Coverage Report

Created: 2024-10-29 12:15

/root/bitcoin/src/net.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8
#include <net.h>
9
10
#include <addrdb.h>
11
#include <addrman.h>
12
#include <banman.h>
13
#include <clientversion.h>
14
#include <common/args.h>
15
#include <common/netif.h>
16
#include <compat/compat.h>
17
#include <consensus/consensus.h>
18
#include <crypto/sha256.h>
19
#include <i2p.h>
20
#include <key.h>
21
#include <logging.h>
22
#include <memusage.h>
23
#include <net_permissions.h>
24
#include <netaddress.h>
25
#include <netbase.h>
26
#include <node/eviction.h>
27
#include <node/interface_ui.h>
28
#include <protocol.h>
29
#include <random.h>
30
#include <scheduler.h>
31
#include <util/fs.h>
32
#include <util/sock.h>
33
#include <util/strencodings.h>
34
#include <util/thread.h>
35
#include <util/threadinterrupt.h>
36
#include <util/trace.h>
37
#include <util/translation.h>
38
#include <util/vector.h>
39
40
#ifdef WIN32
41
#include <string.h>
42
#endif
43
44
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45
#include <ifaddrs.h>
46
#endif
47
48
#include <algorithm>
49
#include <array>
50
#include <cmath>
51
#include <cstdint>
52
#include <functional>
53
#include <optional>
54
#include <unordered_map>
55
56
/** Maximum number of block-relay-only anchor connections */
57
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
58
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
59
/** Anchor IP address database file name */
60
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
61
62
// How often to dump addresses to peers.dat
63
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
64
65
/** Number of DNS seeds to query when the number of connections is low. */
66
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
67
68
/** Minimum number of outbound connections under which we will keep fetching our address seeds. */
69
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
70
71
/** How long to delay before querying DNS seeds
72
 *
73
 * If we have more than THRESHOLD entries in addrman, then it's likely
74
 * that we got those addresses from having previously connected to the P2P
75
 * network, and that we'll be able to successfully reconnect to the P2P
76
 * network via contacting one of them. So if that's the case, spend a
77
 * little longer trying to connect to known peers before querying the
78
 * DNS seeds.
79
 */
80
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
81
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
82
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
83
84
/** The default timeframe for -maxuploadtarget. 1 day. */
85
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
86
87
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
88
static constexpr auto FEELER_SLEEP_WINDOW{1s};
89
90
/** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
91
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
92
93
/** Used to pass flags to the Bind() function */
94
enum BindFlags {
95
    BF_NONE         = 0,
96
    BF_REPORT_ERROR = (1U << 0),
97
    /**
98
     * Do not call AddLocal() for our special addresses, e.g., for incoming
99
     * Tor connections, to prevent gossiping them over the network.
100
     */
101
    BF_DONT_ADVERTISE = (1U << 1),
102
};
103
104
// The set of sockets cannot be modified while waiting
105
// The sleep time needs to be small to avoid new sockets stalling
106
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
107
108
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
109
110
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
111
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
112
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
113
//
114
// Global state variables
115
//
116
bool fDiscover = true;
117
bool fListen = true;
118
GlobalMutex g_maplocalhost_mutex;
119
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
120
std::string strSubVersion;
121
122
size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
123
0
{
124
    // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
125
    // "small string" optimization area (which stores data inside the object itself, up to some
126
    // size; 15 bytes in modern libstdc++).
127
0
    return sizeof(*this) + memusage::DynamicUsage(data);
128
0
}
129
130
void CConnman::AddAddrFetch(const std::string& strDest)
131
0
{
132
0
    LOCK(m_addr_fetches_mutex);
133
0
    m_addr_fetches.push_back(strDest);
134
0
}
135
136
uint16_t GetListenPort()
137
0
{
138
    // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
139
0
    for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
140
0
        constexpr uint16_t dummy_port = 0;
141
142
0
        const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
143
0
        if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
144
0
    }
145
146
    // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
147
    // (-whitebind= is required to have ":port").
148
0
    for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
149
0
        NetWhitebindPermissions whitebind;
150
0
        bilingual_str error;
151
0
        if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
152
0
            if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
153
0
                return whitebind.m_service.GetPort();
154
0
            }
155
0
        }
156
0
    }
157
158
    // Otherwise, if -port= is provided, use that. Otherwise use the default port.
159
0
    return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
160
0
}
161
162
// Determine the "best" local address for a particular peer.
163
[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
164
0
{
165
0
    if (!fListen) return std::nullopt;
166
167
0
    std::optional<CService> addr;
168
0
    int nBestScore = -1;
169
0
    int nBestReachability = -1;
170
0
    {
171
0
        LOCK(g_maplocalhost_mutex);
172
0
        for (const auto& [local_addr, local_service_info] : mapLocalHost) {
173
            // For privacy reasons, don't advertise our privacy-network address
174
            // to other networks and don't advertise our other-network address
175
            // to privacy networks.
176
0
            if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
177
0
                && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
178
0
                continue;
179
0
            }
180
0
            const int nScore{local_service_info.nScore};
181
0
            const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
182
0
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
183
0
                addr.emplace(CService{local_addr, local_service_info.nPort});
184
0
                nBestReachability = nReachability;
185
0
                nBestScore = nScore;
186
0
            }
187
0
        }
188
0
    }
189
0
    return addr;
190
0
}
191
192
//! Convert the serialized seeds into usable address objects.
193
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
194
0
{
195
    // It'll only connect to one or two seed nodes because once it connects,
196
    // it'll get a pile of addresses with newer timestamps.
197
    // Seed nodes are given a random 'last seen time' of between one and two
198
    // weeks ago.
199
0
    const auto one_week{7 * 24h};
200
0
    std::vector<CAddress> vSeedsOut;
201
0
    FastRandomContext rng;
202
0
    ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
203
0
    while (!s.eof()) {
204
0
        CService endpoint;
205
0
        s >> endpoint;
206
0
        CAddress addr{endpoint, SeedsServiceFlags()};
207
0
        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
208
0
        LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
209
0
        vSeedsOut.push_back(addr);
210
0
    }
211
0
    return vSeedsOut;
212
0
}
213
214
// Determine the "best" local address for a particular peer.
215
// If none, return the unroutable 0.0.0.0 but filled in with
216
// the normal parameters, since the IP may be changed to a useful
217
// one by discovery.
218
CService GetLocalAddress(const CNode& peer)
219
0
{
220
0
    return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
221
0
}
222
223
static int GetnScore(const CService& addr)
224
0
{
225
0
    LOCK(g_maplocalhost_mutex);
226
0
    const auto it = mapLocalHost.find(addr);
227
0
    return (it != mapLocalHost.end()) ? it->second.nScore : 0;
228
0
}
229
230
// Is our peer's addrLocal potentially useful as an external IP source?
231
[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
232
0
{
233
0
    CService addrLocal = pnode->GetAddrLocal();
234
0
    return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
235
0
           g_reachable_nets.Contains(addrLocal);
236
0
}
237
238
std::optional<CService> GetLocalAddrForPeer(CNode& node)
239
0
{
240
0
    CService addrLocal{GetLocalAddress(node)};
241
    // If discovery is enabled, sometimes give our peer the address it
242
    // tells us that it sees us as in case it has a better idea of our
243
    // address than we do.
244
0
    FastRandomContext rng;
245
0
    if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
246
0
         rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
247
0
    {
248
0
        if (node.IsInboundConn()) {
249
            // For inbound connections, assume both the address and the port
250
            // as seen from the peer.
251
0
            addrLocal = CService{node.GetAddrLocal()};
252
0
        } else {
253
            // For outbound connections, assume just the address as seen from
254
            // the peer and leave the port in `addrLocal` as returned by
255
            // `GetLocalAddress()` above. The peer has no way to observe our
256
            // listening port when we have initiated the connection.
257
0
            addrLocal.SetIP(node.GetAddrLocal());
258
0
        }
259
0
    }
260
0
    if (addrLocal.IsRoutable()) {
261
0
        LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
262
0
        return addrLocal;
263
0
    }
264
    // Address is unroutable. Don't advertise.
265
0
    return std::nullopt;
266
0
}
267
268
// learn a new local address
269
bool AddLocal(const CService& addr_, int nScore)
270
0
{
271
0
    CService addr{MaybeFlipIPv6toCJDNS(addr_)};
272
273
0
    if (!addr.IsRoutable())
274
0
        return false;
275
276
0
    if (!fDiscover && nScore < LOCAL_MANUAL)
277
0
        return false;
278
279
0
    if (!g_reachable_nets.Contains(addr))
280
0
        return false;
281
282
0
    LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
283
284
0
    {
285
0
        LOCK(g_maplocalhost_mutex);
286
0
        const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
287
0
        LocalServiceInfo &info = it->second;
288
0
        if (is_newly_added || nScore >= info.nScore) {
289
0
            info.nScore = nScore + (is_newly_added ? 0 : 1);
290
0
            info.nPort = addr.GetPort();
291
0
        }
292
0
    }
293
294
0
    return true;
295
0
}
296
297
bool AddLocal(const CNetAddr &addr, int nScore)
298
0
{
299
0
    return AddLocal(CService(addr, GetListenPort()), nScore);
300
0
}
301
302
void RemoveLocal(const CService& addr)
303
0
{
304
0
    LOCK(g_maplocalhost_mutex);
305
0
    LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
306
0
    mapLocalHost.erase(addr);
307
0
}
308
309
/** vote for a local address */
310
bool SeenLocal(const CService& addr)
311
0
{
312
0
    LOCK(g_maplocalhost_mutex);
313
0
    const auto it = mapLocalHost.find(addr);
314
0
    if (it == mapLocalHost.end()) return false;
315
0
    ++it->second.nScore;
316
0
    return true;
317
0
}
318
319
320
/** check whether a given address is potentially local */
321
bool IsLocal(const CService& addr)
322
0
{
323
0
    LOCK(g_maplocalhost_mutex);
324
0
    return mapLocalHost.count(addr) > 0;
325
0
}
326
327
CNode* CConnman::FindNode(const CNetAddr& ip)
328
0
{
329
0
    LOCK(m_nodes_mutex);
330
0
    for (CNode* pnode : m_nodes) {
331
0
      if (static_cast<CNetAddr>(pnode->addr) == ip) {
332
0
            return pnode;
333
0
        }
334
0
    }
335
0
    return nullptr;
336
0
}
337
338
CNode* CConnman::FindNode(const std::string& addrName)
339
0
{
340
0
    LOCK(m_nodes_mutex);
341
0
    for (CNode* pnode : m_nodes) {
342
0
        if (pnode->m_addr_name == addrName) {
343
0
            return pnode;
344
0
        }
345
0
    }
346
0
    return nullptr;
347
0
}
348
349
CNode* CConnman::FindNode(const CService& addr)
350
0
{
351
0
    LOCK(m_nodes_mutex);
352
0
    for (CNode* pnode : m_nodes) {
353
0
        if (static_cast<CService>(pnode->addr) == addr) {
354
0
            return pnode;
355
0
        }
356
0
    }
357
0
    return nullptr;
358
0
}
359
360
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
361
0
{
362
0
    return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
363
0
}
364
365
bool CConnman::CheckIncomingNonce(uint64_t nonce)
366
0
{
367
0
    LOCK(m_nodes_mutex);
368
0
    for (const CNode* pnode : m_nodes) {
369
0
        if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
370
0
            return false;
371
0
    }
372
0
    return true;
373
0
}
374
375
/** Get the bind address for a socket as CAddress */
376
static CAddress GetBindAddress(const Sock& sock)
377
0
{
378
0
    CAddress addr_bind;
379
0
    struct sockaddr_storage sockaddr_bind;
380
0
    socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
381
0
    if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
382
0
        addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
383
0
    } else {
384
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
385
0
    }
386
0
    return addr_bind;
387
0
}
388
389
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
390
0
{
391
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
392
0
    assert(conn_type != ConnectionType::INBOUND);
393
394
0
    if (pszDest == nullptr) {
395
0
        if (IsLocal(addrConnect))
396
0
            return nullptr;
397
398
        // Look for an existing connection
399
0
        CNode* pnode = FindNode(static_cast<CService>(addrConnect));
400
0
        if (pnode)
401
0
        {
402
0
            LogPrintf("Failed to open new connection, already connected\n");
403
0
            return nullptr;
404
0
        }
405
0
    }
406
407
0
    LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
408
0
        use_v2transport ? "v2" : "v1",
409
0
        pszDest ? pszDest : addrConnect.ToStringAddrPort(),
410
0
        Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
411
412
    // Resolve
413
0
    const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
414
0
                                                     m_params.GetDefaultPort()};
415
416
    // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
417
0
    std::vector<CAddress> connect_to{};
418
0
    if (pszDest) {
419
0
        std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
420
0
        if (!resolved.empty()) {
421
0
            std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
422
            // If the connection is made by name, it can be the case that the name resolves to more than one address.
423
            // We don't want to connect any more of them if we are already connected to one
424
0
            for (const auto& r : resolved) {
425
0
                addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
426
0
                if (!addrConnect.IsValid()) {
427
0
                    LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
428
0
                    return nullptr;
429
0
                }
430
                // It is possible that we already have a connection to the IP/port pszDest resolved to.
431
                // In that case, drop the connection that was just created.
432
0
                LOCK(m_nodes_mutex);
433
0
                CNode* pnode = FindNode(static_cast<CService>(addrConnect));
434
0
                if (pnode) {
435
0
                    LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
436
0
                    return nullptr;
437
0
                }
438
                // Add the address to the resolved addresses vector so we can try to connect to it later on
439
0
                connect_to.push_back(addrConnect);
440
0
            }
441
0
        } else {
442
            // For resolution via proxy
443
0
            connect_to.push_back(addrConnect);
444
0
        }
445
0
    } else {
446
        // Connect via addrConnect directly
447
0
        connect_to.push_back(addrConnect);
448
0
    }
449
450
    // Connect
451
0
    std::unique_ptr<Sock> sock;
452
0
    Proxy proxy;
453
0
    CAddress addr_bind;
454
0
    assert(!addr_bind.IsValid());
455
0
    std::unique_ptr<i2p::sam::Session> i2p_transient_session;
456
457
0
    for (auto& target_addr: connect_to) {
458
0
        if (target_addr.IsValid()) {
459
0
            const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
460
0
            bool proxyConnectionFailed = false;
461
462
0
            if (target_addr.IsI2P() && use_proxy) {
463
0
                i2p::Connection conn;
464
0
                bool connected{false};
465
466
0
                if (m_i2p_sam_session) {
467
0
                    connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
468
0
                } else {
469
0
                    {
470
0
                        LOCK(m_unused_i2p_sessions_mutex);
471
0
                        if (m_unused_i2p_sessions.empty()) {
472
0
                            i2p_transient_session =
473
0
                                std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
474
0
                        } else {
475
0
                            i2p_transient_session.swap(m_unused_i2p_sessions.front());
476
0
                            m_unused_i2p_sessions.pop();
477
0
                        }
478
0
                    }
479
0
                    connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
480
0
                    if (!connected) {
481
0
                        LOCK(m_unused_i2p_sessions_mutex);
482
0
                        if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
483
0
                            m_unused_i2p_sessions.emplace(i2p_transient_session.release());
484
0
                        }
485
0
                    }
486
0
                }
487
488
0
                if (connected) {
489
0
                    sock = std::move(conn.sock);
490
0
                    addr_bind = CAddress{conn.me, NODE_NONE};
491
0
                }
492
0
            } else if (use_proxy) {
493
0
                LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
494
0
                sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
495
0
            } else {
496
                // no proxy needed (none set for target network)
497
0
                sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
498
0
            }
499
0
            if (!proxyConnectionFailed) {
500
                // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
501
                // the proxy, mark this as an attempt.
