/root/bitcoin/src/test/fuzz/miniscript.cpp
| Line | Count | Source | 
| 1 |  | // Copyright (c) 2021-present The Bitcoin Core developers | 
| 2 |  | // Distributed under the MIT software license, see the accompanying | 
| 3 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 4 |  |  | 
| 5 |  | #include <core_io.h> | 
| 6 |  | #include <hash.h> | 
| 7 |  | #include <key.h> | 
| 8 |  | #include <script/miniscript.h> | 
| 9 |  | #include <script/script.h> | 
| 10 |  | #include <script/signingprovider.h> | 
| 11 |  | #include <test/fuzz/FuzzedDataProvider.h> | 
| 12 |  | #include <test/fuzz/fuzz.h> | 
| 13 |  | #include <test/fuzz/util.h> | 
| 14 |  | #include <util/strencodings.h> | 
| 15 |  |  | 
| 16 |  | #include <algorithm> | 
| 17 |  |  | 
| 18 |  | namespace { | 
| 19 |  |  | 
| 20 |  | using Fragment = miniscript::Fragment; | 
| 21 |  | using NodeRef = miniscript::NodeRef<CPubKey>; | 
| 22 |  | using Node = miniscript::Node<CPubKey>; | 
| 23 |  | using Type = miniscript::Type; | 
| 24 |  | using MsCtx = miniscript::MiniscriptContext; | 
| 25 |  | using miniscript::operator""_mst; | 
| 26 |  |  | 
| 27 |  | //! Some pre-computed data for more efficient string roundtrips and to simulate challenges. | 
| 28 |  | struct TestData { | 
| 29 |  |     typedef CPubKey Key; | 
| 30 |  |  | 
| 31 |  |     // Precomputed public keys, and a dummy signature for each of them. | 
| 32 |  |     std::vector<Key> dummy_keys; | 
| 33 |  |     std::map<Key, int> dummy_key_idx_map; | 
| 34 |  |     std::map<CKeyID, Key> dummy_keys_map; | 
| 35 |  |     std::map<Key, std::pair<std::vector<unsigned char>, bool>> dummy_sigs; | 
| 36 |  |     std::map<XOnlyPubKey, std::pair<std::vector<unsigned char>, bool>> schnorr_sigs; | 
| 37 |  |  | 
| 38 |  |     // Precomputed hashes of each kind. | 
| 39 |  |     std::vector<std::vector<unsigned char>> sha256; | 
| 40 |  |     std::vector<std::vector<unsigned char>> ripemd160; | 
| 41 |  |     std::vector<std::vector<unsigned char>> hash256; | 
| 42 |  |     std::vector<std::vector<unsigned char>> hash160; | 
| 43 |  |     std::map<std::vector<unsigned char>, std::vector<unsigned char>> sha256_preimages; | 
| 44 |  |     std::map<std::vector<unsigned char>, std::vector<unsigned char>> ripemd160_preimages; | 
| 45 |  |     std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash256_preimages; | 
| 46 |  |     std::map<std::vector<unsigned char>, std::vector<unsigned char>> hash160_preimages; | 
| 47 |  |  | 
| 48 |  |     //! Set the precomputed data. | 
| 49 | 0 |     void Init() { | 
| 50 | 0 |         unsigned char keydata[32] = {1}; | 
| 51 |  |         // All our signatures sign (and are required to sign) this constant message. | 
| 52 | 0 |         constexpr uint256 MESSAGE_HASH{"0000000000000000f5cd94e18b6fe77dd7aca9e35c2b0c9cbd86356c80a71065"}; | 
| 53 |  |         // We don't pass additional randomness when creating a schnorr signature. | 
| 54 | 0 |         const auto EMPTY_AUX{uint256::ZERO}; | 
| 55 |  | 
 | 
| 56 | 0 |         for (size_t i = 0; i < 256; i++) { | 
| 57 | 0 |             keydata[31] = i; | 
| 58 | 0 |             CKey privkey; | 
| 59 | 0 |             privkey.Set(keydata, keydata + 32, true); | 
| 60 | 0 |             const Key pubkey = privkey.GetPubKey(); | 
| 61 |  | 
 | 
| 62 | 0 |             dummy_keys.push_back(pubkey); | 
| 63 | 0 |             dummy_key_idx_map.emplace(pubkey, i); | 
| 64 | 0 |             dummy_keys_map.insert({pubkey.GetID(), pubkey}); | 
| 65 | 0 |             XOnlyPubKey xonly_pubkey{pubkey}; | 
| 66 | 0 |             dummy_key_idx_map.emplace(xonly_pubkey, i); | 
| 67 | 0 |             uint160 xonly_hash{Hash160(xonly_pubkey)}; | 
| 68 | 0 |             dummy_keys_map.emplace(xonly_hash, pubkey); | 
| 69 |  | 
 | 
| 70 | 0 |             std::vector<unsigned char> sig, schnorr_sig(64); | 
| 71 | 0 |             privkey.Sign(MESSAGE_HASH, sig); | 
| 72 | 0 |             sig.push_back(1); // SIGHASH_ALL | 
| 73 | 0 |             dummy_sigs.insert({pubkey, {sig, i & 1}}); | 
| 74 | 0 |             assert(privkey.SignSchnorr(MESSAGE_HASH, schnorr_sig, nullptr, EMPTY_AUX)); | 
| 75 | 0 |             schnorr_sig.push_back(1); // Maximally-sized signature has sighash byte | 
| 76 | 0 |             schnorr_sigs.emplace(XOnlyPubKey{pubkey}, std::make_pair(std::move(schnorr_sig), i & 1)); | 
| 77 |  | 
 | 
| 78 | 0 |             std::vector<unsigned char> hash; | 
| 79 | 0 |             hash.resize(32); | 
| 80 | 0 |             CSHA256().Write(keydata, 32).Finalize(hash.data()); | 
| 81 | 0 |             sha256.push_back(hash); | 
| 82 | 0 |             if (i & 1) sha256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); | 
| 83 | 0 |             CHash256().Write(keydata).Finalize(hash); | 
| 84 | 0 |             hash256.push_back(hash); | 
| 85 | 0 |             if (i & 1) hash256_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); | 
| 86 | 0 |             hash.resize(20); | 
| 87 | 0 |             CRIPEMD160().Write(keydata, 32).Finalize(hash.data()); | 
| 88 | 0 |             assert(hash.size() == 20); | 
| 89 | 0 |             ripemd160.push_back(hash); | 
| 90 | 0 |             if (i & 1) ripemd160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); | 
| 91 | 0 |             CHash160().Write(keydata).Finalize(hash); | 
| 92 | 0 |             hash160.push_back(hash); | 
| 93 | 0 |             if (i & 1) hash160_preimages[hash] = std::vector<unsigned char>(keydata, keydata + 32); | 
| 94 | 0 |         } | 
| 95 | 0 |     } | 
| 96 |  |  | 
| 97 |  |     //! Get the (Schnorr or ECDSA, depending on context) signature for this pubkey. | 
| 98 | 0 |     const std::pair<std::vector<unsigned char>, bool>* GetSig(const MsCtx script_ctx, const Key& key) const { | 
| 99 | 0 |         if (!miniscript::IsTapscript(script_ctx)) { | 
| 100 | 0 |             const auto it = dummy_sigs.find(key); | 
| 101 | 0 |             if (it == dummy_sigs.end()) return nullptr; | 
| 102 | 0 |             return &it->second; | 
| 103 | 0 |         } else { | 
| 104 | 0 |             const auto it = schnorr_sigs.find(XOnlyPubKey{key}); | 
| 105 | 0 |             if (it == schnorr_sigs.end()) return nullptr; | 
| 106 | 0 |             return &it->second; | 
| 107 | 0 |         } | 
| 108 | 0 |     } | 
| 109 |  | } TEST_DATA; | 
| 110 |  |  | 
| 111 |  | /** | 
| 112 |  |  * Context to parse a Miniscript node to and from Script or text representation. | 
| 113 |  |  * Uses an integer (an index in the dummy keys array from the test data) as keys in order | 
| 114 |  |  * to focus on fuzzing the Miniscript nodes' test representation, not the key representation. | 
| 115 |  |  */ | 
| 116 |  | struct ParserContext { | 
| 117 |  |     typedef CPubKey Key; | 
| 118 |  |  | 
| 119 |  |     const MsCtx script_ctx; | 
| 120 |  |  | 
| 121 | 0 |     constexpr ParserContext(MsCtx ctx) noexcept : script_ctx(ctx) {} | 
