | |
238 | | // Disconnect from the network group with the most connections |
239 | 0 | return vEvictionCandidates.front().id; |
240 | 0 | } |