502
0
                addrman.Attempt(target_addr, fCountFailure);
503
0
            }
504
0
        } else if (pszDest && GetNameProxy(proxy)) {
505
0
            std::string host;
506
0
            uint16_t port{default_port};
507
0
            SplitHostPort(std::string(pszDest), port, host);
508
0
            bool proxyConnectionFailed;
509
0
            sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
510
0
        }
511
        // Check any other resolved address (if any) if we fail to connect
512
0
        if (!sock) {
513
0
            continue;
514
0
        }
515
516
0
        NetPermissionFlags permission_flags = NetPermissionFlags::None;
517
0
        std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
518
0
        AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
519
520
        // Add node
521
0
        NodeId id = GetNewNodeId();
522
0
        uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
523
0
        if (!addr_bind.IsValid()) {
524
0
            addr_bind = GetBindAddress(*sock);
525
0
        }
526
0
        CNode* pnode = new CNode(id,
527
0
                                std::move(sock),
528
0
                                target_addr,
529
0
                                CalculateKeyedNetGroup(target_addr),
530
0
                                nonce,
531
0
                                addr_bind,
532
0
                                pszDest ? pszDest : "",
533
0
                                conn_type,
534
0
                                /*inbound_onion=*/false,
535
0
                                CNodeOptions{
536
0
                                    .permission_flags = permission_flags,
537
0
                                    .i2p_sam_session = std::move(i2p_transient_session),
538
0
                                    .recv_flood_size = nReceiveFloodSize,
539
0
                                    .use_v2transport = use_v2transport,
540
0
                                });
541
0
        pnode->AddRef();
542
543
        // We're making a new connection, harvest entropy from the time (and our peer count)
544
0
        RandAddEvent((uint32_t)id);
545
546
0
        return pnode;
547
0
    }
548
549
0
    return nullptr;
550
0
}
551
552
void CNode::CloseSocketDisconnect()
553
0
{
554
0
    fDisconnect = true;
555
0
    LOCK(m_sock_mutex);
556
0
    if (m_sock) {
557
0
        LogDebug(BCLog::NET, "disconnecting peer=%d\n", id);
558
0
        m_sock.reset();
559
0
    }
560
0
    m_i2p_sam_session.reset();
561
0
}
562
563
0
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
564
0
    for (const auto& subnet : ranges) {
565
0
        if (subnet.m_subnet.Match(addr)) {
566
0
            NetPermissions::AddFlag(flags, subnet.m_flags);
567
0
        }
568
0
    }
569
0
    if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
570
0
        NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
571
0
        if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
572
0
        if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
573
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
574
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
575
0
    }
576
0
}
577
578
CService CNode::GetAddrLocal() const
579
0
{
580
0
    AssertLockNotHeld(m_addr_local_mutex);
581
0
    LOCK(m_addr_local_mutex);
582
0
    return m_addr_local;
583
0
}
584
585
0
void CNode::SetAddrLocal(const CService& addrLocalIn) {
586
0
    AssertLockNotHeld(m_addr_local_mutex);
587
0
    LOCK(m_addr_local_mutex);
588
0
    if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
589
0
        m_addr_local = addrLocalIn;
590
0
    }
591
0
}
592
593
Network CNode::ConnectedThroughNetwork() const
594
0
{
595
0
    return m_inbound_onion ? NET_ONION : addr.GetNetClass();
596
0
}
597
598
bool CNode::IsConnectedThroughPrivacyNet() const
599
0
{
600
0
    return m_inbound_onion || addr.IsPrivacyNet();
601
0
}
602
603
#undef X
604
0
#define X(name) stats.name = name
605
void CNode::CopyStats(CNodeStats& stats)
606
0
{
607
0
    stats.nodeid = this->GetId();
608
0
    X(addr);
609
0
    X(addrBind);
610
0
    stats.m_network = ConnectedThroughNetwork();
611
0
    X(m_last_send);
612
0
    X(m_last_recv);
613
0
    X(m_last_tx_time);
614
0
    X(m_last_block_time);
615
0
    X(m_connected);
616
0
    X(m_addr_name);
617
0
    X(nVersion);
618
0
    {
619
0
        LOCK(m_subver_mutex);
620
0
        X(cleanSubVer);
621
0
    }
622
0
    stats.fInbound = IsInboundConn();
623
0
    X(m_bip152_highbandwidth_to);
624
0
    X(m_bip152_highbandwidth_from);
625
0
    {
626
0
        LOCK(cs_vSend);
627
0
        X(mapSendBytesPerMsgType);
628
0
        X(nSendBytes);
629
0
    }
630
0
    {
631
0
        LOCK(cs_vRecv);
632
0
        X(mapRecvBytesPerMsgType);
633
0
        X(nRecvBytes);
634
0
        Transport::Info info = m_transport->GetInfo();
635
0
        stats.m_transport_type = info.transport_type;
636
0
        if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
637
0
    }
638
0
    X(m_permission_flags);
639
640
0
    X(m_last_ping_time);
641
0
    X(m_min_ping_time);
642
643
    // Leave string empty if addrLocal invalid (not filled in yet)
644
0
    CService addrLocalUnlocked = GetAddrLocal();
645
0
    stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
646
647
0
    X(m_conn_type);
648
0
}
649
#undef X
650
651
bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
652
0
{
653
0
    complete = false;
654
0
    const auto time = GetTime<std::chrono::microseconds>();
655
0
    LOCK(cs_vRecv);
656
0
    m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
657
0
    nRecvBytes += msg_bytes.size();
658
0
    while (msg_bytes.size() > 0) {
659
        // absorb network data
660
0
        if (!m_transport->ReceivedBytes(msg_bytes)) {
661
            // Serious transport problem, disconnect from the peer.
662
0
            return false;
663
0
        }
664
665
0
        if (m_transport->ReceivedMessageComplete()) {
666
            // decompose a transport agnostic CNetMessage from the deserializer
667
0
            bool reject_message{false};
668
0
            CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
669
0
            if (reject_message) {
670
                // Message deserialization failed. Drop the message but don't disconnect the peer.
671
                // store the size of the corrupt message
672
0
                mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
673
0
                continue;
674
0
            }
675
676
            // Store received bytes per message type.
677
            // To prevent a memory DOS, only allow known message types.
678
0
            auto i = mapRecvBytesPerMsgType.find(msg.m_type);
679
0
            if (i == mapRecvBytesPerMsgType.end()) {
680
0
                i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
681
0
            }
682
0
            assert(i != mapRecvBytesPerMsgType.end());
683
0
            i->second += msg.m_raw_message_size;
684
685
            // push the message to the process queue,
686
0
            vRecvMsg.push_back(std::move(msg));
687
688
0
            complete = true;
689
0
        }
690
0
    }
691
692
0
    return true;
693
0
}
694
695
V1Transport::V1Transport(const NodeId node_id) noexcept
696
0
    : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
697
0
{
698
0
    LOCK(m_recv_mutex);
699
0
    Reset();
700
0
}
701
702
Transport::Info V1Transport::GetInfo() const noexcept
703
0
{
704
0
    return {.transport_type = TransportProtocolType::V1, .session_id = {}};
705
0
}
706
707
int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
708
0
{
709
0
    AssertLockHeld(m_recv_mutex);
710
    // copy data to temporary parsing buffer
711
0
    unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
712
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
713
714
0
    memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
715
0
    nHdrPos += nCopy;
716
717
    // if header incomplete, exit
718
0
    if (nHdrPos < CMessageHeader::HEADER_SIZE)
719
0
        return nCopy;
720
721
    // deserialize to CMessageHeader
722
0
    try {
723
0
        hdrbuf >> hdr;
724
0
    }
725
0
    catch (const std::exception&) {
726
0
        LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
727
0
        return -1;
728
0
    }
729
730
    // Check start string, network magic
731
0
    if (hdr.pchMessageStart != m_magic_bytes) {
732
0
        LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
733
0
        return -1;
734
0
    }
735
736
    // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
737
0
    if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
738
0
        LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
739
0
        return -1;
740
0
    }
741
742
    // switch state to reading message data
743
0
    in_data = true;
744
745
0
    return nCopy;
746
0
}
747
748
int V1Transport::readData(Span<const uint8_t> msg_bytes)
749
0
{
750
0
    AssertLockHeld(m_recv_mutex);
751
0
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
752
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
753
754
0
    if (vRecv.size() < nDataPos + nCopy) {
755
        // Allocate up to 256 KiB ahead, but never more than the total message size.
756
0
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
757
0
    }
758
759
0
    hasher.Write(msg_bytes.first(nCopy));
760
0
    memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
761
0
    nDataPos += nCopy;
762
763
0
    return nCopy;
764
0
}
765
766
const uint256& V1Transport::GetMessageHash() const
767
0
{
768
0
    AssertLockHeld(m_recv_mutex);
769
0
    assert(CompleteInternal());
770
0
    if (data_hash.IsNull())
771
0
        hasher.Finalize(data_hash);
772
0
    return data_hash;
773
0
}
774
775
CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
776
0
{
777
0
    AssertLockNotHeld(m_recv_mutex);
778
    // Initialize out parameter
779
0
    reject_message = false;
780
    // decompose a single CNetMessage from the TransportDeserializer
781
0
    LOCK(m_recv_mutex);
782
0
    CNetMessage msg(std::move(vRecv));
783
784
    // store message type string, time, and sizes
785
0
    msg.m_type = hdr.GetCommand();
786
0
    msg.m_time = time;
787
0
    msg.m_message_size = hdr.nMessageSize;
788
0
    msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
789
790
0
    uint256 hash = GetMessageHash();
791
792
    // We just received a message off the wire, harvest entropy from the time (and the message checksum)
793
0
    RandAddEvent(ReadLE32(hash.begin()));
794
795
    // Check checksum and header message type string
796
0
    if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
797
0
        LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
798
0
                 SanitizeString(msg.m_type), msg.m_message_size,
799
0
                 HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
800
0
                 HexStr(hdr.pchChecksum),
801
0
                 m_node_id);
802
0
        reject_message = true;
803
0
    } else if (!hdr.IsCommandValid()) {
804
0
        LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
805
0
                 SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
806
0
        reject_message = true;
807
0
    }
808
809
    // Always reset the network deserializer (prepare for the next message)
810
0
    Reset();
811
0
    return msg;
812
0
}
813
814
bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
815
0
{
816
0
    AssertLockNotHeld(m_send_mutex);
817
    // Determine whether a new message can be set.
818
0
    LOCK(m_send_mutex);
819
0
    if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
820
821
    // create dbl-sha256 checksum
822
0
    uint256 hash = Hash(msg.data);
823
824
    // create header
825
0
    CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
826
0
    memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
827
828
    // serialize header
829
0
    m_header_to_send.clear();
830
0
    VectorWriter{m_header_to_send, 0, hdr};
831
832
    // update state
833
0
    m_message_to_send = std::move(msg);
834
0
    m_sending_header = true;
835
0
    m_bytes_sent = 0;
836
0
    return true;
837
0
}
838
839
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
840
0
{
841
0
    AssertLockNotHeld(m_send_mutex);
842
0
    LOCK(m_send_mutex);
843
0
    if (m_sending_header) {
844
0
        return {Span{m_header_to_send}.subspan(m_bytes_sent),
845
                // We have more to send after the header if the message has payload, or if there
846
                // is a next message after that.
847
0
                have_next_message || !m_message_to_send.data.empty(),
848
0
                m_message_to_send.m_type
849
0
               };
850
0
    } else {
851
0
        return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
852
                // We only have more to send after this message's payload if there is another
853
                // message.
854
0
                have_next_message,
855
0
                m_message_to_send.m_type
856
0
               };
857
0
    }
858
0
}
859
860
void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
861
0
{
862
0
    AssertLockNotHeld(m_send_mutex);
863
0
    LOCK(m_send_mutex);
864
0
    m_bytes_sent += bytes_sent;
865
0
    if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
866
        // We're done sending a message's header. Switch to sending its data bytes.
867
0
        m_sending_header = false;
868
0
        m_bytes_sent = 0;
869
0
    } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
870
        // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
871
0
        ClearShrink(m_message_to_send.data);
872
0
        m_bytes_sent = 0;
873
0
    }
874
0
}
875
876
size_t V1Transport::GetSendMemoryUsage() const noexcept
877
0
{
878
0
    AssertLockNotHeld(m_send_mutex);
879
0
    LOCK(m_send_mutex);
880
    // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
881
0
    return m_message_to_send.GetMemoryUsage();
882
0
}
883
884
namespace {
885
886
/** List of short messages as defined in BIP324, in order.
887
 *
888
 * Only message types that are actually implemented in this codebase need to be listed, as other
889
 * messages get ignored anyway - whether we know how to decode them or not.
890
 */
891
const std::array<std::string, 33> V2_MESSAGE_IDS = {
892
    "", // 12 bytes follow encoding the message type like in V1
893
    NetMsgType::ADDR,
894
    NetMsgType::BLOCK,
895
    NetMsgType::BLOCKTXN,
896
    NetMsgType::CMPCTBLOCK,
897
    NetMsgType::FEEFILTER,
898
    NetMsgType::FILTERADD,
899
    NetMsgType::FILTERCLEAR,
900
    NetMsgType::FILTERLOAD,
901
    NetMsgType::GETBLOCKS,
902
    NetMsgType::GETBLOCKTXN,
903
    NetMsgType::GETDATA,
904
    NetMsgType::GETHEADERS,
905
    NetMsgType::HEADERS,
906
    NetMsgType::INV,
907
    NetMsgType::MEMPOOL,
908
    NetMsgType::MERKLEBLOCK,
909
    NetMsgType::NOTFOUND,
910
    NetMsgType::PING,
911
    NetMsgType::PONG,
912
    NetMsgType::SENDCMPCT,
913
    NetMsgType::TX,
914
    NetMsgType::GETCFILTERS,
915
    NetMsgType::CFILTER,
916
    NetMsgType::GETCFHEADERS,
917
    NetMsgType::CFHEADERS,
918
    NetMsgType::GETCFCHECKPT,
919
    NetMsgType::CFCHECKPT,
920
    NetMsgType::ADDRV2,
921
    // Unimplemented message types that are assigned in BIP324:
922
    "",
923
    "",
924
    "",
925
    ""
926
};
927
928
class V2MessageMap
929
{
930
    std::unordered_map<std::string, uint8_t> m_map;
931
932
public:
933
    V2MessageMap() noexcept
934
0
    {
935
0
        for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
936
0
            m_map.emplace(V2_MESSAGE_IDS[i], i);
937
0
        }
938
0
    }
939
940
    std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
941
0
    {
942
0
        auto it = m_map.find(message_name);
943
0
        if (it == m_map.end()) return std::nullopt;
944
0
        return it->second;
945
0
    }
946
};
947
948
const V2MessageMap V2_MESSAGE_MAP;
949
950
std::vector<uint8_t> GenerateRandomGarbage() noexcept
951
0
{
952
0
    std::vector<uint8_t> ret;
953
0
    FastRandomContext rng;
954
0
    ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
955
0
    rng.fillrand(MakeWritableByteSpan(ret));
956
0
    return ret;
957
0
}
958
959
} // namespace
960
961
void V2Transport::StartSendingHandshake() noexcept
962
0
{
963
0
    AssertLockHeld(m_send_mutex);
964
0
    Assume(m_send_state == SendState::AWAITING_KEY);
965
0
    Assume(m_send_buffer.empty());
966
    // Initialize the send buffer with ellswift pubkey + provided garbage.
967
0
    m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
968
0
    std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
969
0
    std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
970
    // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
971
0
}
972
973
V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
974
0
    : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
975
0
      m_v1_fallback{nodeid},
976
0
      m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
977
0
      m_send_garbage{std::move(garbage)},
978
0
      m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
979
0
{
980
0
    Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
981
    // Start sending immediately if we're the initiator of the connection.
982
0
    if (initiating) {
983
0
        LOCK(m_send_mutex);
984
0
        StartSendingHandshake();
985
0
    }
986
0
}
987
988
V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
989
0
    : V2Transport{nodeid, initiating, GenerateRandomKey(),
990
0
                  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
991
992
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
993
0
{
994
0
    AssertLockHeld(m_recv_mutex);
995
    // Enforce allowed state transitions.
996
0
    switch (m_recv_state) {
997
0
    case RecvState::KEY_MAYBE_V1:
998
0
        Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
999
0
        break;
1000
0
    case RecvState::KEY:
1001
0
        Assume(recv_state == RecvState::GARB_GARBTERM);
1002
0
        break;
1003
0
    case RecvState::GARB_GARBTERM:
1004
0
        Assume(recv_state == RecvState::VERSION);
1005
0
        break;
1006
0
    case RecvState::VERSION:
1007
0
        Assume(recv_state == RecvState::APP);
1008
0
        break;
1009
0
    case RecvState::APP:
1010
0
        Assume(recv_state == RecvState::APP_READY);
1011
0
        break;
1012
0
    case RecvState::APP_READY:
1013
0
        Assume(recv_state == RecvState::APP);
1014
0
        break;
1015
0
    case RecvState::V1:
1016
0
        Assume(false); // V1 state cannot be left
1017
0
        break;
1018
0
    }
1019
    // Change state.