| 122 |  |  | 
| 123 | 0 |     bool KeyCompare(const Key& a, const Key& b) const { | 
| 124 | 0 |         return a < b; | 
| 125 | 0 |     } | 
| 126 |  |  | 
| 127 |  |     std::optional<std::string> ToString(const Key& key) const | 
| 128 | 0 |     { | 
| 129 | 0 |         auto it = TEST_DATA.dummy_key_idx_map.find(key); | 
| 130 | 0 |         if (it == TEST_DATA.dummy_key_idx_map.end()) return {}; | 
| 131 | 0 |         uint8_t idx = it->second; | 
| 132 | 0 |         return HexStr(std::span{&idx, 1}); | 
| 133 | 0 |     } | 
| 134 |  |  | 
| 135 | 0 |     std::vector<unsigned char> ToPKBytes(const Key& key) const { | 
| 136 | 0 |         if (!miniscript::IsTapscript(script_ctx)) { | 
| 137 | 0 |             return {key.begin(), key.end()}; | 
| 138 | 0 |         } | 
| 139 | 0 |         const XOnlyPubKey xonly_pubkey{key}; | 
| 140 | 0 |         return {xonly_pubkey.begin(), xonly_pubkey.end()}; | 
| 141 | 0 |     } | 
| 142 |  |  | 
| 143 | 0 |     std::vector<unsigned char> ToPKHBytes(const Key& key) const { | 
| 144 | 0 |         if (!miniscript::IsTapscript(script_ctx)) { | 
| 145 | 0 |             const auto h = Hash160(key); | 
| 146 | 0 |             return {h.begin(), h.end()}; | 
| 147 | 0 |         } | 
| 148 | 0 |         const auto h = Hash160(XOnlyPubKey{key}); | 
| 149 | 0 |         return {h.begin(), h.end()}; | 
| 150 | 0 |     } | 
| 151 |  |  | 
| 152 |  |     template<typename I> | 
| 153 | 0 |     std::optional<Key> FromString(I first, I last) const { | 
| 154 | 0 |         if (last - first != 2) return {}; | 
| 155 | 0 |         auto idx = ParseHex(std::string(first, last)); | 
| 156 | 0 |         if (idx.size() != 1) return {}; | 
| 157 | 0 |         return TEST_DATA.dummy_keys[idx[0]]; | 
| 158 | 0 |     } | 
| 159 |  |  | 
| 160 |  |     template<typename I> | 
| 161 | 0 |     std::optional<Key> FromPKBytes(I first, I last) const { | 
| 162 | 0 |         if (!miniscript::IsTapscript(script_ctx)) { | 
| 163 | 0 |             Key key{first, last}; | 
| 164 | 0 |             if (key.IsValid()) return key; | 
| 165 | 0 |             return {}; | 
| 166 | 0 |         } | 
| 167 | 0 |         if (last - first != 32) return {}; | 
| 168 | 0 |         XOnlyPubKey xonly_pubkey; | 
| 169 | 0 |         std::copy(first, last, xonly_pubkey.begin()); | 
| 170 | 0 |         return xonly_pubkey.GetEvenCorrespondingCPubKey(); | 
| 171 | 0 |     } | 
| 172 |  |  | 
| 173 |  |     template<typename I> | 
| 174 | 0 |     std::optional<Key> FromPKHBytes(I first, I last) const { | 
| 175 | 0 |         assert(last - first == 20); | 
| 176 | 0 |         CKeyID keyid; | 
| 177 | 0 |         std::copy(first, last, keyid.begin()); | 
| 178 | 0 |         const auto it = TEST_DATA.dummy_keys_map.find(keyid); | 
| 179 | 0 |         if (it == TEST_DATA.dummy_keys_map.end()) return {}; | 
| 180 | 0 |         return it->second; | 
| 181 | 0 |     } | 
| 182 |  |  | 
| 183 | 0 |     MsCtx MsContext() const { | 
| 184 | 0 |         return script_ctx; | 
| 185 | 0 |     } | 
| 186 |  | }; | 
| 187 |  |  | 
| 188 |  | //! Context that implements naive conversion from/to script only, for roundtrip testing. | 
| 189 |  | struct ScriptParserContext { | 
| 190 |  |     const MsCtx script_ctx; | 
| 191 |  |  | 
| 192 | 0 |     constexpr ScriptParserContext(MsCtx ctx) noexcept : script_ctx(ctx) {} | 
| 193 |  |  | 
| 194 |  |     //! For Script roundtrip we never need the key from a key hash. | 
| 195 |  |     struct Key { | 
| 196 |  |         bool is_hash; | 
| 197 |  |         std::vector<unsigned char> data; | 
| 198 |  |     }; | 
| 199 |  |  | 
| 200 | 0 |     bool KeyCompare(const Key& a, const Key& b) const { | 
| 201 | 0 |         return a.data < b.data; | 
| 202 | 0 |     } | 
| 203 |  |  | 
| 204 |  |     const std::vector<unsigned char>& ToPKBytes(const Key& key) const | 
| 205 | 0 |     { | 
| 206 | 0 |         assert(!key.is_hash); | 
| 207 | 0 |         return key.data; | 
| 208 | 0 |     } | 
| 209 |  |  | 
| 210 |  |     std::vector<unsigned char> ToPKHBytes(const Key& key) const | 
| 211 | 0 |     { | 
| 212 | 0 |         if (key.is_hash) return key.data; | 
| 213 | 0 |         const auto h = Hash160(key.data); | 
| 214 | 0 |         return {h.begin(), h.end()}; | 
| 215 | 0 |     } | 
| 216 |  |  | 
| 217 |  |     template<typename I> | 
| 218 |  |     std::optional<Key> FromPKBytes(I first, I last) const | 
| 219 | 0 |     { | 
| 220 | 0 |         Key key; | 
| 221 | 0 |         key.data.assign(first, last); | 
| 222 | 0 |         key.is_hash = false; | 
| 223 | 0 |         return key; | 
| 224 | 0 |     } | 
| 225 |  |  | 
| 226 |  |     template<typename I> | 
| 227 |  |     std::optional<Key> FromPKHBytes(I first, I last) const | 
| 228 | 0 |     { | 
| 229 | 0 |         Key key; | 
| 230 | 0 |         key.data.assign(first, last); | 
| 231 | 0 |         key.is_hash = true; | 
| 232 | 0 |         return key; | 
| 233 | 0 |     } | 
| 234 |  |  | 
| 235 | 0 |     MsCtx MsContext() const { | 
| 236 | 0 |         return script_ctx; | 
| 237 | 0 |     } | 
| 238 |  | }; | 
| 239 |  |  | 
| 240 |  | //! Context to produce a satisfaction for a Miniscript node using the pre-computed data. | 
| 241 |  | struct SatisfierContext : ParserContext { | 
| 242 |  |  | 
| 243 | 0 |     constexpr SatisfierContext(MsCtx ctx) noexcept : ParserContext(ctx) {} | 
| 244 |  |  | 
| 245 |  |     // Timelock challenges satisfaction. Make the value (deterministically) vary to explore different | 
| 246 |  |     // paths. | 
| 247 | 0 |     bool CheckAfter(uint32_t value) const { return value % 2; } | 
| 248 | 0 |     bool CheckOlder(uint32_t value) const { return value % 2; } | 
| 249 |  |  | 
| 250 |  |     // Signature challenges fulfilled with a dummy signature, if it was one of our dummy keys. | 
| 251 | 0 |     miniscript::Availability Sign(const CPubKey& key, std::vector<unsigned char>& sig) const { | 
| 252 | 0 |         bool sig_available{false}; | 
| 253 | 0 |         if (auto res = TEST_DATA.GetSig(script_ctx, key)) { | 
| 254 | 0 |             std::tie(sig, sig_available) = *res; | 
| 255 | 0 |         } | 
| 256 | 0 |         return sig_available ? miniscript::Availability::YES : miniscript::Availability::NO; | 
| 257 | 0 |     } | 
| 258 |  |  | 
| 259 |  |     //! Lookup generalization for all the hash satisfactions below | 
| 260 |  |     miniscript::Availability LookupHash(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage, | 
| 261 |  |                                         const std::map<std::vector<unsigned char>, std::vector<unsigned char>>& map) const | 
| 262 | 0 |     { | 
| 263 | 0 |         const auto it = map.find(hash); | 
| 264 | 0 |         if (it == map.end()) return miniscript::Availability::NO; | 
| 265 | 0 |         preimage = it->second; | 
| 266 | 0 |         return miniscript::Availability::YES; | 