1020
0
    m_recv_state = recv_state;
1021
0
}
1022
1023
void V2Transport::SetSendState(SendState send_state) noexcept
1024
0
{
1025
0
    AssertLockHeld(m_send_mutex);
1026
    // Enforce allowed state transitions.
1027
0
    switch (m_send_state) {
1028
0
    case SendState::MAYBE_V1:
1029
0
        Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1030
0
        break;
1031
0
    case SendState::AWAITING_KEY:
1032
0
        Assume(send_state == SendState::READY);
1033
0
        break;
1034
0
    case SendState::READY:
1035
0
    case SendState::V1:
1036
0
        Assume(false); // Final states
1037
0
        break;
1038
0
    }
1039
    // Change state.
1040
0
    m_send_state = send_state;
1041
0
}
1042
1043
bool V2Transport::ReceivedMessageComplete() const noexcept
1044
0
{
1045
0
    AssertLockNotHeld(m_recv_mutex);
1046
0
    LOCK(m_recv_mutex);
1047
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1048
1049
0
    return m_recv_state == RecvState::APP_READY;
1050
0
}
1051
1052
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1053
0
{
1054
0
    AssertLockHeld(m_recv_mutex);
1055
0
    AssertLockNotHeld(m_send_mutex);
1056
0
    Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1057
    // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1058
    // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1059
    // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1060
    // sending of the key.
1061
0
    std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1062
0
    std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1063
0
    Assume(m_recv_buffer.size() <= v1_prefix.size());
1064
0
    if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1065
        // Mismatch with v1 prefix, so we can assume a v2 connection.
1066
0
        SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1067
        // Transition the sender to AWAITING_KEY state and start sending.
1068
0
        LOCK(m_send_mutex);
1069
0
        SetSendState(SendState::AWAITING_KEY);
1070
0
        StartSendingHandshake();
1071
0
    } else if (m_recv_buffer.size() == v1_prefix.size()) {
1072
        // Full match with the v1 prefix, so fall back to v1 behavior.
1073
0
        LOCK(m_send_mutex);
1074
0
        Span<const uint8_t> feedback{m_recv_buffer};
1075
        // Feed already received bytes to v1 transport. It should always accept these, because it's
1076
        // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1077
0
        bool ret = m_v1_fallback.ReceivedBytes(feedback);
1078
0
        Assume(feedback.empty());
1079
0
        Assume(ret);
1080
0
        SetReceiveState(RecvState::V1);
1081
0
        SetSendState(SendState::V1);
1082
        // Reset v2 transport buffers to save memory.
1083
0
        ClearShrink(m_recv_buffer);
1084
0
        ClearShrink(m_send_buffer);
1085
0
    } else {
1086
        // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1087
0
    }
1088
0
}
1089
1090
bool V2Transport::ProcessReceivedKeyBytes() noexcept
1091
0
{
1092
0
    AssertLockHeld(m_recv_mutex);
1093
0
    AssertLockNotHeld(m_send_mutex);
1094
0
    Assume(m_recv_state == RecvState::KEY);
1095
0
    Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1096
1097
    // As a special exception, if bytes 4-16 of the key on a responder connection match the
1098
    // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1099
    // (if they did, we'd have switched to V1 state already), assume this is a peer from
1100
    // another network, and disconnect them. They will almost certainly disconnect us too when
1101
    // they receive our uniformly random key and garbage, but detecting this case specially
1102
    // means we can log it.
1103
0
    static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1104
0
    static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1105
0
    if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1106
0
        if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1107
0
            LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1108
0
                     HexStr(Span(m_recv_buffer).first(OFFSET)));
1109
0
            return false;
1110
0
        }
1111
0
    }
1112
1113
0
    if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1114
        // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1115
        // our key to initialize the encryption ciphers.
1116
1117
        // Initialize the ciphers.
1118
0
        EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1119
0
        LOCK(m_send_mutex);
1120
0
        m_cipher.Initialize(ellswift, m_initiating);
1121
1122
        // Switch receiver state to GARB_GARBTERM.
1123
0
        SetReceiveState(RecvState::GARB_GARBTERM);
1124
0
        m_recv_buffer.clear();
1125
1126
        // Switch sender state to READY.
1127
0
        SetSendState(SendState::READY);
1128
1129
        // Append the garbage terminator to the send buffer.
1130
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1131
0
        std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1132
0
                  m_cipher.GetSendGarbageTerminator().end(),
1133
0
                  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1134
1135
        // Construct version packet in the send buffer, with the sent garbage data as AAD.
1136
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1137
0
        m_cipher.Encrypt(
1138
0
            /*contents=*/VERSION_CONTENTS,
1139
0
            /*aad=*/MakeByteSpan(m_send_garbage),
1140
0
            /*ignore=*/false,
1141
0
            /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1142
        // We no longer need the garbage.
1143
0
        ClearShrink(m_send_garbage);
1144
0
    } else {
1145
        // We still have to receive more key bytes.
1146
0
    }
1147
0
    return true;
1148
0
}
1149
1150
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1151
0
{
1152
0
    AssertLockHeld(m_recv_mutex);
1153
0
    Assume(m_recv_state == RecvState::GARB_GARBTERM);
1154
0
    Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1155
0
    if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1156
0
        if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1157
            // Garbage terminator received. Store garbage to authenticate it as AAD later.
1158
0
            m_recv_aad = std::move(m_recv_buffer);
1159
0
            m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1160
0
            m_recv_buffer.clear();
1161
0
            SetReceiveState(RecvState::VERSION);
1162
0
        } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1163
            // We've reached the maximum length for garbage + garbage terminator, and the
1164
            // terminator still does not match. Abort.
1165
0
            LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1166
0
            return false;
1167
0
        } else {
1168
            // We still need to receive more garbage and/or garbage terminator bytes.
1169
0
        }
1170
0
    } else {
1171
        // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1172
        // more first.
1173
0
    }
1174
0
    return true;
1175
0
}
1176
1177
bool V2Transport::ProcessReceivedPacketBytes() noexcept
1178
0
{
1179
0
    AssertLockHeld(m_recv_mutex);
1180
0
    Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1181
1182
    // The maximum permitted contents length for a packet, consisting of:
1183
    // - 0x00 byte: indicating long message type encoding
1184
    // - 12 bytes of message type
1185
    // - payload
1186
0
    static constexpr size_t MAX_CONTENTS_LEN =
1187
0
        1 + CMessageHeader::COMMAND_SIZE +
1188
0
        std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1189
1190
0
    if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1191
        // Length descriptor received.
1192
0
        m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1193
0
        if (m_recv_len > MAX_CONTENTS_LEN) {
1194
0
            LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1195
0
            return false;
1196
0
        }
1197
0
    } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1198
        // Ciphertext received, decrypt it into m_recv_decode_buffer.
1199
        // Note that it is impossible to reach this branch without hitting the branch above first,
1200
        // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1201
0
        m_recv_decode_buffer.resize(m_recv_len);
1202
0
        bool ignore{false};
1203
0
        bool ret = m_cipher.Decrypt(
1204
0
            /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1205
0
            /*aad=*/MakeByteSpan(m_recv_aad),
1206
0
            /*ignore=*/ignore,
1207
0
            /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1208
0
        if (!ret) {
1209
0
            LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1210
0
            return false;
1211
0
        }
1212
        // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1213
0
        ClearShrink(m_recv_aad);
1214
        // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1215
0
        RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1216
1217
        // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1218
        // decoy, which we simply ignore, use the current state to decide what to do with it.
1219
0
        if (!ignore) {
1220
0
            switch (m_recv_state) {
1221
0
            case RecvState::VERSION:
1222
                // Version message received; transition to application phase. The contents is
1223
                // ignored, but can be used for future extensions.
1224
0
                SetReceiveState(RecvState::APP);
1225
0
                break;
1226
0
            case RecvState::APP:
1227
                // Application message decrypted correctly. It can be extracted using GetMessage().
1228
0
                SetReceiveState(RecvState::APP_READY);
1229
0
                break;
1230
0
            default:
1231
                // Any other state is invalid (this function should not have been called).
1232
0
                Assume(false);
1233
0
            }
1234
0
        }
1235
        // Wipe the receive buffer where the next packet will be received into.
1236
0
        ClearShrink(m_recv_buffer);
1237
        // In all but APP_READY state, we can wipe the decoded contents.
1238
0
        if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1239
0
    } else {
1240
        // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1241
        // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1242
0
    }
1243
0
    return true;
1244
0
}
1245
1246
size_t V2Transport::GetMaxBytesToProcess() noexcept
1247
0
{
1248
0
    AssertLockHeld(m_recv_mutex);
1249
0
    switch (m_recv_state) {
1250
0
    case RecvState::KEY_MAYBE_V1:
1251
        // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1252
        // receive buffer.
1253
0
        Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1254
        // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1255
        // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1256
        // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1257
        // back into the m_v1_fallback V1 transport.
1258
0
        return V1_PREFIX_LEN - m_recv_buffer.size();
1259
0
    case RecvState::KEY:
1260
        // During the KEY state, we only allow the 64-byte key into the receive buffer.
1261
0
        Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1262
        // As long as we have not received the other side's public key, don't receive more than
1263
        // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1264
        // key exchange first.
1265
0
        return EllSwiftPubKey::size() - m_recv_buffer.size();
1266
0
    case RecvState::GARB_GARBTERM:
1267
        // Process garbage bytes one by one (because terminator may appear anywhere).
1268
0
        return 1;
1269
0
    case RecvState::VERSION:
1270
0
    case RecvState::APP:
1271
        // These three states all involve decoding a packet. Process the length descriptor first,
1272
        // so that we know where the current packet ends (and we don't process bytes from the next
1273
        // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1274
0
        if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1275
0
            return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1276
0
        } else {
1277
            // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1278
            // and encoded packet size, which includes the 3 bytes due to the packet length.
1279
            // When transitioning from receiving the packet length to receiving its ciphertext,
1280
            // the encrypted packet length is left in the receive buffer.
1281
0
            return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1282
0
        }
1283
0
    case RecvState::APP_READY:
1284
        // No bytes can be processed until GetMessage() is called.
1285
0
        return 0;
1286
0
    case RecvState::V1:
1287
        // Not allowed (must be dealt with by the caller).
1288
0
        Assume(false);
1289
0
        return 0;
1290
0
    }
1291
0
    Assume(false); // unreachable
1292
0
    return 0;
1293
0
}
1294
1295
bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1296
0
{
1297
0
    AssertLockNotHeld(m_recv_mutex);
1298
    /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1299
0
    static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1300
1301
0
    LOCK(m_recv_mutex);
1302
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1303
1304
    // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1305
    // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1306
    // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1307
    // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1308
0
    while (!msg_bytes.empty()) {
1309
        // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1310
0
        size_t max_read = GetMaxBytesToProcess();
1311
1312
        // Reserve space in the buffer if there is not enough.
1313
0
        if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1314
0
            switch (m_recv_state) {
1315
0
            case RecvState::KEY_MAYBE_V1:
1316
0
            case RecvState::KEY:
1317
0
            case RecvState::GARB_GARBTERM:
1318
                // During the initial states (key/garbage), allocate once to fit the maximum (4111
1319
                // bytes).
1320
0
                m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1321
0
                break;
1322
0
            case RecvState::VERSION:
1323
0
            case RecvState::APP: {
1324
                // During states where a packet is being received, as much as is expected but never
1325
                // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1326
                // This means attackers that want to cause us to waste allocated memory are limited
1327
                // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1328
                // MAX_RESERVE_AHEAD more than they've actually sent us.
1329
0
                size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1330
0
                m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1331
0
                break;
1332
0
            }
1333
0
            case RecvState::APP_READY:
1334
                // The buffer is empty in this state.
1335
0
                Assume(m_recv_buffer.empty());
1336
0
                break;
1337
0
            case RecvState::V1:
1338
                // Should have bailed out above.
1339
0
                Assume(false);
1340
0
                break;
1341
0
            }
1342
0
        }
1343
1344
        // Can't read more than provided input.
1345
0
        max_read = std::min(msg_bytes.size(), max_read);
1346
        // Copy data to buffer.
1347
0
        m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1348
0
        msg_bytes = msg_bytes.subspan(max_read);
1349
1350
        // Process data in the buffer.
1351
0
        switch (m_recv_state) {
1352
0
        case RecvState::KEY_MAYBE_V1:
1353
0
            ProcessReceivedMaybeV1Bytes();
1354
0
            if (m_recv_state == RecvState::V1) return true;
1355
0
            break;
1356
1357
0
        case RecvState::KEY:
1358
0
            if (!ProcessReceivedKeyBytes()) return false;
1359
0
            break;
1360
1361
0
        case RecvState::GARB_GARBTERM:
1362
0
            if (!ProcessReceivedGarbageBytes()) return false;
1363
0
            break;
1364
1365
0
        case RecvState::VERSION:
1366
0
        case RecvState::APP:
1367
0
            if (!ProcessReceivedPacketBytes()) return false;
1368
0
            break;
1369
1370
0
        case RecvState::APP_READY:
1371
0
            return true;
1372
1373
0
        case RecvState::V1:
1374
            // We should have bailed out before.
1375
0
            Assume(false);
1376
0
            break;
1377
0
        }
1378
        // Make sure we have made progress before continuing.
1379
0
        Assume(max_read > 0);
1380
0
    }
1381
1382
0
    return true;
1383
0
}
1384
1385
std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1386
0
{
1387
0
    if (contents.size() == 0) return std::nullopt; // Empty contents
1388
0
    uint8_t first_byte = contents[0];
1389
0
    contents = contents.subspan(1); // Strip first byte.
1390
1391
0
    if (first_byte != 0) {
1392
        // Short (1 byte) encoding.
1393
0
        if (first_byte < std::size(V2_MESSAGE_IDS)) {
1394
            // Valid short message id.
1395
0
            return V2_MESSAGE_IDS[first_byte];
1396
0
        } else {
1397
            // Unknown short message id.
1398
0
            return std::nullopt;
1399
0
        }
1400
0
    }
1401
1402
0
    if (contents.size() < CMessageHeader::COMMAND_SIZE) {
1403
0
        return std::nullopt; // Long encoding needs 12 message type bytes.
1404
0
    }
1405
1406
0
    size_t msg_type_len{0};
1407
0
    while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
1408
        // Verify that message type bytes before the first 0x00 are in range.
1409
0
        if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1410
0
            return {};
1411
0
        }
1412
0
        ++msg_type_len;
1413
0
    }
1414
0
    std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1415
0
    while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
1416
        // Verify that message type bytes after the first 0x00 are also 0x00.
1417
0
        if (contents[msg_type_len] != 0) return {};
1418
0
        ++msg_type_len;
1419
0
    }
1420
    // Strip message type bytes of contents.
1421
0
    contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
1422
0
    return ret;
1423
0
}
1424
1425
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1426
0
{
1427
0
    AssertLockNotHeld(m_recv_mutex);
1428
0
    LOCK(m_recv_mutex);
1429
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1430
1431
0
    Assume(m_recv_state == RecvState::APP_READY);
1432
0
    Span<const uint8_t> contents{m_recv_decode_buffer};
1433
0
    auto msg_type = GetMessageType(contents);
1434
0
    CNetMessage msg{DataStream{}};
1435
    // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1436
0
    msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1437
0
    if (msg_type) {
1438
0
        reject_message = false;
1439
0
        msg.m_type = std::move(*msg_type);
1440
0
        msg.m_time = time;
1441
0
        msg.m_message_size = contents.size();
1442
0
        msg.m_recv.resize(contents.size());
1443
0
        std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1444
0
    } else {
1445
0
        LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1446
0
        reject_message = true;
1447
0
    }
1448
0
    ClearShrink(m_recv_decode_buffer);
1449
0
    SetReceiveState(RecvState::APP);
1450
1451
0
    return msg;
1452
0
}
1453
1454
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1455
0
{
1456
0
    AssertLockNotHeld(m_send_mutex);
1457
0
    LOCK(m_send_mutex);
1458
0
    if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1459
    // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1460
    // is available) and the send buffer is empty. This limits the number of messages in the send
1461
    // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1462
0
    if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1463
    // Construct contents (encoding message type + payload).
1464
0
    std::vector<uint8_t> contents;
1465
0
    auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1466
0
    if (short_message_id) {
1467
0
        contents.resize(1 + msg.data.size());
1468
0
        contents[0] = *short_message_id;
1469
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1470
0
    } else {
1471
        // Initialize with zeroes, and then write the message type string starting at offset 1.
1472
        // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1473
0
        contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
1474
0
        std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1475
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
1476
0
    }
1477
    // Construct ciphertext in send buffer.