| 267 | 0 |     } | 
| 268 | 0 |     miniscript::Availability SatSHA256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { | 
| 269 | 0 |         return LookupHash(hash, preimage, TEST_DATA.sha256_preimages); | 
| 270 | 0 |     } | 
| 271 | 0 |     miniscript::Availability SatRIPEMD160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { | 
| 272 | 0 |         return LookupHash(hash, preimage, TEST_DATA.ripemd160_preimages); | 
| 273 | 0 |     } | 
| 274 | 0 |     miniscript::Availability SatHASH256(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { | 
| 275 | 0 |         return LookupHash(hash, preimage, TEST_DATA.hash256_preimages); | 
| 276 | 0 |     } | 
| 277 | 0 |     miniscript::Availability SatHASH160(const std::vector<unsigned char>& hash, std::vector<unsigned char>& preimage) const { | 
| 278 | 0 |         return LookupHash(hash, preimage, TEST_DATA.hash160_preimages); | 
| 279 | 0 |     } | 
| 280 |  | }; | 
| 281 |  |  | 
| 282 |  | //! Context to check a satisfaction against the pre-computed data. | 
| 283 |  | const struct CheckerContext: BaseSignatureChecker { | 
| 284 |  |     // Signature checker methods. Checks the right dummy signature is used. | 
| 285 |  |     bool CheckECDSASignature(const std::vector<unsigned char>& sig, const std::vector<unsigned char>& vchPubKey, | 
| 286 |  |                              const CScript& scriptCode, SigVersion sigversion) const override | 
| 287 | 0 |     { | 
| 288 | 0 |         const CPubKey key{vchPubKey}; | 
| 289 | 0 |         const auto it = TEST_DATA.dummy_sigs.find(key); | 
| 290 | 0 |         if (it == TEST_DATA.dummy_sigs.end()) return false; | 
| 291 | 0 |         return it->second.first == sig; | 
| 292 | 0 |     } | 
| 293 |  |     bool CheckSchnorrSignature(std::span<const unsigned char> sig, std::span<const unsigned char> pubkey, SigVersion, | 
| 294 | 0 |                                ScriptExecutionData&, ScriptError*) const override { | 
| 295 | 0 |         XOnlyPubKey pk{pubkey}; | 
| 296 | 0 |         auto it = TEST_DATA.schnorr_sigs.find(pk); | 
| 297 | 0 |         if (it == TEST_DATA.schnorr_sigs.end()) return false; | 
| 298 | 0 |         return std::ranges::equal(it->second.first, sig); | 
| 299 | 0 |     } | 
| 300 | 0 |     bool CheckLockTime(const CScriptNum& nLockTime) const override { return nLockTime.GetInt64() & 1; } | 
| 301 | 0 |     bool CheckSequence(const CScriptNum& nSequence) const override { return nSequence.GetInt64() & 1; } | 
| 302 |  | } CHECKER_CTX; | 
| 303 |  |  | 
| 304 |  | //! Context to check for duplicates when instancing a Node. | 
| 305 |  | const struct KeyComparator { | 
| 306 | 0 |     bool KeyCompare(const CPubKey& a, const CPubKey& b) const { | 
| 307 | 0 |         return a < b; | 
| 308 | 0 |     } | 
| 309 |  | } KEY_COMP; | 
| 310 |  |  | 
| 311 |  | // A dummy scriptsig to pass to VerifyScript (we always use Segwit v0). | 
| 312 |  | const CScript DUMMY_SCRIPTSIG; | 
| 313 |  |  | 
| 314 |  | //! Construct a miniscript node as a shared_ptr. | 
| 315 | 0 | template<typename... Args> NodeRef MakeNodeRef(Args&&... args) { | 
| 316 | 0 |     return miniscript::MakeNodeRef<CPubKey>(miniscript::internal::NoDupCheck{}, std::forward<Args>(args)...); | 
| 317 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_111MakeNodeRefIJRN10miniscript17MiniscriptContextERNS1_8FragmentESt6vectorISt10unique_ptrIKNS1_4NodeI7CPubKeyEESt14default_deleteISB_EESaISE_EES6_IhSaIhEERjEEESE_DpOT_Unexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_111MakeNodeRefIJRN10miniscript17MiniscriptContextERNS1_8FragmentESt6vectorI7CPubKeySaIS7_EERjEEESt10unique_ptrIKNS1_4NodeIS7_EESt14default_deleteISE_EEDpOT_ | 
| 318 |  |  | 
| 319 |  | /** Information about a yet to be constructed Miniscript node. */ | 
| 320 |  | struct NodeInfo { | 
| 321 |  |     //! The type of this node | 
| 322 |  |     Fragment fragment; | 
| 323 |  |     //! The timelock value for older() and after(), the threshold value for multi() and thresh() | 
| 324 |  |     uint32_t k; | 
| 325 |  |     //! Keys for this node, if it has some | 
| 326 |  |     std::vector<CPubKey> keys; | 
| 327 |  |     //! The hash value for this node, if it has one | 
| 328 |  |     std::vector<unsigned char> hash; | 
| 329 |  |     //! The type requirements for the children of this node. | 
| 330 |  |     std::vector<Type> subtypes; | 
| 331 |  |  | 
| 332 | 0 |     NodeInfo(Fragment frag): fragment(frag), k(0) {} | 
| 333 | 0 |     NodeInfo(Fragment frag, CPubKey key): fragment(frag), k(0), keys({key}) {} | 
| 334 | 0 |     NodeInfo(Fragment frag, uint32_t _k): fragment(frag), k(_k) {} | 
| 335 | 0 |     NodeInfo(Fragment frag, std::vector<unsigned char> h): fragment(frag), k(0), hash(std::move(h)) {} | 
| 336 | 0 |     NodeInfo(std::vector<Type> subt, Fragment frag): fragment(frag), k(0), subtypes(std::move(subt)) {} | 
| 337 | 0 |     NodeInfo(std::vector<Type> subt, Fragment frag, uint32_t _k): fragment(frag), k(_k), subtypes(std::move(subt))  {} | 
| 338 | 0 |     NodeInfo(Fragment frag, uint32_t _k, std::vector<CPubKey> _keys): fragment(frag), k(_k), keys(std::move(_keys)) {} | 
| 339 |  | }; | 
| 340 |  |  | 
| 341 |  | /** Pick an index in a collection from a single byte in the fuzzer's output. */ | 
| 342 |  | template<typename T, typename A> | 
| 343 | 0 | T ConsumeIndex(FuzzedDataProvider& provider, A& col) { | 
| 344 | 0 |     const uint8_t i = provider.ConsumeIntegral<uint8_t>(); | 
| 345 | 0 |     return col[i]; | 
| 346 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_112ConsumeIndexI7CPubKeySt6vectorIS1_SaIS1_EEEET_R18FuzzedDataProviderRT0_Unexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_112ConsumeIndexISt6vectorIhSaIhEES1_IS3_SaIS3_EEEET_R18FuzzedDataProviderRT0_ | 
| 347 |  |  | 
| 348 | 0 | CPubKey ConsumePubKey(FuzzedDataProvider& provider) { | 
| 349 | 0 |     return ConsumeIndex<CPubKey>(provider, TEST_DATA.dummy_keys); | 
| 350 | 0 | } | 
| 351 |  |  | 
| 352 | 0 | std::vector<unsigned char> ConsumeSha256(FuzzedDataProvider& provider) { | 
| 353 | 0 |     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.sha256); | 
| 354 | 0 | } | 
| 355 |  |  | 
| 356 | 0 | std::vector<unsigned char> ConsumeHash256(FuzzedDataProvider& provider) { | 
| 357 | 0 |     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash256); | 
| 358 | 0 | } | 
| 359 |  |  | 
| 360 | 0 | std::vector<unsigned char> ConsumeRipemd160(FuzzedDataProvider& provider) { | 
| 361 | 0 |     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.ripemd160); | 
| 362 | 0 | } | 
| 363 |  |  | 
| 364 | 0 | std::vector<unsigned char> ConsumeHash160(FuzzedDataProvider& provider) { | 
| 365 | 0 |     return ConsumeIndex<std::vector<unsigned char>>(provider, TEST_DATA.hash160); | 
| 366 | 0 | } | 
| 367 |  |  | 
| 368 | 0 | std::optional<uint32_t> ConsumeTimeLock(FuzzedDataProvider& provider) { | 
| 369 | 0 |     const uint32_t k = provider.ConsumeIntegral<uint32_t>(); | 
| 370 | 0 |     if (k == 0 || k >= 0x80000000) return {}; | 
| 371 | 0 |     return k; | 
| 372 | 0 | } | 
| 373 |  |  | 
| 374 |  | /** | 
| 375 |  |  * Consume a Miniscript node from the fuzzer's output. | 
| 376 |  |  * | 
| 377 |  |  * This version is intended to have a fixed, stable, encoding for Miniscript nodes: | 
| 378 |  |  *  - The first byte sets the type of the fragment. 0, 1 and all non-leaf fragments but thresh() are a | 
| 379 |  |  *    single byte. | 
| 380 |  |  *  - For the other leaf fragments, the following bytes depend on their type. | 
| 381 |  |  *    - For older() and after(), the next 4 bytes define the timelock value. | 
| 382 |  |  *    - For pk_k(), pk_h(), and all hashes, the next byte defines the index of the value in the test data. | 
| 383 |  |  *    - For multi(), the next 2 bytes define respectively the threshold and the number of keys. Then as many | 
| 384 |  |  *      bytes as the number of keys define the index of each key in the test data. | 
| 385 |  |  *    - For multi_a(), same as for multi() but the threshold and the keys count are encoded on two bytes. | 
| 386 |  |  *    - For thresh(), the next byte defines the threshold value and the following one the number of subs. | 
| 387 |  |  */ | 
| 388 | 0 | std::optional<NodeInfo> ConsumeNodeStable(MsCtx script_ctx, FuzzedDataProvider& provider, Type type_needed) { | 
| 389 | 0 |     bool allow_B = (type_needed == ""_mst) || (type_needed << "B"_mst); | 
| 390 | 0 |     bool allow_K = (type_needed == ""_mst) || (type_needed << "K"_mst); | 
| 391 | 0 |     bool allow_V = (type_needed == ""_mst) || (type_needed << "V"_mst); | 
| 392 | 0 |     bool allow_W = (type_needed == ""_mst) || (type_needed << "W"_mst); | 
| 393 |  | 
 | 
| 394 | 0 |     switch (provider.ConsumeIntegral<uint8_t>()) { | 
| 395 | 0 |         case 0: | 
| 396 | 0 |             if (!allow_B) return {}; | 
| 397 | 0 |             return {{Fragment::JUST_0}}; | 
| 398 | 0 |         case 1: | 
| 399 | 0 |             if (!allow_B) return {}; | 
| 400 | 0 |             return {{Fragment::JUST_1}}; | 
| 401 | 0 |         case 2: | 
| 402 | 0 |             if (!allow_K) return {}; | 
| 403 | 0 |             return {{Fragment::PK_K, ConsumePubKey(provider)}}; | 
| 404 | 0 |         case 3: | 
| 405 | 0 |             if (!allow_K) return {}; | 
| 406 | 0 |             return {{Fragment::PK_H, ConsumePubKey(provider)}}; | 
| 407 | 0 |         case 4: { | 
| 408 | 0 |             if (!allow_B) return {}; | 
| 409 | 0 |             const auto k = ConsumeTimeLock(provider); | 
| 410 | 0 |             if (!k) return {}; | 
| 411 | 0 |             return {{Fragment::OLDER, *k}}; | 
| 412 | 0 |         } | 
| 413 | 0 |         case 5: { | 
| 414 | 0 |             if (!allow_B) return {}; | 
| 415 | 0 |             const auto k = ConsumeTimeLock(provider); | 
| 416 | 0 |             if (!k) return {}; | 
| 417 | 0 |             return {{Fragment::AFTER, *k}}; | 
| 418 | 0 |         } | 
| 419 | 0 |         case 6: | 
| 420 | 0 |             if (!allow_B) return {}; | 
| 421 | 0 |             return {{Fragment::SHA256, ConsumeSha256(provider)}}; | 
| 422 | 0 |         case 7: | 
| 423 | 0 |             if (!allow_B) return {}; | 
| 424 | 0 |             return {{Fragment::HASH256, ConsumeHash256(provider)}}; | 
| 425 | 0 |         case 8: | 
| 426 | 0 |             if (!allow_B) return {}; | 
| 427 | 0 |             return {{Fragment::RIPEMD160, ConsumeRipemd160(provider)}}; | 
| 428 | 0 |         case 9: | 
| 429 | 0 |             if (!allow_B) return {}; | 
| 430 | 0 |             return {{Fragment::HASH160, ConsumeHash160(provider)}}; | 
| 431 | 0 |         case 10: { | 
| 432 | 0 |             if (!allow_B || IsTapscript(script_ctx)) return {}; | 
| 433 | 0 |             const auto k = provider.ConsumeIntegral<uint8_t>(); | 
| 434 | 0 |             const auto n_keys = provider.ConsumeIntegral<uint8_t>(); | 
| 435 | 0 |             if (n_keys > 20 || k == 0 || k > n_keys) return {}; | 
| 436 | 0 |             std::vector<CPubKey> keys{n_keys}; | 
| 437 | 0 |             for (auto& key: keys) key = ConsumePubKey(provider); | 
| 438 | 0 |             return {{Fragment::MULTI, k, std::move(keys)}}; | 
| 439 | 0 |         } | 
| 440 | 0 |         case 11: | 
| 441 | 0 |             if (!(allow_B || allow_K || allow_V)) return {}; | 
| 442 | 0 |             return {{{"B"_mst, type_needed, type_needed}, Fragment::ANDOR}}; | 
| 443 | 0 |         case 12: | 
| 444 | 0 |             if (!(allow_B || allow_K || allow_V)) return {}; | 
| 445 | 0 |             return {{{"V"_mst, type_needed}, Fragment::AND_V}}; | 
| 446 | 0 |         case 13: | 
| 447 | 0 |             if (!allow_B) return {}; | 
| 448 | 0 |             return {{{"B"_mst, "W"_mst}, Fragment::AND_B}}; | 
| 449 | 0 |         case 15: | 
| 450 | 0 |             if (!allow_B) return {}; | 
| 451 | 0 |             return {{{"B"_mst, "W"_mst}, Fragment::OR_B}}; | 
| 452 | 0 |         case 16: | 
| 453 | 0 |             if (!allow_V) return {}; | 
| 454 | 0 |             return {{{"B"_mst, "V"_mst}, Fragment::OR_C}}; | 
| 455 | 0 |         case 17: | 
| 456 | 0 |             if (!allow_B) return {}; | 
| 457 | 0 |             return {{{"B"_mst, "B"_mst}, Fragment::OR_D}}; | 
| 458 | 0 |         case 18: | 
| 459 | 0 |             if (!(allow_B || allow_K || allow_V)) return {}; | 
| 460 | 0 |             return {{{type_needed, type_needed}, Fragment::OR_I}}; | 
| 461 | 0 |         case 19: { | 
| 462 | 0 |             if (!allow_B) return {}; | 
| 463 | 0 |             auto k = provider.ConsumeIntegral<uint8_t>(); | 
| 464 | 0 |             auto n_subs = provider.ConsumeIntegral<uint8_t>(); | 
| 465 | 0 |             if (k == 0 || k > n_subs) return {}; | 
| 466 | 0 |             std::vector<Type> subtypes; | 
| 467 | 0 |             subtypes.reserve(n_subs); | 
| 468 | 0 |             subtypes.emplace_back("B"_mst); | 
| 469 | 0 |             for (size_t i = 1; i < n_subs; ++i) subtypes.emplace_back("W"_mst); | 
| 470 | 0 |             return {{std::move(subtypes), Fragment::THRESH, k}}; | 
| 471 | 0 |         } | 
| 472 | 0 |         case 20: | 
| 473 | 0 |             if (!allow_W) return {}; | 
| 474 | 0 |             return {{{"B"_mst}, Fragment::WRAP_A}}; | 
| 475 | 0 |         case 21: | 
| 476 | 0 |             if (!allow_W) return {}; | 
| 477 | 0 |             return {{{"B"_mst}, Fragment::WRAP_S}}; | 
| 478 | 0 |         case 22: | 
| 479 | 0 |             if (!allow_B) return {}; | 
| 480 | 0 |             return {{{"K"_mst}, Fragment::WRAP_C}}; | 
| 481 | 0 |         case 23: | 
| 482 | 0 |             if (!allow_B) return {}; | 
| 483 | 0 |             return {{{"V"_mst}, Fragment::WRAP_D}}; | 
| 484 | 0 |         case 24: | 
| 485 | 0 |             if (!allow_V) return {}; | 