1478
0
    m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1479
0
    m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1480
0
    m_send_type = msg.m_type;
1481
    // Release memory
1482
0
    ClearShrink(msg.data);
1483
0
    return true;
1484
0
}
1485
1486
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1487
0
{
1488
0
    AssertLockNotHeld(m_send_mutex);
1489
0
    LOCK(m_send_mutex);
1490
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1491
1492
0
    if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1493
0
    Assume(m_send_pos <= m_send_buffer.size());
1494
0
    return {
1495
0
        Span{m_send_buffer}.subspan(m_send_pos),
1496
        // We only have more to send after the current m_send_buffer if there is a (next)
1497
        // message to be sent, and we're capable of sending packets. */
1498
0
        have_next_message && m_send_state == SendState::READY,
1499
0
        m_send_type
1500
0
    };
1501
0
}
1502
1503
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1504
0
{
1505
0
    AssertLockNotHeld(m_send_mutex);
1506
0
    LOCK(m_send_mutex);
1507
0
    if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1508
1509
0
    if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1510
0
        LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1511
0
    }
1512
1513
0
    m_send_pos += bytes_sent;
1514
0
    Assume(m_send_pos <= m_send_buffer.size());
1515
0
    if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1516
0
        m_sent_v1_header_worth = true;
1517
0
    }
1518
    // Wipe the buffer when everything is sent.
1519
0
    if (m_send_pos == m_send_buffer.size()) {
1520
0
        m_send_pos = 0;
1521
0
        ClearShrink(m_send_buffer);
1522
0
    }
1523
0
}
1524
1525
bool V2Transport::ShouldReconnectV1() const noexcept
1526
0
{
1527
0
    AssertLockNotHeld(m_send_mutex);
1528
0
    AssertLockNotHeld(m_recv_mutex);
1529
    // Only outgoing connections need reconnection.
1530
0
    if (!m_initiating) return false;
1531
1532
0
    LOCK(m_recv_mutex);
1533
    // We only reconnect in the very first state and when the receive buffer is empty. Together
1534
    // these conditions imply nothing has been received so far.
1535
0
    if (m_recv_state != RecvState::KEY) return false;
1536
0
    if (!m_recv_buffer.empty()) return false;
1537
    // Check if we've sent enough for the other side to disconnect us (if it was V1).
1538
0
    LOCK(m_send_mutex);
1539
0
    return m_sent_v1_header_worth;
1540
0
}
1541
1542
size_t V2Transport::GetSendMemoryUsage() const noexcept
1543
0
{
1544
0
    AssertLockNotHeld(m_send_mutex);
1545
0
    LOCK(m_send_mutex);
1546
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1547
1548
0
    return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1549
0
}
1550
1551
Transport::Info V2Transport::GetInfo() const noexcept
1552
0
{
1553
0
    AssertLockNotHeld(m_recv_mutex);
1554
0
    LOCK(m_recv_mutex);
1555
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1556
1557
0
    Transport::Info info;
1558
1559
    // Do not report v2 and session ID until the version packet has been received
1560
    // and verified (confirming that the other side very likely has the same keys as us).
1561
0
    if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1562
0
        m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1563
0
        info.transport_type = TransportProtocolType::V2;
1564
0
        info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1565
0
    } else {
1566
0
        info.transport_type = TransportProtocolType::DETECTING;
1567
0
    }
1568
1569
0
    return info;
1570
0
}
1571
1572
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1573
0
{
1574
0
    auto it = node.vSendMsg.begin();
1575
0
    size_t nSentSize = 0;
1576
0
    bool data_left{false}; //!< second return value (whether unsent data remains)
1577
0
    std::optional<bool> expected_more;
1578
1579
0
    while (true) {
1580
0
        if (it != node.vSendMsg.end()) {
1581
            // If possible, move one message from the send queue to the transport. This fails when
1582
            // there is an existing message still being sent, or (for v2 transports) when the
1583
            // handshake has not yet completed.
1584
0
            size_t memusage = it->GetMemoryUsage();
1585
0
            if (node.m_transport->SetMessageToSend(*it)) {
1586
                // Update memory usage of send buffer (as *it will be deleted).
1587
0
                node.m_send_memusage -= memusage;
1588
0
                ++it;
1589
0
            }
1590
0
        }
1591
0
        const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1592
        // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1593
        // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1594
        // verify that the previously returned 'more' was correct.
1595
0
        if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1596
0
        expected_more = more;
1597
0
        data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1598
0
        int nBytes = 0;
1599
0
        if (!data.empty()) {
1600
0
            LOCK(node.m_sock_mutex);
1601
            // There is no socket in case we've already disconnected, or in test cases without
1602
            // real connections. In these cases, we bail out immediately and just leave things
1603
            // in the send queue and transport.
1604
0
            if (!node.m_sock) {
1605
0
                break;
1606
0
            }
1607
0
            int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1608
0
#ifdef MSG_MORE
1609
0
            if (more) {
1610
0
                flags |= MSG_MORE;
1611
0
            }
1612
0
#endif
1613
0
            nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1614
0
        }
1615
0
        if (nBytes > 0) {
1616
0
            node.m_last_send = GetTime<std::chrono::seconds>();
1617
0
            node.nSendBytes += nBytes;
1618
            // Notify transport that bytes have been processed.
1619
0
            node.m_transport->MarkBytesSent(nBytes);
1620
            // Update statistics per message type.
1621
0
            if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1622
0
                node.AccountForSentBytes(msg_type, nBytes);
1623
0
            }
1624
0
            nSentSize += nBytes;
1625
0
            if ((size_t)nBytes != data.size()) {
1626
                // could not send full message; stop sending more
1627
0
                break;
1628
0
            }
1629
0
        } else {
1630
0
            if (nBytes < 0) {
1631
                // error
1632
0
                int nErr = WSAGetLastError();
1633
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1634
0
                    LogDebug(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
1635
0
                    node.CloseSocketDisconnect();
1636
0
                }
1637
0
            }
1638
0
            break;
1639
0
        }
1640
0
    }
1641
1642
0
    node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1643
1644
0
    if (it == node.vSendMsg.end()) {
1645
0
        assert(node.m_send_memusage == 0);
1646
0
    }
1647
0
    node.vSendMsg.erase(node.vSendMsg.begin(), it);
1648
0
    return {nSentSize, data_left};
1649
0
}
1650
1651
/** Try to find a connection to evict when the node is full.
1652
 *  Extreme care must be taken to avoid opening the node to attacker
1653
 *   triggered network partitioning.
1654
 *  The strategy used here is to protect a small number of peers
1655
 *   for each of several distinct characteristics which are difficult
1656
 *   to forge.  In order to partition a node the attacker must be
1657
 *   simultaneously better at all of them than honest peers.
1658
 */
1659
bool CConnman::AttemptToEvictConnection()
1660
0
{
1661
0
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
1662
0
    {
1663
1664
0
        LOCK(m_nodes_mutex);
1665
0
        for (const CNode* node : m_nodes) {
1666
0
            if (node->fDisconnect)
1667
0
                continue;
1668
0
            NodeEvictionCandidate candidate{
1669
0
                .id = node->GetId(),
1670
0
                .m_connected = node->m_connected,
1671
0
                .m_min_ping_time = node->m_min_ping_time,
1672
0
                .m_last_block_time = node->m_last_block_time,
1673
0
                .m_last_tx_time = node->m_last_tx_time,
1674
0
                .fRelevantServices = node->m_has_all_wanted_services,
1675
0
                .m_relay_txs = node->m_relays_txs.load(),
1676
0
                .fBloomFilter = node->m_bloom_filter_loaded.load(),
1677
0
                .nKeyedNetGroup = node->nKeyedNetGroup,
1678
0
                .prefer_evict = node->m_prefer_evict,
1679
0
                .m_is_local = node->addr.IsLocal(),
1680
0
                .m_network = node->ConnectedThroughNetwork(),
1681
0
                .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1682
0
                .m_conn_type = node->m_conn_type,
1683
0
            };
1684
0
            vEvictionCandidates.push_back(candidate);
1685
0
        }
1686
0
    }
1687
0
    const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1688
0
    if (!node_id_to_evict) {
1689
0
        return false;
1690
0
    }
1691
0
    LOCK(m_nodes_mutex);
1692
0
    for (CNode* pnode : m_nodes) {
1693
0
        if (pnode->GetId() == *node_id_to_evict) {
1694
0
            LogDebug(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
1695
0
            pnode->fDisconnect = true;
1696
0
            return true;
1697
0
        }
1698
0
    }
1699
0
    return false;
1700
0
}
1701
1702
0
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1703
0
    struct sockaddr_storage sockaddr;
1704
0
    socklen_t len = sizeof(sockaddr);
1705
0
    auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1706
0
    CAddress addr;
1707
1708
0
    if (!sock) {
1709
0
        const int nErr = WSAGetLastError();
1710
0
        if (nErr != WSAEWOULDBLOCK) {
1711
0
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1712
0
        }
1713
0
        return;
1714
0
    }
1715
1716
0
    if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1717
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1718
0
    } else {
1719
0
        addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1720
0
    }
1721
1722
0
    const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1723
1724
0
    NetPermissionFlags permission_flags = NetPermissionFlags::None;
1725
0
    hListenSocket.AddSocketPermissionFlags(permission_flags);
1726
1727
0
    CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1728
0
}
1729
1730
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1731
                                            NetPermissionFlags permission_flags,
1732
                                            const CAddress& addr_bind,
1733
                                            const CAddress& addr)
1734
0
{
1735
0
    int nInbound = 0;
1736
1737
0
    AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1738
1739
0
    {
1740
0
        LOCK(m_nodes_mutex);
1741
0
        for (const CNode* pnode : m_nodes) {
1742
0
            if (pnode->IsInboundConn()) nInbound++;
1743
0
        }
1744
0
    }
1745
1746
0
    if (!fNetworkActive) {
1747
0
        LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1748
0
        return;
1749
0
    }
1750
1751
0
    if (!sock->IsSelectable()) {
1752
0
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1753
0
        return;
1754
0
    }
1755
1756
    // According to the internet TCP_NODELAY is not carried into accepted sockets
1757
    // on all platforms.  Set it again here just to be sure.
1758
0
    const int on{1};
1759
0
    if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1760
0
        LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1761
0
                 addr.ToStringAddrPort());
1762
0
    }
1763
1764
    // Don't accept connections from banned peers.
1765
0
    bool banned = m_banman && m_banman->IsBanned(addr);
1766
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1767
0
    {
1768
0
        LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1769
0
        return;
1770
0
    }
1771
1772
    // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1773
0
    bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1774
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1775
0
    {
1776
0
        LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1777
0
        return;
1778
0
    }
1779
1780
0
    if (nInbound >= m_max_inbound)
1781
0
    {
1782
0
        if (!AttemptToEvictConnection()) {
1783
            // No connection to evict, disconnect the new connection
1784
0
            LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1785
0
            return;
1786
0
        }
1787
0
    }
1788
1789
0
    NodeId id = GetNewNodeId();
1790
0
    uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1791
1792
0
    const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1793
    // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1794
    // detected, so use it whenever we signal NODE_P2P_V2.
1795
0
    ServiceFlags local_services = GetLocalServices();
1796
0
    const bool use_v2transport(local_services & NODE_P2P_V2);
1797
1798
0
    CNode* pnode = new CNode(id,
1799
0
                             std::move(sock),
1800
0
                             addr,
1801
0
                             CalculateKeyedNetGroup(addr),
1802
0
                             nonce,
1803
0
                             addr_bind,
1804
0
                             /*addrNameIn=*/"",
1805
0
                             ConnectionType::INBOUND,
1806
0
                             inbound_onion,
1807
0
                             CNodeOptions{
1808
0
                                 .permission_flags = permission_flags,
1809
0
                                 .prefer_evict = discouraged,
1810
0
                                 .recv_flood_size = nReceiveFloodSize,
1811
0
                                 .use_v2transport = use_v2transport,
1812
0
                             });
1813
0
    pnode->AddRef();
1814
0
    m_msgproc->InitializeNode(*pnode, local_services);
1815
0
    {
1816
0
        LOCK(m_nodes_mutex);
1817
0
        m_nodes.push_back(pnode);
1818
0
    }
1819
0
    LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1820
1821
    // We received a new connection, harvest entropy from the time (and our peer count)
1822
0
    RandAddEvent((uint32_t)id);
1823
0
}
1824
1825
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1826
0
{
1827
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1828
0
    std::optional<int> max_connections;
1829
0
    switch (conn_type) {
1830
0
    case ConnectionType::INBOUND:
1831
0
    case ConnectionType::MANUAL:
1832
0
        return false;
1833
0
    case ConnectionType::OUTBOUND_FULL_RELAY:
1834
0
        max_connections = m_max_outbound_full_relay;
1835
0
        break;
1836
0
    case ConnectionType::BLOCK_RELAY:
1837
0
        max_connections = m_max_outbound_block_relay;
1838
0
        break;
1839
    // no limit for ADDR_FETCH because -seednode has no limit either
1840
0
    case ConnectionType::ADDR_FETCH:
1841
0
        break;
1842
    // no limit for FEELER connections since they're short-lived
1843
0
    case ConnectionType::FEELER:
1844
0
        break;
1845
0
    } // no default case, so the compiler can warn about missing cases
1846
1847
    // Count existing connections
1848
0
    int existing_connections = WITH_LOCK(m_nodes_mutex,
1849
0
                                         return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1850
1851
    // Max connections of specified type already exist
1852
0
    if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1853
1854
    // Max total outbound connections already exist
1855
0
    CSemaphoreGrant grant(*semOutbound, true);
1856
0
    if (!grant) return false;
1857
1858
0
    OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1859
0
    return true;
1860
0
}
1861
1862
void CConnman::DisconnectNodes()
1863
0
{
1864
0
    AssertLockNotHeld(m_nodes_mutex);
1865
0
    AssertLockNotHeld(m_reconnections_mutex);
1866
1867
    // Use a temporary variable to accumulate desired reconnections, so we don't need
1868
    // m_reconnections_mutex while holding m_nodes_mutex.
1869
0
    decltype(m_reconnections) reconnections_to_add;
1870
1871
0
    {
1872
0
        LOCK(m_nodes_mutex);
1873
1874
0
        if (!fNetworkActive) {
1875
            // Disconnect any connected nodes
1876
0
            for (CNode* pnode : m_nodes) {
1877
0
                if (!pnode->fDisconnect) {
1878
0
                    LogDebug(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
1879
0
                    pnode->fDisconnect = true;
1880
0
                }
1881
0
            }
1882
0
        }
1883
1884
        // Disconnect unused nodes
1885
0
        std::vector<CNode*> nodes_copy = m_nodes;
1886
0
        for (CNode* pnode : nodes_copy)
1887
0
        {
1888
0
            if (pnode->fDisconnect)
1889
0
            {
1890
                // remove from m_nodes
1891
0
                m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1892
1893
                // Add to reconnection list if appropriate. We don't reconnect right here, because
1894
                // the creation of a connection is a blocking operation (up to several seconds),
1895
                // and we don't want to hold up the socket handler thread for that long.
1896
0
                if (pnode->m_transport->ShouldReconnectV1()) {
1897
0
                    reconnections_to_add.push_back({
1898
0
                        .addr_connect = pnode->addr,
1899
0
                        .grant = std::move(pnode->grantOutbound),
1900
0
                        .destination = pnode->m_dest,
1901
0
                        .conn_type = pnode->m_conn_type,
1902
0
                        .use_v2transport = false});
1903
0
                    LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1904
0
                }
1905
1906
                // release outbound grant (if any)
1907
0
                pnode->grantOutbound.Release();
1908
1909
                // close socket and cleanup
1910
0
                pnode->CloseSocketDisconnect();
1911
1912
                // update connection count by network
1913
0
                if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1914
1915
                // hold in disconnected pool until all refs are released
1916
0
                pnode->Release();
1917
0
                m_nodes_disconnected.push_back(pnode);
1918
0
            }
1919
0
        }
1920
0
    }
1921
0
    {
1922
        // Delete disconnected nodes
1923
0
        std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1924
0
        for (CNode* pnode : nodes_disconnected_copy)
1925
0
        {
1926
            // Destroy the object only after other threads have stopped using it.
1927
0
            if (pnode->GetRefCount() <= 0) {
1928
0
                m_nodes_disconnected.remove(pnode);
1929
0
                DeleteNode(pnode);
1930
0
            }
1931
0
        }
1932
0
    }
1933
0
    {
1934
        // Move entries from reconnections_to_add to m_reconnections.