| 486 | 0 |             return {{{"B"_mst}, Fragment::WRAP_V}}; | 
| 487 | 0 |         case 25: | 
| 488 | 0 |             if (!allow_B) return {}; | 
| 489 | 0 |             return {{{"B"_mst}, Fragment::WRAP_J}}; | 
| 490 | 0 |         case 26: | 
| 491 | 0 |             if (!allow_B) return {}; | 
| 492 | 0 |             return {{{"B"_mst}, Fragment::WRAP_N}}; | 
| 493 | 0 |         case 27: { | 
| 494 | 0 |             if (!allow_B || !IsTapscript(script_ctx)) return {}; | 
| 495 | 0 |             const auto k = provider.ConsumeIntegral<uint16_t>(); | 
| 496 | 0 |             const auto n_keys = provider.ConsumeIntegral<uint16_t>(); | 
| 497 | 0 |             if (n_keys > 999 || k == 0 || k > n_keys) return {}; | 
| 498 | 0 |             std::vector<CPubKey> keys{n_keys}; | 
| 499 | 0 |             for (auto& key: keys) key = ConsumePubKey(provider); | 
| 500 | 0 |             return {{Fragment::MULTI_A, k, std::move(keys)}}; | 
| 501 | 0 |         } | 
| 502 | 0 |         default: | 
| 503 | 0 |             break; | 
| 504 | 0 |     } | 
| 505 | 0 |     return {}; | 
| 506 | 0 | } | 
| 507 |  |  | 
| 508 |  | /* This structure contains a table which for each "target" Type a list of recipes | 
| 509 |  |  * to construct it, automatically inferred from the behavior of ComputeType. | 
| 510 |  |  * Note that the Types here are not the final types of the constructed Nodes, but | 
| 511 |  |  * just the subset that are required. For example, a recipe for the "Bo" type | 
| 512 |  |  * might construct a "Bondu" sha256() NodeInfo, but cannot construct a "Bz" older(). | 
| 513 |  |  * Each recipe is a Fragment together with a list of required types for its subnodes. | 
| 514 |  |  */ | 
| 515 |  | struct SmartInfo | 
| 516 |  | { | 
| 517 |  |     using recipe = std::pair<Fragment, std::vector<Type>>; | 
| 518 |  |     std::map<Type, std::vector<recipe>> wsh_table, tap_table; | 
| 519 |  |  | 
| 520 |  |     void Init() | 
| 521 | 0 |     { | 
| 522 | 0 |         Init(wsh_table, MsCtx::P2WSH); | 
| 523 | 0 |         Init(tap_table, MsCtx::TAPSCRIPT); | 
| 524 | 0 |     } | 
| 525 |  |  | 
| 526 |  |     void Init(std::map<Type, std::vector<recipe>>& table, MsCtx script_ctx) | 
| 527 | 0 |     { | 
| 528 |  |         /* Construct a set of interesting type requirements to reason with (sections of BKVWzondu). */ | 
| 529 | 0 |         std::vector<Type> types; | 
| 530 | 0 |         for (int base = 0; base < 4; ++base) { /* select from B,K,V,W */ | 
| 531 | 0 |             Type type_base = base == 0 ? "B"_mst : base == 1 ? "K"_mst : base == 2 ? "V"_mst : "W"_mst; | 
| 532 | 0 |             for (int zo = 0; zo < 3; ++zo) { /* select from z,o,(none) */ | 
| 533 | 0 |                 Type type_zo = zo == 0 ? "z"_mst : zo == 1 ? "o"_mst : ""_mst; | 
| 534 | 0 |                 for (int n = 0; n < 2; ++n) { /* select from (none),n */ | 
| 535 | 0 |                     if (zo == 0 && n == 1) continue; /* z conflicts with n */ | 
| 536 | 0 |                     if (base == 3 && n == 1) continue; /* W conflicts with n */ | 
| 537 | 0 |                     Type type_n = n == 0 ? ""_mst : "n"_mst; | 
| 538 | 0 |                     for (int d = 0; d < 2; ++d) { /* select from (none),d */ | 
| 539 | 0 |                         if (base == 2 && d == 1) continue; /* V conflicts with d */ | 
| 540 | 0 |                         Type type_d = d == 0 ? ""_mst : "d"_mst; | 
| 541 | 0 |                         for (int u = 0; u < 2; ++u) { /* select from (none),u */ | 
| 542 | 0 |                             if (base == 2 && u == 1) continue; /* V conflicts with u */ | 
| 543 | 0 |                             Type type_u = u == 0 ? ""_mst : "u"_mst; | 
| 544 | 0 |                             Type type = type_base | type_zo | type_n | type_d | type_u; | 
| 545 | 0 |                             types.push_back(type); | 
| 546 | 0 |                         } | 
| 547 | 0 |                     } | 
| 548 | 0 |                 } | 
| 549 | 0 |             } | 
| 550 | 0 |         } | 
| 551 |  |  | 
| 552 |  |         /* We define a recipe a to be a super-recipe of recipe b if they use the same | 
| 553 |  |          * fragment, the same number of subexpressions, and each of a's subexpression | 
| 554 |  |          * types is a supertype of the corresponding subexpression type of b. | 
| 555 |  |          * Within the set of recipes for the construction of a given type requirement, | 
| 556 |  |          * no recipe should be a super-recipe of another (as the super-recipe is | 
| 557 |  |          * applicable in every place the sub-recipe is, the sub-recipe is redundant). */ | 
| 558 | 0 |         auto is_super_of = [](const recipe& a, const recipe& b) { | 
| 559 | 0 |             if (a.first != b.first) return false; | 
| 560 | 0 |             if (a.second.size() != b.second.size()) return false; | 
| 561 | 0 |             for (size_t i = 0; i < a.second.size(); ++i) { | 
| 562 | 0 |                 if (!(b.second[i] << a.second[i])) return false; | 
| 563 | 0 |             } | 
| 564 | 0 |             return true; | 
| 565 | 0 |         }; | 
| 566 |  |  | 
| 567 |  |         /* Sort the type requirements. Subtypes will always sort later (e.g. Bondu will | 
| 568 |  |          * sort after Bo or Bu). As we'll be constructing recipes using these types, in | 
| 569 |  |          * order, in what follows, we'll construct super-recipes before sub-recipes. | 
| 570 |  |          * That means we never need to go back and delete a sub-recipe because a | 
| 571 |  |          * super-recipe got added. */ | 
| 572 | 0 |         std::sort(types.begin(), types.end()); | 
| 573 |  |  | 
| 574 |  |         // Iterate over all possible fragments. | 
| 575 | 0 |         for (int fragidx = 0; fragidx <= int(Fragment::MULTI_A); ++fragidx) { | 
| 576 | 0 |             int sub_count = 0; //!< The minimum number of child nodes this recipe has. | 
| 577 | 0 |             int sub_range = 1; //!< The maximum number of child nodes for this recipe is sub_count+sub_range-1. | 
| 578 | 0 |             size_t data_size = 0; | 
| 579 | 0 |             size_t n_keys = 0; | 
| 580 | 0 |             uint32_t k = 0; | 
| 581 | 0 |             Fragment frag{fragidx}; | 
| 582 |  |  | 
| 583 |  |             // Only produce recipes valid in the given context. | 
| 584 | 0 |             if ((!miniscript::IsTapscript(script_ctx) && frag == Fragment::MULTI_A) | 
| 585 | 0 |                 || (miniscript::IsTapscript(script_ctx) && frag == Fragment::MULTI)) { | 
| 586 | 0 |                 continue; | 
| 587 | 0 |             } | 
| 588 |  |  | 
| 589 |  |             // Based on the fragment, determine #subs/data/k/keys to pass to ComputeType. */ | 
| 590 | 0 |             switch (frag) { | 
| 591 | 0 |                 case Fragment::PK_K: | 
| 592 | 0 |                 case Fragment::PK_H: | 
| 593 | 0 |                     n_keys = 1; | 
| 594 | 0 |                     break; | 
| 595 | 0 |                 case Fragment::MULTI: | 
| 596 | 0 |                 case Fragment::MULTI_A: | 
| 597 | 0 |                     n_keys = 1; | 
| 598 | 0 |                     k = 1; | 
| 599 | 0 |                     break; | 
| 600 | 0 |                 case Fragment::OLDER: | 
| 601 | 0 |                 case Fragment::AFTER: | 
| 602 | 0 |                     k = 1; | 
| 603 | 0 |                     break; | 
| 604 | 0 |                 case Fragment::SHA256: | 
| 605 | 0 |                 case Fragment::HASH256: | 
| 606 | 0 |                     data_size = 32; | 
| 607 | 0 |                     break; | 
| 608 | 0 |                 case Fragment::RIPEMD160: | 
| 609 | 0 |                 case Fragment::HASH160: | 
| 610 | 0 |                     data_size = 20; | 
| 611 | 0 |                     break; | 
| 612 | 0 |                 case Fragment::JUST_0: | 
| 613 | 0 |                 case Fragment::JUST_1: | 
| 614 | 0 |                     break; | 
| 615 | 0 |                 case Fragment::WRAP_A: | 
| 616 | 0 |                 case Fragment::WRAP_S: | 
| 617 | 0 |                 case Fragment::WRAP_C: | 
| 618 | 0 |                 case Fragment::WRAP_D: | 
| 619 | 0 |                 case Fragment::WRAP_V: | 
| 620 | 0 |                 case Fragment::WRAP_J: | 
| 621 | 0 |                 case Fragment::WRAP_N: | 
| 622 | 0 |                     sub_count = 1; | 
| 623 | 0 |                     break; | 
| 624 | 0 |                 case Fragment::AND_V: | 
| 625 | 0 |                 case Fragment::AND_B: | 
| 626 | 0 |                 case Fragment::OR_B: | 
| 627 | 0 |                 case Fragment::OR_C: | 
| 628 | 0 |                 case Fragment::OR_D: | 
| 629 | 0 |                 case Fragment::OR_I: | 
| 630 | 0 |                     sub_count = 2; | 
| 631 | 0 |                     break; | 
| 632 | 0 |                 case Fragment::ANDOR: | 
| 633 | 0 |                     sub_count = 3; | 
| 634 | 0 |                     break; | 
| 635 | 0 |                 case Fragment::THRESH: | 
| 636 |  |                     // Thresh logic is executed for 1 and 2 arguments. Larger numbers use ad-hoc code to extend. | 
| 637 | 0 |                     sub_count = 1; | 
| 638 | 0 |                     sub_range = 2; | 
| 639 | 0 |                     k = 1; | 
| 640 | 0 |                     break; | 
| 641 | 0 |             } | 
| 642 |  |  | 
| 643 |  |             // Iterate over the number of subnodes (sub_count...sub_count+sub_range-1). | 
| 644 | 0 |             std::vector<Type> subt; | 
| 645 | 0 |             for (int subs = sub_count; subs < sub_count + sub_range; ++subs) { | 
| 646 |  |                 // Iterate over the possible subnode types (at most 3). | 
| 647 | 0 |                 for (Type x : types) { | 
| 648 | 0 |                     for (Type y : types) { | 
| 649 | 0 |                         for (Type z : types) { | 
| 650 |  |                             // Compute the resulting type of a node with the selected fragment / subnode types. | 
| 651 | 0 |                             subt.clear(); | 
| 652 | 0 |                             if (subs > 0) subt.push_back(x); | 
| 653 | 0 |                             if (subs > 1) subt.push_back(y); | 
| 654 | 0 |                             if (subs > 2) subt.push_back(z); | 
| 655 | 0 |                             Type res = miniscript::internal::ComputeType(frag, x, y, z, subt, k, data_size, subs, n_keys, script_ctx); | 
| 656 |  |                             // Continue if the result is not a valid node. | 
| 657 | 0 |                             if ((res << "K"_mst) + (res << "V"_mst) + (res << "B"_mst) + (res << "W"_mst) != 1) continue; | 
| 658 |  |  | 
| 659 | 0 |                             recipe entry{frag, subt}; | 
| 660 | 0 |                             auto super_of_entry = [&](const recipe& rec) { return is_super_of(rec, entry); }; | 
| 661 |  |                             // Iterate over all supertypes of res (because if e.g. our selected fragment/subnodes result | 
| 662 |  |                             // in a Bondu, they can form a recipe that is also applicable for constructing a B, Bou, Bdu, ...). | 
| 663 | 0 |                             for (Type s : types) { | 
| 664 | 0 |                                 if ((res & "BKVWzondu"_mst) << s) { | 
| 665 | 0 |                                     auto& recipes = table[s]; | 
| 666 |  |                                     // If we don't already have a super-recipe to the new one, add it. | 
| 667 | 0 |                                     if (!std::any_of(recipes.begin(), recipes.end(), super_of_entry)) { | 
| 668 | 0 |                                         recipes.push_back(entry); | 
| 669 | 0 |                                     } | 
| 670 | 0 |                                 } | 
| 671 | 0 |                             } | 
| 672 |  | 
 | 
| 673 | 0 |                             if (subs <= 2) break; | 
| 674 | 0 |                         } | 
| 675 | 0 |                         if (subs <= 1) break; | 
| 676 | 0 |                     } | 
| 677 | 0 |                     if (subs <= 0) break; | 
| 678 | 0 |                 } | 
| 679 | 0 |             } | 
| 680 | 0 |         } | 
| 681 |  |  | 
| 682 |  |         /* Find which types are useful. The fuzzer logic only cares about constructing | 
| 683 |  |          * B,V,K,W nodes, so any type that isn't needed in any recipe (directly or | 
| 684 |  |          * indirectly) for the construction of those is uninteresting. */ | 
| 685 | 0 |         std::set<Type> useful_types{"B"_mst, "V"_mst, "K"_mst, "W"_mst}; | 
| 686 |  |         // Find the transitive closure by adding types until the set of types does not change. | 
| 687 | 0 |         while (true) { | 
| 688 | 0 |             size_t set_size = useful_types.size(); | 
| 689 | 0 |             for (const auto& [type, recipes] : table) { | 
| 690 | 0 |                 if (useful_types.count(type) != 0) { | 
| 691 | 0 |                     for (const auto& [_, subtypes] : recipes) { | 
| 692 | 0 |                         for (auto subtype : subtypes) useful_types.insert(subtype); | 
| 693 | 0 |                     } | 
| 694 | 0 |                 } | 
| 695 | 0 |             } | 
| 696 | 0 |             if (useful_types.size() == set_size) break; | 
| 697 | 0 |         } | 
| 698 |  |         // Remove all rules that construct uninteresting types. | 
| 699 | 0 |         for (auto type_it = table.begin(); type_it != table.end();) { | 
| 700 | 0 |             if (useful_types.count(type_it->first) == 0) { | 
| 701 | 0 |                 type_it = table.erase(type_it); | 
| 702 | 0 |             } else { | 
| 703 | 0 |                 ++type_it; | 
| 704 | 0 |             } | 