1935
0
        LOCK(m_reconnections_mutex);
1936
0
        m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1937
0
    }
1938
0
}
1939
1940
void CConnman::NotifyNumConnectionsChanged()
1941
0
{
1942
0
    size_t nodes_size;
1943
0
    {
1944
0
        LOCK(m_nodes_mutex);
1945
0
        nodes_size = m_nodes.size();
1946
0
    }
1947
0
    if(nodes_size != nPrevNodeCount) {
1948
0
        nPrevNodeCount = nodes_size;
1949
0
        if (m_client_interface) {
1950
0
            m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1951
0
        }
1952
0
    }
1953
0
}
1954
1955
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1956
0
{
1957
0
    return node.m_connected + m_peer_connect_timeout < now;
1958
0
}
1959
1960
bool CConnman::InactivityCheck(const CNode& node) const
1961
0
{
1962
    // Tests that see disconnects after using mocktime can start nodes with a
1963
    // large timeout. For example, -peertimeout=999999999.
1964
0
    const auto now{GetTime<std::chrono::seconds>()};
1965
0
    const auto last_send{node.m_last_send.load()};
1966
0
    const auto last_recv{node.m_last_recv.load()};
1967
1968
0
    if (!ShouldRunInactivityChecks(node, now)) return false;
1969
1970
0
    if (last_recv.count() == 0 || last_send.count() == 0) {
1971
0
        LogDebug(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
1972
0
        return true;
1973
0
    }
1974
1975
0
    if (now > last_send + TIMEOUT_INTERVAL) {
1976
0
        LogDebug(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
1977
0
        return true;
1978
0
    }
1979
1980
0
    if (now > last_recv + TIMEOUT_INTERVAL) {
1981
0
        LogDebug(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
1982
0
        return true;
1983
0
    }
1984
1985
0
    if (!node.fSuccessfullyConnected) {
1986
0
        if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
1987
0
            LogDebug(BCLog::NET, "V2 handshake timeout peer=%d\n", node.GetId());
1988
0
        } else {
1989
0
            LogDebug(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
1990
0
        }
1991
0
        return true;
1992
0
    }
1993
1994
0
    return false;
1995
0
}
1996
1997
Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
1998
0
{
1999
0
    Sock::EventsPerSock events_per_sock;
2000
2001
0
    for (const ListenSocket& hListenSocket : vhListenSocket) {
2002
0
        events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2003
0
    }
2004
2005
0
    for (CNode* pnode : nodes) {
2006
0
        bool select_recv = !pnode->fPauseRecv;
2007
0
        bool select_send;
2008
0
        {
2009
0
            LOCK(pnode->cs_vSend);
2010
            // Sending is possible if either there are bytes to send right now, or if there will be
2011
            // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2012
            // determines both of these in a single call.
2013
0
            const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2014
0
            select_send = !to_send.empty() || more;
2015
0
        }
2016
0
        if (!select_recv && !select_send) continue;
2017
2018
0
        LOCK(pnode->m_sock_mutex);
2019
0
        if (pnode->m_sock) {
2020
0
            Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2021
0
            events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2022
0
        }
2023
0
    }
2024
2025
0
    return events_per_sock;
2026
0
}
2027
2028
void CConnman::SocketHandler()
2029
0
{
2030
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2031
2032
0
    Sock::EventsPerSock events_per_sock;
2033
2034
0
    {
2035
0
        const NodesSnapshot snap{*this, /*shuffle=*/false};
2036
2037
0
        const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2038
2039
        // Check for the readiness of the already connected sockets and the
2040
        // listening sockets in one call ("readiness" as in poll(2) or
2041
        // select(2)). If none are ready, wait for a short while and return
2042
        // empty sets.
2043
0
        events_per_sock = GenerateWaitSockets(snap.Nodes());
2044
0
        if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2045
0
            interruptNet.sleep_for(timeout);
2046
0
        }
2047
2048
        // Service (send/receive) each of the already connected nodes.
2049
0
        SocketHandlerConnected(snap.Nodes(), events_per_sock);
2050
0
    }
2051
2052
    // Accept new connections from listening sockets.
2053
0
    SocketHandlerListening(events_per_sock);
2054
0
}
2055
2056
void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2057
                                      const Sock::EventsPerSock& events_per_sock)
2058
0
{
2059
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2060
2061
0
    for (CNode* pnode : nodes) {
2062
0
        if (interruptNet)
2063
0
            return;
2064
2065
        //
2066
        // Receive
2067
        //
2068
0
        bool recvSet = false;
2069
0
        bool sendSet = false;
2070
0
        bool errorSet = false;
2071
0
        {
2072
0
            LOCK(pnode->m_sock_mutex);
2073
0
            if (!pnode->m_sock) {
2074
0
                continue;
2075
0
            }
2076
0
            const auto it = events_per_sock.find(pnode->m_sock);
2077
0
            if (it != events_per_sock.end()) {
2078
0
                recvSet = it->second.occurred & Sock::RECV;
2079
0
                sendSet = it->second.occurred & Sock::SEND;
2080
0
                errorSet = it->second.occurred & Sock::ERR;
2081
0
            }
2082
0
        }
2083
2084
0
        if (sendSet) {
2085
            // Send data
2086
0
            auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2087
0
            if (bytes_sent) {
2088
0
                RecordBytesSent(bytes_sent);
2089
2090
                // If both receiving and (non-optimistic) sending were possible, we first attempt
2091
                // sending. If that succeeds, but does not fully drain the send queue, do not
2092
                // attempt to receive. This avoids needlessly queueing data if the remote peer
2093
                // is slow at receiving data, by means of TCP flow control. We only do this when
2094
                // sending actually succeeded to make sure progress is always made; otherwise a
2095
                // deadlock would be possible when both sides have data to send, but neither is
2096
                // receiving.
2097
0
                if (data_left) recvSet = false;
2098
0
            }
2099
0
        }
2100
2101
0
        if (recvSet || errorSet)
2102
0
        {
2103
            // typical socket buffer is 8K-64K
2104
0
            uint8_t pchBuf[0x10000];
2105
0
            int nBytes = 0;
2106
0
            {
2107
0
                LOCK(pnode->m_sock_mutex);
2108
0
                if (!pnode->m_sock) {
2109
0
                    continue;
2110
0
                }
2111
0
                nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2112
0
            }
2113
0
            if (nBytes > 0)
2114
0
            {
2115
0
                bool notify = false;
2116
0
                if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2117
0
                    pnode->CloseSocketDisconnect();
2118
0
                }
2119
0
                RecordBytesRecv(nBytes);
2120
0
                if (notify) {
2121
0
                    pnode->MarkReceivedMsgsForProcessing();
2122
0
                    WakeMessageHandler();
2123
0
                }
2124
0
            }
2125
0
            else if (nBytes == 0)
2126
0
            {
2127
                // socket closed gracefully
2128
0
                if (!pnode->fDisconnect) {
2129
0
                    LogDebug(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
2130
0
                }
2131
0
                pnode->CloseSocketDisconnect();
2132
0
            }
2133
0
            else if (nBytes < 0)
2134
0
            {
2135
                // error
2136
0
                int nErr = WSAGetLastError();
2137
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2138
0
                {
2139
0
                    if (!pnode->fDisconnect) {
2140
0
                        LogDebug(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
2141
0
                    }
2142
0
                    pnode->CloseSocketDisconnect();
2143
0
                }
2144
0
            }
2145
0
        }
2146
2147
0
        if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2148
0
    }
2149
0
}
2150
2151
void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2152
0
{
2153
0
    for (const ListenSocket& listen_socket : vhListenSocket) {
2154
0
        if (interruptNet) {
2155
0
            return;
2156
0
        }
2157
0
        const auto it = events_per_sock.find(listen_socket.sock);
2158
0
        if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2159
0
            AcceptConnection(listen_socket);
2160
0
        }
2161
0
    }
2162
0
}
2163
2164
void CConnman::ThreadSocketHandler()
2165
0
{
2166
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2167
2168
0
    while (!interruptNet)
2169
0
    {
2170
0
        DisconnectNodes();
2171
0
        NotifyNumConnectionsChanged();
2172
0
        SocketHandler();
2173
0
    }
2174
0
}
2175
2176
void CConnman::WakeMessageHandler()
2177
0
{
2178
0
    {
2179
0
        LOCK(mutexMsgProc);
2180
0
        fMsgProcWake = true;
2181
0
    }
2182
0
    condMsgProc.notify_one();
2183
0
}
2184
2185
void CConnman::ThreadDNSAddressSeed()
2186
0
{
2187
0
    int outbound_connection_count = 0;
2188
2189
0
    if (gArgs.IsArgSet("-seednode")) {
2190
0
        auto start = NodeClock::now();
2191
0
        constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2192
0
        LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2193
0
        while (!interruptNet) {
2194
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2195
0
                return;
2196
2197
            // Abort if we have spent enough time without reaching our target.
2198
            // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2199
0
            if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2200
0
                LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2201
0
                break;
2202
0
            }
2203
2204
0
            outbound_connection_count = GetFullOutboundConnCount();
2205
0
            if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2206
0
                LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2207
0
                break;
2208
0
            }
2209
0
        }
2210
0
    }
2211
2212
0
    FastRandomContext rng;
2213
0
    std::vector<std::string> seeds = m_params.DNSSeeds();
2214
0
    std::shuffle(seeds.begin(), seeds.end(), rng);
2215
0
    int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2216
2217
0
    if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2218
        // When -forcednsseed is provided, query all.
2219
0
        seeds_right_now = seeds.size();
2220
0
    } else if (addrman.Size() == 0) {
2221
        // If we have no known peers, query all.
2222
        // This will occur on the first run, or if peers.dat has been
2223
        // deleted.
2224
0
        seeds_right_now = seeds.size();
2225
0
    }
2226
2227
    // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2228
0
    if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2229
        // goal: only query DNS seed if address need is acute
2230
        // * If we have a reasonable number of peers in addrman, spend
2231
        //   some time trying them first. This improves user privacy by
2232
        //   creating fewer identifying DNS requests, reduces trust by
2233
        //   giving seeds less influence on the network topology, and
2234
        //   reduces traffic to the seeds.
2235
        // * When querying DNS seeds query a few at once, this ensures
2236
        //   that we don't give DNS seeds the ability to eclipse nodes
2237
        //   that query them.
2238
        // * If we continue having problems, eventually query all the
2239
        //   DNS seeds, and if that fails too, also try the fixed seeds.
2240
        //   (done in ThreadOpenConnections)
2241
0
        int found = 0;
2242
0
        const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2243
2244
0
        for (const std::string& seed : seeds) {
2245
0
            if (seeds_right_now == 0) {
2246
0
                seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2247
2248
0
                if (addrman.Size() > 0) {
2249
0
                    LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2250
0
                    std::chrono::seconds to_wait = seeds_wait_time;
2251
0
                    while (to_wait.count() > 0) {
2252
                        // if sleeping for the MANY_PEERS interval, wake up
2253
                        // early to see if we have enough peers and can stop
2254
                        // this thread entirely freeing up its resources
2255
0
                        std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2256
0
                        if (!interruptNet.sleep_for(w)) return;
2257
0
                        to_wait -= w;
2258
2259
0
                        if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2260
0
                            if (found > 0) {
2261
0
                                LogPrintf("%d addresses found from DNS seeds\n", found);
2262
0
                                LogPrintf("P2P peers available. Finished DNS seeding.\n");
2263
0
                            } else {
2264
0
                                LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2265
0
                            }
2266
0
                            return;
2267
0
                        }
2268
0
                    }
2269
0
                }
2270
0
            }
2271
2272
0
            if (interruptNet) return;
2273
2274
            // hold off on querying seeds if P2P network deactivated
2275
0
            if (!fNetworkActive) {
2276
0
                LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2277
0
                do {
2278
0
                    if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2279
0
                } while (!fNetworkActive);
2280
0
            }
2281
2282
0
            LogPrintf("Loading addresses from DNS seed %s\n", seed);
2283
            // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2284
            // for the base dns seed domain in chainparams
2285
0
            if (HaveNameProxy()) {
2286
0
                AddAddrFetch(seed);
2287
0
            } else {
2288
0
                std::vector<CAddress> vAdd;
2289
0
                constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2290
0
                std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2291
0
                CNetAddr resolveSource;
2292
0
                if (!resolveSource.SetInternal(host)) {
2293
0
                    continue;
2294
0
                }
2295
                // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2296
                // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2297
                // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2298
                // returned.
2299
0
                unsigned int nMaxIPs = 32;
2300
0
                const auto addresses{LookupHost(host, nMaxIPs, true)};
2301
0
                if (!addresses.empty()) {
2302
0
                    for (const CNetAddr& ip : addresses) {
2303
0
                        CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2304
0
                        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2305
0
                        vAdd.push_back(addr);
2306
0
                        found++;
2307
0
                    }
2308
0
                    addrman.Add(vAdd, resolveSource);
2309
0
                } else {
2310
                    // If the seed does not support a subdomain with our desired service bits,
2311
                    // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2312
                    // base dns seed domain in chainparams
2313
0
                    AddAddrFetch(seed);
2314
0
                }
2315
0
            }
2316
0
            --seeds_right_now;
2317
0
        }
2318
0
        LogPrintf("%d addresses found from DNS seeds\n", found);
2319
0
    } else {
2320
0
        LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2321
0
    }
2322
0
}
2323
2324
void CConnman::DumpAddresses()
2325
0
{
2326
0
    const auto start{SteadyClock::now()};
2327
2328
0
    DumpPeerAddresses(::gArgs, addrman);
2329
2330
0
    LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
2331
0
             addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2332
0
}
2333
2334
void CConnman::ProcessAddrFetch()
2335
0
{
2336
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2337
0
    std::string strDest;
2338
0
    {
2339
0
        LOCK(m_addr_fetches_mutex);
2340
0
        if (m_addr_fetches.empty())
2341
0
            return;
2342
0
        strDest = m_addr_fetches.front();
2343
0
        m_addr_fetches.pop_front();
2344
0
    }
2345
    // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2346
    // peer doesn't support it or immediately disconnects us for another reason.
2347
0
    const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2348
0
    CAddress addr;
2349
0
    CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2350
0
    if (grant) {
2351
0
        OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2352
0
    }
2353
0
}
2354
2355
bool CConnman::GetTryNewOutboundPeer() const
2356
0
{
2357
0
    return m_try_another_outbound_peer;
2358
0
}
2359
2360
void CConnman::SetTryNewOutboundPeer(bool flag)
2361
0
{
2362
0
    m_try_another_outbound_peer = flag;
2363
0
    LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2364
0
}
2365
2366
void CConnman::StartExtraBlockRelayPeers()
2367
0
{
2368
0
    LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2369
0
    m_start_extra_block_relay_peers = true;
2370
0
}
2371
2372
// Return the number of outbound connections that are full relay (not blocks only)
2373
int CConnman::GetFullOutboundConnCount() const
2374
0
{
2375
0
    int nRelevant = 0;
2376
0
    {
2377
0
        LOCK(m_nodes_mutex);
2378
0
        for (const CNode* pnode : m_nodes) {
2379
0
            if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2380
0
        }
2381
0
    }
2382
0
    return nRelevant;
2383
0
}
2384
2385
// Return the number of peers we have over our outbound connection limit
2386
// Exclude peers that are marked for disconnect, or are going to be
2387
// disconnected soon (eg ADDR_FETCH and FEELER)
2388
// Also exclude peers that haven't finished initial connection handshake yet
2389
// (so that we don't decide we're over our desired connection limit, and then
2390
// evict some peer that has finished the handshake)
2391
int CConnman::GetExtraFullOutboundCount() const
2392
0
{
2393
0
    int full_outbound_peers = 0;
2394
0
    {
2395
0
        LOCK(m_nodes_mutex);
2396
0
        for (const CNode* pnode : m_nodes) {
2397
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2398
0
                ++full_outbound_peers;
2399
0
            }
2400
0
        }
2401
0
    }
2402
0
    return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2403
0
}
2404
2405
int CConnman::GetExtraBlockRelayCount() const
2406
0
{
2407
0
    int block_relay_peers = 0;
2408
0
    {
2409
0
        LOCK(m_nodes_mutex);
2410
0
        for (const CNode* pnode : m_nodes) {
2411
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2412
0
                ++block_relay_peers;
2413
0
            }
2414
0
        }
2415
0
    }
2416
0
    return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2417
0
}
2418
2419
std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2420
0
{
2421
0
    std::unordered_set<Network> networks{};
2422
0
    for (int n = 0; n < NET_MAX; n++) {
2423
0
        enum Network net = (enum Network)n;
2424
0
        if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2425
0
        if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2426
0
            networks.insert(net);
2427
0
        }
2428
0
    }
2429
0
    return networks;
2430
0
}
2431
2432
bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2433
0
{
2434
0
    AssertLockHeld(m_nodes_mutex);
2435
0
    return m_network_conn_counts[net] > 1;
2436
0
}
2437
2438
bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2439
0
{
2440
0
    std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2441
0
    std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2442
2443
0
    LOCK(m_nodes_mutex);
2444
0
    for (const auto net : nets) {
2445
0
        if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2446
0
            network = net;
2447
0
            return true;
2448
0
        }
2449
0
    }
2450
2451
0
    return false;
2452
0
}
2453
2454
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2455
0
{
2456
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2457
0
    AssertLockNotHeld(m_reconnections_mutex);
2458
0
    FastRandomContext rng;
2459
    // Connect to specific addresses
2460
0
    if (!connect.empty())
2461
0
    {
2462
        // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2463
        // peer doesn't support it or immediately disconnects us for another reason.