| 705 | 0 |         } | 
| 706 |  |  | 
| 707 |  |         /* Find which types are constructible. A type is constructible if there is a leaf | 
| 708 |  |          * node recipe for constructing it, or a recipe whose subnodes are all constructible. | 
| 709 |  |          * Types can be non-constructible because they have no recipes to begin with, | 
| 710 |  |          * because they can only be constructed using recipes that involve otherwise | 
| 711 |  |          * non-constructible types, or because they require infinite recursion. */ | 
| 712 | 0 |         std::set<Type> constructible_types{}; | 
| 713 | 0 |         auto known_constructible = [&](Type type) { return constructible_types.count(type) != 0; }; | 
| 714 |  |         // Find the transitive closure by adding types until the set of types does not change. | 
| 715 | 0 |         while (true) { | 
| 716 | 0 |             size_t set_size = constructible_types.size(); | 
| 717 |  |             // Iterate over all types we have recipes for. | 
| 718 | 0 |             for (const auto& [type, recipes] : table) { | 
| 719 | 0 |                 if (!known_constructible(type)) { | 
| 720 |  |                     // For not (yet known to be) constructible types, iterate over their recipes. | 
| 721 | 0 |                     for (const auto& [_, subt] : recipes) { | 
| 722 |  |                         // If any recipe involves only (already known to be) constructible types, | 
| 723 |  |                         // add the recipe's type to the set. | 
| 724 | 0 |                         if (std::all_of(subt.begin(), subt.end(), known_constructible)) { | 
| 725 | 0 |                             constructible_types.insert(type); | 
| 726 | 0 |                             break; | 
| 727 | 0 |                         } | 
| 728 | 0 |                     } | 
| 729 | 0 |                 } | 
| 730 | 0 |             } | 
| 731 | 0 |             if (constructible_types.size() == set_size) break; | 
| 732 | 0 |         } | 
| 733 | 0 |         for (auto type_it = table.begin(); type_it != table.end();) { | 
| 734 |  |             // Remove all recipes which involve non-constructible types. | 
| 735 | 0 |             type_it->second.erase(std::remove_if(type_it->second.begin(), type_it->second.end(), | 
| 736 | 0 |                 [&](const recipe& rec) { | 
| 737 | 0 |                     return !std::all_of(rec.second.begin(), rec.second.end(), known_constructible); | 
| 738 | 0 |                 }), type_it->second.end()); | 
| 739 |  |             // Delete types entirely which have no recipes left. | 
| 740 | 0 |             if (type_it->second.empty()) { | 
| 741 | 0 |                 type_it = table.erase(type_it); | 
| 742 | 0 |             } else { | 
| 743 | 0 |                 ++type_it; | 
| 744 | 0 |             } | 
| 745 | 0 |         } | 
| 746 |  | 
 | 
| 747 | 0 |         for (auto& [type, recipes] : table) { | 
| 748 |  |             // Sort recipes for determinism, and place those using fewer subnodes first. | 
| 749 |  |             // This avoids runaway expansion (when reaching the end of the fuzz input, | 
| 750 |  |             // all zeroes are read, resulting in the first available recipe being picked). | 
| 751 | 0 |             std::sort(recipes.begin(), recipes.end(), | 
| 752 | 0 |                 [](const recipe& a, const recipe& b) { | 
| 753 | 0 |                     if (a.second.size() < b.second.size()) return true; | 
| 754 | 0 |                     if (a.second.size() > b.second.size()) return false; | 
| 755 | 0 |                     return a < b; | 
| 756 | 0 |                 } | 
| 757 | 0 |             ); | 
| 758 | 0 |         } | 
| 759 | 0 |     } | 
| 760 |  | } SMARTINFO; | 
| 761 |  |  | 
| 762 |  | /** | 
| 763 |  |  * Consume a Miniscript node from the fuzzer's output. | 
| 764 |  |  * | 
| 765 |  |  * This is similar to ConsumeNodeStable, but uses a precomputed table with permitted | 
| 766 |  |  * fragments/subnode type for each required type. It is intended to more quickly explore | 
| 767 |  |  * interesting miniscripts, at the cost of higher implementation complexity (which could | 
| 768 |  |  * cause it miss things if incorrect), and with less regard for stability of the seeds | 
| 769 |  |  * (as improvements to the tables or changes to the typing rules could invalidate | 
| 770 |  |  * everything). | 
| 771 |  |  */ | 
| 772 | 0 | std::optional<NodeInfo> ConsumeNodeSmart(MsCtx script_ctx, FuzzedDataProvider& provider, Type type_needed) { | 
| 773 |  |     /** Table entry for the requested type. */ | 
| 774 | 0 |     const auto& table{IsTapscript(script_ctx) ? SMARTINFO.tap_table : SMARTINFO.wsh_table}; | 
| 775 | 0 |     auto recipes_it = table.find(type_needed); | 
| 776 | 0 |     assert(recipes_it != table.end()); | 
| 777 |  |     /** Pick one recipe from the available ones for that type. */ | 
| 778 | 0 |     const auto& [frag, subt] = PickValue(provider, recipes_it->second); | 
| 779 |  |  | 
| 780 |  |     // Based on the fragment the recipe uses, fill in other data (k, keys, data). | 
| 781 | 0 |     switch (frag) { | 
| 782 | 0 |         case Fragment::PK_K: | 
| 783 | 0 |         case Fragment::PK_H: | 
| 784 | 0 |             return {{frag, ConsumePubKey(provider)}}; | 
| 785 | 0 |         case Fragment::MULTI: { | 
| 786 | 0 |             const auto n_keys = provider.ConsumeIntegralInRange<uint8_t>(1, 20); | 
| 787 | 0 |             const auto k = provider.ConsumeIntegralInRange<uint8_t>(1, n_keys); | 
| 788 | 0 |             std::vector<CPubKey> keys{n_keys}; | 
| 789 | 0 |             for (auto& key: keys) key = ConsumePubKey(provider); | 
| 790 | 0 |             return {{frag, k, std::move(keys)}}; | 
| 791 | 0 |         } | 
| 792 | 0 |         case Fragment::MULTI_A: { | 
| 793 | 0 |             const auto n_keys = provider.ConsumeIntegralInRange<uint16_t>(1, 999); | 
| 794 | 0 |             const auto k = provider.ConsumeIntegralInRange<uint16_t>(1, n_keys); | 
| 795 | 0 |             std::vector<CPubKey> keys{n_keys}; | 
| 796 | 0 |             for (auto& key: keys) key = ConsumePubKey(provider); | 
| 797 | 0 |             return {{frag, k, std::move(keys)}}; | 
| 798 | 0 |         } | 
| 799 | 0 |         case Fragment::OLDER: | 
| 800 | 0 |         case Fragment::AFTER: | 
| 801 | 0 |             return {{frag, provider.ConsumeIntegralInRange<uint32_t>(1, 0x7FFFFFF)}}; | 
| 802 | 0 |         case Fragment::SHA256: | 
| 803 | 0 |             return {{frag, PickValue(provider, TEST_DATA.sha256)}}; | 
| 804 | 0 |         case Fragment::HASH256: | 
| 805 | 0 |             return {{frag, PickValue(provider, TEST_DATA.hash256)}}; | 
| 806 | 0 |         case Fragment::RIPEMD160: | 
| 807 | 0 |             return {{frag, PickValue(provider, TEST_DATA.ripemd160)}}; | 
| 808 | 0 |         case Fragment::HASH160: | 