2464
0
        const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2465
0
        for (int64_t nLoop = 0;; nLoop++)
2466
0
        {
2467
0
            for (const std::string& strAddr : connect)
2468
0
            {
2469
0
                CAddress addr(CService(), NODE_NONE);
2470
0
                OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2471
0
                for (int i = 0; i < 10 && i < nLoop; i++)
2472
0
                {
2473
0
                    if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2474
0
                        return;
2475
0
                }
2476
0
            }
2477
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2478
0
                return;
2479
0
            PerformReconnections();
2480
0
        }
2481
0
    }
2482
2483
    // Initiate network connections
2484
0
    auto start = GetTime<std::chrono::microseconds>();
2485
2486
    // Minimum time before next feeler connection (in microseconds).
2487
0
    auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2488
0
    auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2489
0
    auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2490
0
    const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2491
0
    bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2492
0
    const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2493
2494
0
    auto seed_node_timer = NodeClock::now();
2495
0
    bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2496
0
    constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2497
2498
0
    if (!add_fixed_seeds) {
2499
0
        LogPrintf("Fixed seeds are disabled\n");
2500
0
    }
2501
2502
0
    while (!interruptNet)
2503
0
    {
2504
0
        if (add_addr_fetch) {
2505
0
            add_addr_fetch = false;
2506
0
            const auto& seed{SpanPopBack(seed_nodes)};
2507
0
            AddAddrFetch(seed);
2508
2509
0
            if (addrman.Size() == 0) {
2510
0
                LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2511
0
            } else {
2512
0
                LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2513
0
            }
2514
0
        }
2515
2516
0
        ProcessAddrFetch();
2517
2518
0
        if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2519
0
            return;
2520
2521
0
        PerformReconnections();
2522
2523
0
        CSemaphoreGrant grant(*semOutbound);
2524
0
        if (interruptNet)
2525
0
            return;
2526
2527
0
        const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2528
0
        if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2529
            // When the node starts with an empty peers.dat, there are a few other sources of peers before
2530
            // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2531
            // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2532
            // 60 seconds for any of those sources to populate addrman.
2533
0
            bool add_fixed_seeds_now = false;
2534
            // It is cheapest to check if enough time has passed first.
2535
0
            if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2536
0
                add_fixed_seeds_now = true;
2537
0
                LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2538
0
            }
2539
2540
            // Perform cheap checks before locking a mutex.
2541
0
            else if (!dnsseed && !use_seednodes) {
2542
0
                LOCK(m_added_nodes_mutex);
2543
0
                if (m_added_node_params.empty()) {
2544
0
                    add_fixed_seeds_now = true;
2545
0
                    LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2546
0
                }
2547
0
            }
2548
2549
0
            if (add_fixed_seeds_now) {
2550
0
                std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2551
                // We will not make outgoing connections to peers that are unreachable
2552
                // (e.g. because of -onlynet configuration).
2553
                // Therefore, we do not add them to addrman in the first place.
2554
                // In case previously unreachable networks become reachable
2555
                // (e.g. in case of -onlynet changes by the user), fixed seeds will
2556
                // be loaded only for networks for which we have no addresses.
2557
0
                seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2558
0
                                                [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2559
0
                                 seed_addrs.end());
2560
0
                CNetAddr local;
2561
0
                local.SetInternal("fixedseeds");
2562
0
                addrman.Add(seed_addrs, local);
2563
0
                add_fixed_seeds = false;
2564
0
                LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2565
0
            }
2566
0
        }
2567
2568
        //
2569
        // Choose an address to connect to based on most recently seen
2570
        //
2571
0
        CAddress addrConnect;
2572
2573
        // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2574
0
        int nOutboundFullRelay = 0;
2575
0
        int nOutboundBlockRelay = 0;
2576
0
        int outbound_privacy_network_peers = 0;
2577
0
        std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2578
2579
0
        {
2580
0
            LOCK(m_nodes_mutex);
2581
0
            for (const CNode* pnode : m_nodes) {
2582
0
                if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2583
0
                if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2584
2585
                // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2586
0
                switch (pnode->m_conn_type) {
2587
                    // We currently don't take inbound connections into account. Since they are
2588
                    // free to make, an attacker could make them to prevent us from connecting to
2589
                    // certain peers.
2590
0
                    case ConnectionType::INBOUND:
2591
                    // Short-lived outbound connections should not affect how we select outbound
2592
                    // peers from addrman.
2593
0
                    case ConnectionType::ADDR_FETCH:
2594
0
                    case ConnectionType::FEELER:
2595
0
                        break;
2596
0
                    case ConnectionType::MANUAL:
2597
0
                    case ConnectionType::OUTBOUND_FULL_RELAY:
2598
0
                    case ConnectionType::BLOCK_RELAY:
2599
0
                        const CAddress address{pnode->addr};
2600
0
                        if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2601
                            // Since our addrman-groups for these networks are
2602
                            // random, without relation to the route we
2603
                            // take to connect to these peers or to the
2604
                            // difficulty in obtaining addresses with diverse
2605
                            // groups, we don't worry about diversity with
2606
                            // respect to our addrman groups when connecting to
2607
                            // these networks.
2608
0
                            ++outbound_privacy_network_peers;
2609
0
                        } else {
2610
0
                            outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2611
0
                        }
2612
0
                } // no default case, so the compiler can warn about missing cases
2613
0
            }
2614
0
        }
2615
2616
0
        if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2617
0
            if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2618
0
                seed_node_timer = NodeClock::now();
2619
0
                add_addr_fetch = true;
2620
0
            }
2621
0
        }
2622
2623
0
        ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2624
0
        auto now = GetTime<std::chrono::microseconds>();
2625
0
        bool anchor = false;
2626
0
        bool fFeeler = false;
2627
0
        std::optional<Network> preferred_net;
2628
2629
        // Determine what type of connection to open. Opening
2630
        // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2631
        // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2632
        // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2633
        // until we hit our block-relay-only peer limit.
2634
        // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2635
        // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2636
        // these conditions are met, check to see if it's time to try an extra
2637
        // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2638
        // timer to decide if we should open a FEELER.
2639
2640
0
        if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2641
0
            conn_type = ConnectionType::BLOCK_RELAY;
2642
0
            anchor = true;
2643
0
        } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2644
            // OUTBOUND_FULL_RELAY
2645
0
        } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2646
0
            conn_type = ConnectionType::BLOCK_RELAY;
2647
0
        } else if (GetTryNewOutboundPeer()) {
2648
            // OUTBOUND_FULL_RELAY
2649
0
        } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2650
            // Periodically connect to a peer (using regular outbound selection
2651
            // methodology from addrman) and stay connected long enough to sync
2652
            // headers, but not much else.
2653
            //
2654
            // Then disconnect the peer, if we haven't learned anything new.
2655
            //
2656
            // The idea is to make eclipse attacks very difficult to pull off,
2657
            // because every few minutes we're finding a new peer to learn headers
2658
            // from.
2659
            //
2660
            // This is similar to the logic for trying extra outbound (full-relay)
2661
            // peers, except:
2662
            // - we do this all the time on an exponential timer, rather than just when
2663
            //   our tip is stale
2664
            // - we potentially disconnect our next-youngest block-relay-only peer, if our
2665
            //   newest block-relay-only peer delivers a block more recently.
2666
            //   See the eviction logic in net_processing.cpp.
2667
            //
2668
            // Because we can promote these connections to block-relay-only
2669
            // connections, they do not get their own ConnectionType enum
2670
            // (similar to how we deal with extra outbound peers).
2671
0
            next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2672
0
            conn_type = ConnectionType::BLOCK_RELAY;
2673
0
        } else if (now > next_feeler) {
2674
0
            next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2675
0
            conn_type = ConnectionType::FEELER;
2676
0
            fFeeler = true;
2677
0
        } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2678
0
                   m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2679
0
                   now > next_extra_network_peer &&
2680
0
                   MaybePickPreferredNetwork(preferred_net)) {
2681
            // Full outbound connection management: Attempt to get at least one
2682
            // outbound peer from each reachable network by making extra connections
2683
            // and then protecting "only" peers from a network during outbound eviction.
2684
            // This is not attempted if the user changed -maxconnections to a value
2685
            // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2686
            // to prevent interactions with otherwise protected outbound peers.
2687
0
            next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2688
0
        } else {
2689
            // skip to next iteration of while loop
2690
0
            continue;
2691
0
        }
2692
2693
0
        addrman.ResolveCollisions();
2694
2695
0
        const auto current_time{NodeClock::now()};
2696
0
        int nTries = 0;
2697
0
        const auto reachable_nets{g_reachable_nets.All()};
2698
2699
0
        while (!interruptNet)
2700
0
        {
2701
0
            if (anchor && !m_anchors.empty()) {
2702
0
                const CAddress addr = m_anchors.back();
2703
0
                m_anchors.pop_back();
2704
0
                if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2705
0
                    !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2706
0
                    outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2707
0
                addrConnect = addr;
2708
0
                LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2709
0
                break;
2710
0
            }
2711
2712
            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2713
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2714
            // already-connected network ranges, ...) before trying new addrman addresses.
2715
0
            nTries++;
2716
0
            if (nTries > 100)
2717
0
                break;
2718
2719
0
            CAddress addr;
2720
0
            NodeSeconds addr_last_try{0s};
2721
2722
0
            if (fFeeler) {
2723
                // First, try to get a tried table collision address. This returns
2724
                // an empty (invalid) address if there are no collisions to try.
2725
0
                std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2726
2727
0
                if (!addr.IsValid()) {
2728
                    // No tried table collisions. Select a new table address
2729
                    // for our feeler.
2730
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2731
0
                } else if (AlreadyConnectedToAddress(addr)) {
2732
                    // If test-before-evict logic would have us connect to a
2733
                    // peer that we're already connected to, just mark that
2734
                    // address as Good(). We won't be able to initiate the
2735
                    // connection anyway, so this avoids inadvertently evicting
2736
                    // a currently-connected peer.
2737
0
                    addrman.Good(addr);
2738
                    // Select a new table address for our feeler instead.
2739
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2740
0
                }
2741
0
            } else {
2742
                // Not a feeler
2743
                // If preferred_net has a value set, pick an extra outbound
2744
                // peer from that network. The eviction logic in net_processing
2745
                // ensures that a peer from another network will be evicted.
2746
0
                std::tie(addr, addr_last_try) = preferred_net.has_value()
2747
0
                    ? addrman.Select(false, {*preferred_net})
2748
0
                    : addrman.Select(false, reachable_nets);
2749
0
            }
2750
2751
            // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2752
0
            if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2753
0
                continue;
2754
0
            }
2755
2756
            // if we selected an invalid or local address, restart
2757
0
            if (!addr.IsValid() || IsLocal(addr)) {
2758
0
                break;
2759
0
            }
2760
2761
0
            if (!g_reachable_nets.Contains(addr)) {
2762
0
                continue;
2763
0
            }
2764
2765
            // only consider very recently tried nodes after 30 failed attempts
2766
0
            if (current_time - addr_last_try < 10min && nTries < 30) {
2767
0
                continue;
2768
0
            }
2769
2770
            // for non-feelers, require all the services we'll want,
2771
            // for feelers, only require they be a full node (only because most
2772
            // SPV clients don't have a good address DB available)
2773
0
            if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2774
0
                continue;
2775
0
            } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2776
0
                continue;
2777
0
            }
2778
2779
            // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2780
0
            if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2781
0
                continue;
2782
0
            }
2783
2784
            // Do not make automatic outbound connections to addnode peers, to
2785
            // not use our limited outbound slots for them and to ensure
2786
            // addnode connections benefit from their intended protections.
2787
0
            if (AddedNodesContain(addr)) {
2788
0
                LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2789
0
                              preferred_net.has_value() ? "network-specific " : "",
2790
0
                              ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2791
0
                              fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2792
0
                continue;
2793
0
            }
2794
2795
0
            addrConnect = addr;
2796
0
            break;
2797
0
        }
2798
2799
0
        if (addrConnect.IsValid()) {
2800
0
            if (fFeeler) {
2801
                // Add small amount of random noise before connection to avoid synchronization.
2802
0
                if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2803
0
                    return;
2804
0
                }
2805
0
                LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2806
0
            }
2807
2808
0
            if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2809
2810
            // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2811
            // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2812
            // Don't record addrman failure attempts when node is offline. This can be identified since all local
2813
            // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2814
0
            const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2815
            // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2816
0
            const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2817
0
            OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2818
0
        }
2819
0
    }
2820
0
}
2821
2822
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2823
0
{
2824
0
    std::vector<CAddress> ret;
2825
0
    LOCK(m_nodes_mutex);
2826
0
    for (const CNode* pnode : m_nodes) {
2827
0
        if (pnode->IsBlockOnlyConn()) {
2828
0
            ret.push_back(pnode->addr);
2829
0
        }
2830
0
    }
2831
2832
0
    return ret;
2833
0
}
2834
2835
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2836
0
{
2837
0
    std::vector<AddedNodeInfo> ret;
2838
2839
0
    std::list<AddedNodeParams> lAddresses(0);
2840
0
    {
2841
0
        LOCK(m_added_nodes_mutex);
2842
0
        ret.reserve(m_added_node_params.size());
2843
0
        std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2844
0
    }
2845
2846
2847
    // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2848
0
    std::map<CService, bool> mapConnected;
2849
0
    std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2850
0
    {
2851
0
        LOCK(m_nodes_mutex);
2852
0
        for (const CNode* pnode : m_nodes) {
2853
0
            if (pnode->addr.IsValid()) {
2854
0
                mapConnected[pnode->addr] = pnode->IsInboundConn();
2855
0
            }
2856
0
            std::string addrName{pnode->m_addr_name};
2857
0
            if (!addrName.empty()) {
2858
0
                mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2859
0
            }
2860
0
        }
2861
0
    }
2862
2863
0
    for (const auto& addr : lAddresses) {
2864
0
        CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2865
0
        AddedNodeInfo addedNode{addr, CService(), false, false};
2866
0
        if (service.IsValid()) {
2867
            // strAddNode is an IP:port
2868
0
            auto it = mapConnected.find(service);
2869
0
            if (it != mapConnected.end()) {
2870
0
                if (!include_connected) {
2871
0
                    continue;
2872
0
                }
2873
0
                addedNode.resolvedAddress = service;
2874
0
                addedNode.fConnected = true;
2875
0
                addedNode.fInbound = it->second;
2876
0
            }
2877
0
        } else {
2878
            // strAddNode is a name
2879
0
            auto it = mapConnectedByName.find(addr.m_added_node);
2880
0
            if (it != mapConnectedByName.end()) {
2881
0
                if (!include_connected) {
2882
0
                    continue;
2883
0
                }
2884
0
                addedNode.resolvedAddress = it->second.second;
2885
0
                addedNode.fConnected = true;
2886
0
                addedNode.fInbound = it->second.first;
2887
0
            }
2888
0
        }
2889
0
        ret.emplace_back(std::move(addedNode));
2890
0
    }
2891
2892
0
    return ret;
2893
0
}
2894
2895
void CConnman::ThreadOpenAddedConnections()
2896
0
{
2897
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2898
0
    AssertLockNotHeld(m_reconnections_mutex);
2899
0
    while (true)
2900
0
    {
2901
0
        CSemaphoreGrant grant(*semAddnode);
2902
0
        std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2903
0
        bool tried = false;
2904
0
        for (const AddedNodeInfo& info : vInfo) {
2905
0
            if (!grant) {
2906
                // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2907
                // the addednodeinfo state might change.
2908
0
                break;
2909
0
            }
2910
0
            tried = true;
2911
0
            CAddress addr(CService(), NODE_NONE);
2912
0
            OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2913
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2914
0
            grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2915
0
        }
2916
        // See if any reconnections are desired.
2917
0
        PerformReconnections();
2918
        // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2919
0
        if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2920
0
            return;
2921
0
    }
2922
0
}
2923
2924
// if successful, this moves the passed grant to the constructed node
2925
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2926
0
{
2927
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2928
0
    assert(conn_type != ConnectionType::INBOUND);
2929
2930
    //
2931
    // Initiate outbound network connection
2932
    //
2933
0
    if (interruptNet) {
2934
0
        return;
2935
0
    }
2936
0
    if (!fNetworkActive) {
2937
0
        return;
2938
0
    }
2939
0
    if (!pszDest) {
2940
0
        bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
2941
0
        if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
2942
0
            return;
2943
0
        }
2944
0
    } else if (FindNode(std::string(pszDest)))
2945
0
        return;
2946
2947
0
    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2948
2949
0
    if (!pnode)
2950
0
        return;
2951
0
    pnode->grantOutbound = std::move(grant_outbound);
2952
2953
0
    m_msgproc->InitializeNode(*pnode, m_local_services);
2954
0
    {
2955
0
        LOCK(m_nodes_mutex);
2956
0
        m_nodes.push_back(pnode);
2957
2958
        // update connection count by network
2959
0
        if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
2960
0
    }
2961
0
}
2962
2963
Mutex NetEventsInterface::g_msgproc_mutex;
2964
2965
void CConnman::ThreadMessageHandler()
2966
0
{
2967
0
    LOCK(NetEventsInterface::g_msgproc_mutex);
2968
2969
0
    while (!flagInterruptMsgProc)
2970
0
    {
2971
0
        bool fMoreWork = false;
2972
2973
0
        {
2974
            // Randomize the order in which we process messages from/to our peers.
2975
            // This prevents attacks in which an attacker exploits having multiple
2976
            // consecutive connections in the m_nodes list.
2977
0
            const NodesSnapshot snap{*this, /*shuffle=*/true};
2978
2979
0
            for (CNode* pnode : snap.Nodes()) {
2980
0
                if (pnode->fDisconnect)
2981
0
                    continue;
2982
2983
                // Receive messages
2984
0
                bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
2985
0
                fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
2986
0
                if (flagInterruptMsgProc)
2987
0
                    return;
2988
                // Send messages
2989
0
                m_msgproc->SendMessages(pnode);
2990
2991
0
                if (flagInterruptMsgProc)
2992
0
                    return;
2993
0
            }
2994
0
        }
2995
2996
0
        WAIT_LOCK(mutexMsgProc, lock);
2997
0
        if (!fMoreWork) {
2998
0
            condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
2999
0
        }
3000
0
        fMsgProcWake = false;
3001
0
    }
3002
0
}
3003
3004
void CConnman::ThreadI2PAcceptIncoming()
3005
0
{
3006
0
    static constexpr auto err_wait_begin = 1s;
3007
0
    static constexpr auto err_wait_cap = 5min;
3008
0
    auto err_wait = err_wait_begin;
3009
3010
0
    bool advertising_listen_addr = false;
3011
0
    i2p::Connection conn;
3012
3013
0
    auto SleepOnFailure = [&]() {
3014
0
        interruptNet.sleep_for(err_wait);
3015
0
        if (err_wait < err_wait_cap) {
3016
0
            err_wait += 1s;
3017
0
        }
3018
0
    };
3019
3020
0
    while (!interruptNet) {
3021
3022
0
        if (!m_i2p_sam_session->Listen(conn)) {
3023
0
            if (advertising_listen_addr && conn.me.IsValid()) {
3024
0
                RemoveLocal(conn.me);
3025
0
                advertising_listen_addr = false;
3026
0
            }
3027
0
            SleepOnFailure();
3028
0
            continue;
3029
0
        }
3030
3031
0
        if (!advertising_listen_addr) {
3032
0
            AddLocal(conn.me, LOCAL_MANUAL);
3033
0
            advertising_listen_addr = true;
3034
0
        }
3035
3036
0
        if (!m_i2p_sam_session->Accept(conn)) {
3037
0
            SleepOnFailure();
3038
0
            continue;
3039
0
        }
3040
3041
0
        CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
3042
0
                                     CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
3043
3044
0
        err_wait = err_wait_begin;
3045
0
    }
3046
0
}
3047
3048
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3049
0
{
3050
0
    int nOne = 1;
3051
3052
    // Create socket for listening for incoming connections
3053
0
    struct sockaddr_storage sockaddr;
3054
0
    socklen_t len = sizeof(sockaddr);
3055
0
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3056
0
    {
3057
0
        strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
3058
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3059
0
        return false;
3060
0
    }
3061
3062
0
    std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3063
0
    if (!sock) {
3064
0
        strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
3065
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3066
0
        return false;
3067
0
    }
3068
3069
    // Allow binding if the port is still in TIME_WAIT state after
3070
    // the program was closed and restarted.
3071
0
    if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3072
0
        strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3073
0
        LogPrintf("%s\n", strError.original);
3074
0
    }
3075
3076
    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3077
    // and enable it by default or not. Try to enable it, if possible.
3078
0
    if (addrBind.IsIPv6()) {
3079
0
#ifdef IPV6_V6ONLY
3080
0
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3081
0
            strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3082
0
            LogPrintf("%s\n", strError.original);
3083
0
        }
3084
0
#endif
3085
#ifdef WIN32
3086
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3087
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3088
            strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3089
            LogPrintf("%s\n", strError.original);
3090
        }
3091
#endif
3092
0
    }
3093
3094
0
    if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3095
0
        int nErr = WSAGetLastError();
3096
0
        if (nErr == WSAEADDRINUSE)
3097
0
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3098
0
        else
3099
0
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3100
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3101
0
        return false;
3102
0
    }
3103
0
    LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3104
3105
    // Listen for incoming connections
3106
0
    if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3107
0
    {
3108
0
        strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3109
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3110
0
        return false;
3111
0
    }
3112
3113
0
    vhListenSocket.emplace_back(std::move(sock), permissions);
3114
0
    return true;
3115
0
}
3116
3117
void Discover()
3118
0
{
3119
0
    if (!fDiscover)
3120
0
        return;
3121
3122
0
    for (const CNetAddr &addr: GetLocalAddresses()) {
3123
0
        if (AddLocal(addr, LOCAL_IF))
3124
0
            LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3125
0
    }
3126
0
}
3127
3128
void CConnman::SetNetworkActive(bool active)
3129
0
{
3130
0
    LogPrintf("%s: %s\n", __func__, active);
3131
3132
0
    if (fNetworkActive == active) {
3133
0
        return;
3134
0
    }
3135
3136
0
    fNetworkActive = active;
3137
3138
0
    if (m_client_interface) {
3139
0
        m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3140
0
    }
3141
0
}
3142
3143
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3144
                   const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3145
0
    : addrman(addrman_in)
3146
0
    , m_netgroupman{netgroupman}
3147
0
    , nSeed0(nSeed0In)
3148
0
    , nSeed1(nSeed1In)
3149
0
    , m_params(params)
3150
0
{
3151
0
    SetTryNewOutboundPeer(false);
3152
3153
0
    Options connOptions;
3154
0
    Init(connOptions);
3155
0
    SetNetworkActive(network_active);
3156
0
}
3157
3158
NodeId CConnman::GetNewNodeId()
3159
0
{
3160
0
    return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3161
0
}
3162
3163
uint16_t CConnman::GetDefaultPort(Network net) const
3164
0
{
3165
0
    return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3166
0
}
3167
3168
uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3169
0
{
3170
0
    CNetAddr a;
3171
0
    return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
3172
0
}
3173
3174
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3175
0
{
3176
0
    const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3177
3178
0
    bilingual_str strError;
3179
0
    if (!BindListenPort(addr, strError, permissions)) {
3180
0
        if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3181
0
            m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3182
0
        }
3183
0
        return false;
3184
0
    }
3185
3186
0
    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3187
0
        AddLocal(addr, LOCAL_BIND);
3188
0
    }
3189
3190
0
    return true;
3191
0
}
3192
3193
bool CConnman::InitBinds(const Options& options)
3194
0
{
3195
0
    for (const auto& addrBind : options.vBinds) {
3196
0
        if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3197
0
            return false;
3198
0
        }
3199
0
    }
3200
0
    for (const auto& addrBind : options.vWhiteBinds) {
3201
0
        if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3202
0
            return false;
3203
0
        }
3204
0
    }
3205
0
    for (const auto& addr_bind : options.onion_binds) {
3206
0
        if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3207
0
            return false;
3208
0
        }
3209
0
    }
3210
0
    if (options.bind_on_any) {
3211
        // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3212
        // may not have IPv6 support and the user did not explicitly ask us to
3213
        // bind on that.
3214
0
        const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3215
0
        Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3216
3217
0
        struct in_addr inaddr_any;
3218
0
        inaddr_any.s_addr = htonl(INADDR_ANY);
3219
0
        const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3220
0
        if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3221
0
            return false;
3222
0
        }
3223
0
    }
3224
0
    return true;
3225
0
}
3226
3227
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3228
0
{
3229
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3230
0
    Init(connOptions);
3231
3232
0
    if (fListen && !InitBinds(connOptions)) {
3233
0
        if (m_client_interface) {
3234
0
            m_client_interface->ThreadSafeMessageBox(
3235
0
                _("Failed to listen on any port. Use -listen=0 if you want this."),
3236
0
                "", CClientUIInterface::MSG_ERROR);
3237
0
        }
3238
0
        return false;
3239
0
    }
3240
3241
0
    Proxy i2p_sam;
3242
0
    if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3243
0
        m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3244
0
                                                                i2p_sam, &interruptNet);
3245
0
    }
3246
3247
    // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3248
0
    std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3249
0
    if (!seed_nodes.empty()) {
3250
0
        std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3251
0
    }
3252
3253
0
    if (m_use_addrman_outgoing) {
3254
        // Load addresses from anchors.dat
3255
0
        m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
3256
0
        if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3257
0
            m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3258
0
        }
3259
0
        LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3260
0
    }
3261
3262
0
    if (m_client_interface) {
3263
0
        m_client_interface->InitMessage(_("Starting network threads…").translated);
3264
0
    }
3265
3266
0
    fAddressesInitialized = true;
3267
3268
0
    if (semOutbound == nullptr) {
3269
        // initialize semaphore
3270
0
        semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3271
0
    }
3272
0
    if (semAddnode == nullptr) {
3273
        // initialize semaphore
3274
0
        semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3275
0
    }
3276
3277
    //
3278
    // Start threads
3279
    //
3280
0
    assert(m_msgproc);
3281
0
    interruptNet.reset();
3282
0
    flagInterruptMsgProc = false;
3283
3284
0
    {
3285
0
        LOCK(mutexMsgProc);
3286
0
        fMsgProcWake = false;
3287
0
    }
3288
3289
    // Send and receive from sockets, accept connections
3290
0
    threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3291
3292
0
    if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3293
0
        LogPrintf("DNS seeding disabled\n");
3294
0
    else
3295
0
        threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3296
3297
    // Initiate manual connections
3298
0
    threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3299
3300
0
    if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3301
0
        if (m_client_interface) {
3302
0
            m_client_interface->ThreadSafeMessageBox(
3303
0
                _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3304
0
                "", CClientUIInterface::MSG_ERROR);
3305
0
        }
3306
0
        return false;
3307
0
    }
3308
0
    if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3309
0
        threadOpenConnections = std::thread(
3310
0
            &util::TraceThread, "opencon",
3311
0
            [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3312
0
    }
3313
3314
    // Process messages
3315
0
    threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3316
3317
0
    if (m_i2p_sam_session) {
3318
0
        threadI2PAcceptIncoming =
3319
0
            std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3320
0
    }
3321
3322
    // Dump network addresses
3323
0
    scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3324
3325
    // Run the ASMap Health check once and then schedule it to run every 24h.
3326
0
    if (m_netgroupman.UsingASMap()) {
3327
0
        ASMapHealthCheck();
3328
0
        scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3329
0
    }
3330
3331
0
    return true;
3332
0
}
3333
3334
class CNetCleanup
3335
{
3336
public:
3337
    CNetCleanup() = default;
3338
3339
    ~CNetCleanup()
3340
0
    {
3341
#ifdef WIN32
3342
        // Shutdown Windows Sockets
3343
        WSACleanup();
3344
#endif
3345
0
    }
3346
};
3347
static CNetCleanup instance_of_cnetcleanup;
3348
3349
void CConnman::Interrupt()
3350
1
{
3351
1
    {
3352
1
        LOCK(mutexMsgProc);
3353
1
        flagInterruptMsgProc = true;
3354
1
    }
3355
1
    condMsgProc.notify_all();
3356
3357
1
    interruptNet();
3358
1
    g_socks5_interrupt();
3359
3360
1
    if (semOutbound) {
3361
0
        for (int i=0; i<m_max_automatic_outbound; i++) {
3362
0
            semOutbound->post();
3363
0
        }
3364
0
    }
3365
3366
1
    if (semAddnode) {
3367
0
        for (int i=0; i<m_max_addnode; i++) {
3368
0
            semAddnode->post();
3369
0
        }
3370
0
    }
3371
1
}
3372
3373
void CConnman::StopThreads()
3374
1
{
3375
1
    if (threadI2PAcceptIncoming.joinable()) {
3376
0
        threadI2PAcceptIncoming.join();
3377
0
    }
3378
1
    if (threadMessageHandler.joinable())
3379
0
        threadMessageHandler.join();
3380
1
    if (threadOpenConnections.joinable())
3381
0
        threadOpenConnections.join();
3382
1
    if (threadOpenAddedConnections.joinable())
3383
0
        threadOpenAddedConnections.join();
3384
1
    if (threadDNSAddressSeed.joinable())
3385
0
        threadDNSAddressSeed.join();
3386
1
    if (threadSocketHandler.joinable())
3387
0
        threadSocketHandler.join();
3388
1
}
3389
3390
void CConnman::StopNodes()
3391
1
{
3392
1
    if (fAddressesInitialized) {
3393
0
        DumpAddresses();
3394
0
        fAddressesInitialized = false;
3395
3396
0
        if (m_use_addrman_outgoing) {
3397
            // Anchor connections are only dumped during clean shutdown.
3398
0
            std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3399
0
            if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3400
0
                anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3401
0
            }
3402
0
            DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
3403
0
        }
3404
0
    }
3405
3406
    // Delete peer connections.
3407
1
    std::vector<CNode*> nodes;
3408
1
    WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3409
1
    for (CNode* pnode : nodes) {
3410
0
        pnode->CloseSocketDisconnect();
3411
0
        DeleteNode(pnode);
3412
0
    }
3413
3414
1
    for (CNode* pnode : m_nodes_disconnected) {
3415
0
        DeleteNode(pnode);
3416
0
    }
3417
1
    m_nodes_disconnected.clear();
3418
1
    vhListenSocket.clear();
3419
1
    semOutbound.reset();
3420
1
    semAddnode.reset();
3421
1
}
3422
3423
void CConnman::DeleteNode(CNode* pnode)
3424
0
{
3425
0
    assert(pnode);
3426
0
    m_msgproc->FinalizeNode(*pnode);
3427
0
    delete pnode;
3428
0
}
3429
3430
CConnman::~CConnman()
3431
1
{
3432
1
    Interrupt();
3433
1
    Stop();
3434
1
}
3435
3436
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3437
0
{
3438
0
    std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3439
0
    if (m_banman) {
3440
0
        addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3441
0
                        [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3442
0
                        addresses.end());
3443
0
    }
3444
0
    return addresses;
3445
0
}
3446
3447
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3448
0
{
3449
0
    auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3450
0
    uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3451
0
        .Write(requestor.ConnectedThroughNetwork())
3452
0
        .Write(local_socket_bytes)
3453
        // For outbound connections, the port of the bound address is randomly
3454
        // assigned by the OS and would therefore not be useful for seeding.
3455
0
        .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3456
0
        .Finalize();
3457
0
    const auto current_time = GetTime<std::chrono::microseconds>();
3458
0
    auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3459
0
    CachedAddrResponse& cache_entry = r.first->second;
3460
0
    if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3461
0
        cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3462
        // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3463
        // and the usefulness of ADDR responses to honest users.
3464
        //
3465
        // Longer cache lifetime makes it more difficult for an attacker to scrape
3466
        // enough AddrMan data to maliciously infer something useful.
3467
        // By the time an attacker scraped enough AddrMan records, most of
3468
        // the records should be old enough to not leak topology info by
3469
        // e.g. analyzing real-time changes in timestamps.
3470
        //
3471
        // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3472
        // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3473
        // most of it could be scraped (considering that timestamps are updated via
3474
        // ADDR self-announcements and when nodes communicate).
3475
        // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3476
        // (because even several timestamps of the same handful of nodes may leak privacy).
3477
        //
3478
        // On the other hand, longer cache lifetime makes ADDR responses
3479
        // outdated and less useful for an honest requestor, e.g. if most nodes
3480
        // in the ADDR response are no longer active.
3481
        //
3482
        // However, the churn in the network is known to be rather low. Since we consider
3483
        // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3484
        // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3485
        // in terms of the freshness of the response.
3486
0
        cache_entry.m_cache_entry_expiration = current_time +
3487
0
            21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3488
0
    }
3489
0
    return cache_entry.m_addrs_response_cache;
3490
0
}
3491
3492
bool CConnman::AddNode(const AddedNodeParams& add)
3493
0
{
3494
0
    const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3495
0
    const bool resolved_is_valid{resolved.IsValid()};
3496
3497
0
    LOCK(m_added_nodes_mutex);
3498
0
    for (const auto& it : m_added_node_params) {
3499
0
        if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3500
0
    }
3501
3502
0
    m_added_node_params.push_back(add);
3503
0
    return true;
3504
0
}
3505
3506
bool CConnman::RemoveAddedNode(const std::string& strNode)
3507
0
{
3508
0
    LOCK(m_added_nodes_mutex);
3509
0
    for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3510
0
        if (strNode == it->m_added_node) {
3511
0
            m_added_node_params.erase(it);
3512
0
            return true;
3513
0
        }
3514
0
    }
3515
0
    return false;
3516
0
}
3517
3518
bool CConnman::AddedNodesContain(const CAddress& addr) const
3519
0
{
3520
0
    AssertLockNotHeld(m_added_nodes_mutex);
3521
0
    const std::string addr_str{addr.ToStringAddr()};
3522
0
    const std::string addr_port_str{addr.ToStringAddrPort()};
3523
0
    LOCK(m_added_nodes_mutex);
3524
0
    return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3525
0
            && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3526
0
                           [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3527
0
}
3528
3529
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3530
0
{
3531
0
    LOCK(m_nodes_mutex);
3532
0
    if (flags == ConnectionDirection::Both) // Shortcut if we want total
3533
0
        return m_nodes.size();
3534
3535
0
    int nNum = 0;
3536
0
    for (const auto& pnode : m_nodes) {
3537
0
        if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3538
0
            nNum++;
3539
0
        }
3540
0
    }
3541
3542
0
    return nNum;
3543
0
}
3544
3545
3546
std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3547
0
{
3548
0
    LOCK(g_maplocalhost_mutex);
3549
0
    return mapLocalHost;
3550
0
}
3551
3552
uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3553
0
{
3554
0
    return m_netgroupman.GetMappedAS(addr);
3555
0
}
3556
3557
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3558
0
{
3559
0
    vstats.clear();
3560
0
    LOCK(m_nodes_mutex);
3561
0
    vstats.reserve(m_nodes.size());
3562
0
    for (CNode* pnode : m_nodes) {
3563
0
        vstats.emplace_back();
3564
0
        pnode->CopyStats(vstats.back());
3565
0
        vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3566
0
    }
3567
0
}
3568
3569
bool CConnman::DisconnectNode(const std::string& strNode)
3570
0
{
3571
0
    LOCK(m_nodes_mutex);
3572
0
    if (CNode* pnode = FindNode(strNode)) {
3573
0
        LogDebug(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
3574
0
        pnode->fDisconnect = true;
3575
0
        return true;
3576
0
    }
3577
0
    return false;
3578
0
}
3579
3580
bool CConnman::DisconnectNode(const CSubNet& subnet)
3581
0
{
3582
0
    bool disconnected = false;
3583
0
    LOCK(m_nodes_mutex);
3584
0
    for (CNode* pnode : m_nodes) {
3585
0
        if (subnet.Match(pnode->addr)) {
3586
0
            LogDebug(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
3587
0
            pnode->fDisconnect = true;
3588
0
            disconnected = true;
3589
0
        }
3590
0
    }
3591
0
    return disconnected;
3592
0
}
3593
3594
bool CConnman::DisconnectNode(const CNetAddr& addr)
3595
0
{
3596
0
    return DisconnectNode(CSubNet(addr));
3597
0
}
3598
3599
bool CConnman::DisconnectNode(NodeId id)
3600
0
{
3601
0
    LOCK(m_nodes_mutex);
3602
0
    for(CNode* pnode : m_nodes) {
3603
0
        if (id == pnode->GetId()) {
3604
0
            LogDebug(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
3605
0
            pnode->fDisconnect = true;
3606
0
            return true;
3607
0
        }
3608
0
    }
3609
0
    return false;
3610
0
}
3611
3612
void CConnman::RecordBytesRecv(uint64_t bytes)
3613
0
{
3614
0
    nTotalBytesRecv += bytes;
3615
0
}
3616
3617
void CConnman::RecordBytesSent(uint64_t bytes)
3618
0
{
3619
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3620
0
    LOCK(m_total_bytes_sent_mutex);
3621
3622
0
    nTotalBytesSent += bytes;
3623
3624
0
    const auto now = GetTime<std::chrono::seconds>();
3625
0
    if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3626
0
    {
3627
        // timeframe expired, reset cycle
3628
0
        nMaxOutboundCycleStartTime = now;
3629
0
        nMaxOutboundTotalBytesSentInCycle = 0;
3630
0
    }
3631
3632
0
    nMaxOutboundTotalBytesSentInCycle += bytes;
3633
0
}
3634
3635
uint64_t CConnman::GetMaxOutboundTarget() const
3636
0
{
3637
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3638
0
    LOCK(m_total_bytes_sent_mutex);
3639
0
    return nMaxOutboundLimit;
3640
0
}
3641
3642
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3643
0
{
3644
0
    return MAX_UPLOAD_TIMEFRAME;
3645
0
}
3646
3647
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3648
0
{
3649
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3650
0
    LOCK(m_total_bytes_sent_mutex);
3651
0
    return GetMaxOutboundTimeLeftInCycle_();
3652
0
}
3653
3654
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3655
0
{
3656
0
    AssertLockHeld(m_total_bytes_sent_mutex);
3657
3658
0
    if (nMaxOutboundLimit == 0)
3659
0
        return 0s;
3660
3661
0
    if (nMaxOutboundCycleStartTime.count() == 0)
3662
0
        return MAX_UPLOAD_TIMEFRAME;
3663
3664
0
    const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3665
0
    const auto now = GetTime<std::chrono::seconds>();
3666
0
    return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3667
0
}
3668
3669
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3670
0
{
3671
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3672
0
    LOCK(m_total_bytes_sent_mutex);
3673
0
    if (nMaxOutboundLimit == 0)
3674
0
        return false;
3675
3676
0
    if (historicalBlockServingLimit)
3677
0
    {
3678
        // keep a large enough buffer to at least relay each block once
3679
0
        const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3680
0
        const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3681
0
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3682
0
            return true;
3683
0
    }
3684
0
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3685
0
        return true;
3686
3687
0
    return false;
3688
0
}
3689
3690
uint64_t CConnman::GetOutboundTargetBytesLeft() const
3691
0
{
3692
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3693
0
    LOCK(m_total_bytes_sent_mutex);
3694
0
    if (nMaxOutboundLimit == 0)
3695
0
        return 0;
3696
3697
0
    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3698
0
}
3699
3700
uint64_t CConnman::GetTotalBytesRecv() const
3701
0
{
3702
0
    return nTotalBytesRecv;
3703
0
}
3704
3705
uint64_t CConnman::GetTotalBytesSent() const
3706
0
{
3707
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3708
0
    LOCK(m_total_bytes_sent_mutex);
3709
0
    return nTotalBytesSent;
3710
0
}
3711
3712
ServiceFlags CConnman::GetLocalServices() const
3713
0
{
3714
0
    return m_local_services;
3715
0
}
3716
3717
static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3718
0
{
3719
0
    if (use_v2transport) {
3720
0
        return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3721
0
    } else {
3722
0
        return std::make_unique<V1Transport>(id);
3723
0
    }
3724
0
}
3725
3726
CNode::CNode(NodeId idIn,
3727
             std::shared_ptr<Sock> sock,
3728
             const CAddress& addrIn,
3729
             uint64_t nKeyedNetGroupIn,
3730
             uint64_t nLocalHostNonceIn,
3731
             const CAddress& addrBindIn,
3732
             const std::string& addrNameIn,
3733
             ConnectionType conn_type_in,
3734
             bool inbound_onion,
3735
             CNodeOptions&& node_opts)
3736
0
    : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3737
0
      m_permission_flags{node_opts.permission_flags},
3738
0
      m_sock{sock},
3739
0
      m_connected{GetTime<std::chrono::seconds>()},
3740
0
      addr{addrIn},
3741
0
      addrBind{addrBindIn},
3742
0
      m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3743
0
      m_dest(addrNameIn),
3744
0
      m_inbound_onion{inbound_onion},
3745
0
      m_prefer_evict{node_opts.prefer_evict},
3746
0
      nKeyedNetGroup{nKeyedNetGroupIn},
3747
0
      m_conn_type{conn_type_in},
3748
0
      id{idIn},
3749
0
      nLocalHostNonce{nLocalHostNonceIn},
3750
0
      m_recv_flood_size{node_opts.recv_flood_size},
3751
0
      m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3752
0
{
3753
0
    if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3754
3755
0
    for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3756
0
        mapRecvBytesPerMsgType[msg] = 0;
3757
0
    }
3758
0
    mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3759
3760
0
    if (fLogIPs) {
3761
0
        LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3762
0
    } else {
3763
0
        LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3764
0
    }
3765
0
}
3766
3767
void CNode::MarkReceivedMsgsForProcessing()
3768
0
{
3769
0
    AssertLockNotHeld(m_msg_process_queue_mutex);
3770
3771
0
    size_t nSizeAdded = 0;
3772
0
    for (const auto& msg : vRecvMsg) {
3773
        // vRecvMsg contains only completed CNetMessage
3774
        // the single possible partially deserialized message are held by TransportDeserializer
3775
0
        nSizeAdded += msg.m_raw_message_size;
3776
0
    }
3777
3778
0
    LOCK(m_msg_process_queue_mutex);
3779
0
    m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3780
0
    m_msg_process_queue_size += nSizeAdded;
3781
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3782
0
}
3783
3784
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3785
0
{
3786
0
    LOCK(m_msg_process_queue_mutex);
3787
0
    if (m_msg_process_queue.empty()) return std::nullopt;
3788
3789
0
    std::list<CNetMessage> msgs;
3790
    // Just take one message
3791
0
    msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3792
0
    m_msg_process_queue_size -= msgs.front().m_raw_message_size;
3793
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3794
3795
0
    return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3796
0
}
3797
3798
bool CConnman::NodeFullyConnected(const CNode* pnode)
3799
0
{
3800
0
    return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3801
0
}
3802
3803
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3804
0
{
3805
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3806
0
    size_t nMessageSize = msg.data.size();
3807
0
    LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3808
0
    if (gArgs.GetBoolArg("-capturemessages", false)) {
3809
0
        CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3810
0
    }
3811
3812
0
    TRACE6(net, outbound_message,
3813
0
        pnode->GetId(),
3814
0
        pnode->m_addr_name.c_str(),
3815
0
        pnode->ConnectionTypeAsString().c_str(),
3816
0
        msg.m_type.c_str(),
3817
0
        msg.data.size(),
3818
0
        msg.data.data()
3819
0
    );
3820
3821
0
    size_t nBytesSent = 0;
3822
0
    {
3823
0
        LOCK(pnode->cs_vSend);
3824
        // Check if the transport still has unsent bytes, and indicate to it that we're about to
3825
        // give it a message to send.
3826
0
        const auto& [to_send, more, _msg_type] =
3827
0
            pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3828
0
        const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3829
3830
        // Update memory usage of send buffer.
3831
0
        pnode->m_send_memusage += msg.GetMemoryUsage();
3832
0
        if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3833
        // Move message to vSendMsg queue.
3834
0
        pnode->vSendMsg.push_back(std::move(msg));
3835
3836
        // If there was nothing to send before, and there is now (predicted by the "more" value
3837
        // returned by the GetBytesToSend call above), attempt "optimistic write":
3838
        // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3839
        // doing a send, try sending from the calling thread if the queue was empty before.
3840
        // With a V1Transport, more will always be true here, because adding a message always
3841
        // results in sendable bytes there, but with V2Transport this is not the case (it may
3842
        // still be in the handshake).
3843
0
        if (queue_was_empty && more) {
3844
0
            std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3845
0
        }
3846
0
    }
3847
0
    if (nBytesSent) RecordBytesSent(nBytesSent);
3848
0
}
3849
3850
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3851
0
{
3852
0
    CNode* found = nullptr;
3853
0
    LOCK(m_nodes_mutex);
3854
0
    for (auto&& pnode : m_nodes) {
3855
0
        if(pnode->GetId() == id) {
3856
0
            found = pnode;
3857
0
            break;
3858
0
        }
3859
0
    }
3860
0
    return found != nullptr && NodeFullyConnected(found) && func(found);
3861
0
}
3862
3863
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3864
0
{
3865
0
    return CSipHasher(nSeed0, nSeed1).Write(id);
3866
0
}
3867
3868
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3869
0
{
3870
0
    std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3871
3872
0
    return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
3873
0
}
3874
3875
void CConnman::PerformReconnections()
3876
0
{
3877
0
    AssertLockNotHeld(m_reconnections_mutex);
3878
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3879
0
    while (true) {
3880
        // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3881
0
        decltype(m_reconnections) todo;
3882
0
        {
3883
0
            LOCK(m_reconnections_mutex);
3884
0
            if (m_reconnections.empty()) break;
3885
0
            todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3886
0
        }
3887
3888
0
        auto& item = *todo.begin();
3889
0
        OpenNetworkConnection(item.addr_connect,
3890
                              // We only reconnect if the first attempt to connect succeeded at
3891
                              // connection time, but then failed after the CNode object was
3892
                              // created. Since we already know connecting is possible, do not
3893
                              // count failure to reconnect.
3894
0
                              /*fCountFailure=*/false,
3895
0
                              std::move(item.grant),
3896
0
                              item.destination.empty() ? nullptr : item.destination.c_str(),
3897
0
                              item.conn_type,
3898
0
                              item.use_v2transport);
3899
0
    }
3900
0
}
3901
3902
void CConnman::ASMapHealthCheck()
3903
0
{
3904
0
    const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3905
0
    const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3906
0
    std::vector<CNetAddr> clearnet_addrs;
3907
0
    clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3908
0
    std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3909
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3910
0
    std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3911
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3912
0
    m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3913
0
}
3914
3915
// Dump binary message to file, with timestamp.
3916
static void CaptureMessageToFile(const CAddress& addr,
3917
                                 const std::string& msg_type,
3918
                                 Span<const unsigned char> data,
3919
                                 bool is_incoming)
3920
0
{
3921
    // Note: This function captures the message at the time of processing,
3922
    // not at socket receive/send time.
3923
    // This ensures that the messages are always in order from an application
3924
    // layer (processing) perspective.
3925
0
    auto now = GetTime<std::chrono::microseconds>();
3926
3927
    // Windows folder names cannot include a colon
3928
0
    std::string clean_addr = addr.ToStringAddrPort();
3929
0
    std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3930
3931
0
    fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3932
0
    fs::create_directories(base_path);
3933
3934
0
    fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3935
0
    AutoFile f{fsbridge::fopen(path, "ab")};
3936
3937
0
    ser_writedata64(f, now.count());
3938
0
    f << Span{msg_type};
3939
0
    for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
3940
0
        f << uint8_t{'\0'};
3941
0
    }
3942
0
    uint32_t size = data.size();
3943
0
    ser_writedata32(f, size);
3944
0
    f << data;
3945
0
}
3946
3947
std::function<void(const CAddress& addr,
3948
                   const std::string& msg_type,
3949
                   Span<const unsigned char> data,
3950
                   bool is_incoming)>
3951
    CaptureMessage = CaptureMessageToFile;