| 809 | 0 |             return {{frag, PickValue(provider, TEST_DATA.hash160)}}; | 
| 810 | 0 |         case Fragment::JUST_0: | 
| 811 | 0 |         case Fragment::JUST_1: | 
| 812 | 0 |         case Fragment::WRAP_A: | 
| 813 | 0 |         case Fragment::WRAP_S: | 
| 814 | 0 |         case Fragment::WRAP_C: | 
| 815 | 0 |         case Fragment::WRAP_D: | 
| 816 | 0 |         case Fragment::WRAP_V: | 
| 817 | 0 |         case Fragment::WRAP_J: | 
| 818 | 0 |         case Fragment::WRAP_N: | 
| 819 | 0 |         case Fragment::AND_V: | 
| 820 | 0 |         case Fragment::AND_B: | 
| 821 | 0 |         case Fragment::OR_B: | 
| 822 | 0 |         case Fragment::OR_C: | 
| 823 | 0 |         case Fragment::OR_D: | 
| 824 | 0 |         case Fragment::OR_I: | 
| 825 | 0 |         case Fragment::ANDOR: | 
| 826 | 0 |             return {{subt, frag}}; | 
| 827 | 0 |         case Fragment::THRESH: { | 
| 828 | 0 |             uint32_t children; | 
| 829 | 0 |             if (subt.size() < 2) { | 
| 830 | 0 |                 children = subt.size(); | 
| 831 | 0 |             } else { | 
| 832 |  |                 // If we hit a thresh with 2 subnodes, artificially extend it to any number | 
| 833 |  |                 // (2 or larger) by replicating the type of the last subnode. | 
| 834 | 0 |                 children = provider.ConsumeIntegralInRange<uint32_t>(2, MAX_OPS_PER_SCRIPT / 2); | 
| 835 | 0 |             } | 
| 836 | 0 |             auto k = provider.ConsumeIntegralInRange<uint32_t>(1, children); | 
| 837 | 0 |             std::vector<Type> subs = subt; | 
| 838 | 0 |             while (subs.size() < children) subs.push_back(subs.back()); | 
| 839 | 0 |             return {{std::move(subs), frag, k}}; | 
| 840 | 0 |         } | 
| 841 | 0 |     } | 
| 842 |  |  | 
| 843 | 0 |     assert(false); | 
| 844 | 0 | } | 
| 845 |  |  | 
| 846 |  | /** | 
| 847 |  |  * Generate a Miniscript node based on the fuzzer's input. | 
| 848 |  |  * | 
| 849 |  |  * - ConsumeNode is a function object taking a Type, and returning an std::optional<NodeInfo>. | 
| 850 |  |  * - root_type is the required type properties of the constructed NodeRef. | 
| 851 |  |  * - strict_valid sets whether ConsumeNode is expected to guarantee a NodeInfo that results in | 
| 852 |  |  *   a NodeRef whose Type() matches the type fed to ConsumeNode. | 
| 853 |  |  */ | 
| 854 |  | template<typename F> | 
| 855 | 0 | NodeRef GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_valid = false) { | 
| 856 |  |     /** A stack of miniscript Nodes being built up. */ | 
| 857 | 0 |     std::vector<NodeRef> stack; | 
| 858 |  |     /** The queue of instructions. */ | 
| 859 | 0 |     std::vector<std::pair<Type, std::optional<NodeInfo>>> todo{{root_type, {}}}; | 
| 860 |  |     /** Predict the number of (static) script ops. */ | 
| 861 | 0 |     uint32_t ops{0}; | 
| 862 |  |     /** Predict the total script size (every unexplored subnode is counted as one, as every leaf is | 
| 863 |  |      *  at least one script byte). */ | 
| 864 | 0 |     uint32_t scriptsize{1}; | 
| 865 |  | 
 | 
| 866 | 0 |     while (!todo.empty()) { | 
| 867 |  |         // The expected type we have to construct. | 
| 868 | 0 |         auto type_needed = todo.back().first; | 
| 869 | 0 |         if (!todo.back().second) { | 
| 870 |  |             // Fragment/children have not been decided yet. Decide them. | 
| 871 | 0 |             auto node_info = ConsumeNode(type_needed); | 
| 872 | 0 |             if (!node_info) return {}; | 
| 873 |  |             // Update predicted resource limits. Since every leaf Miniscript node is at least one | 
| 874 |  |             // byte long, we move one byte from each child to their parent. A similar technique is | 
| 875 |  |             // used in the miniscript::internal::Parse function to prevent runaway string parsing. | 
| 876 | 0 |             scriptsize += miniscript::internal::ComputeScriptLen(node_info->fragment, ""_mst, node_info->subtypes.size(), node_info->k, node_info->subtypes.size(), | 
| 877 | 0 |                                                                  node_info->keys.size(), script_ctx) - 1; | 
| 878 | 0 |             if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {}; | 
| 879 | 0 |             switch (node_info->fragment) { | 
| 880 | 0 |             case Fragment::JUST_0: | 
| 881 | 0 |             case Fragment::JUST_1: | 
| 882 | 0 |                 break; | 
| 883 | 0 |             case Fragment::PK_K: | 
| 884 | 0 |                 break; | 
| 885 | 0 |             case Fragment::PK_H: | 
| 886 | 0 |                 ops += 3; | 
| 887 | 0 |                 break; | 
| 888 | 0 |             case Fragment::OLDER: | 
| 889 | 0 |             case Fragment::AFTER: | 
| 890 | 0 |                 ops += 1; | 
| 891 | 0 |                 break; | 
| 892 | 0 |             case Fragment::RIPEMD160: | 
| 893 | 0 |             case Fragment::SHA256: | 
| 894 | 0 |             case Fragment::HASH160: | 
| 895 | 0 |             case Fragment::HASH256: | 
| 896 | 0 |                 ops += 4; | 
| 897 | 0 |                 break; | 
| 898 | 0 |             case Fragment::ANDOR: | 
| 899 | 0 |                 ops += 3; | 
| 900 | 0 |                 break; | 
| 901 | 0 |             case Fragment::AND_V: | 
| 902 | 0 |                 break; | 
| 903 | 0 |             case Fragment::AND_B: | 
| 904 | 0 |             case Fragment::OR_B: | 
| 905 | 0 |                 ops += 1; | 
| 906 | 0 |                 break; | 
| 907 | 0 |             case Fragment::OR_C: | 
| 908 | 0 |                 ops += 2; | 
| 909 | 0 |                 break; | 
| 910 | 0 |             case Fragment::OR_D: | 
| 911 | 0 |                 ops += 3; | 
| 912 | 0 |                 break; | 
| 913 | 0 |             case Fragment::OR_I: | 
| 914 | 0 |                 ops += 3; | 
| 915 | 0 |                 break; | 
| 916 | 0 |             case Fragment::THRESH: | 
| 917 | 0 |                 ops += node_info->subtypes.size(); | 
| 918 | 0 |                 break; | 
| 919 | 0 |             case Fragment::MULTI: | 
| 920 | 0 |                 ops += 1; | 
| 921 | 0 |                 break; | 
| 922 | 0 |             case Fragment::MULTI_A: | 
| 923 | 0 |                 ops += node_info->keys.size() + 1; | 
| 924 | 0 |                 break; | 
| 925 | 0 |             case Fragment::WRAP_A: | 
| 926 | 0 |                 ops += 2; | 
| 927 | 0 |                 break; | 
| 928 | 0 |             case Fragment::WRAP_S: | 
| 929 | 0 |                 ops += 1; | 
| 930 | 0 |                 break; | 
| 931 | 0 |             case Fragment::WRAP_C: | 
| 932 | 0 |                 ops += 1; | 
| 933 | 0 |                 break; | 
| 934 | 0 |             case Fragment::WRAP_D: | 
| 935 | 0 |                 ops += 3; | 
| 936 | 0 |                 break; | 
| 937 | 0 |             case Fragment::WRAP_V: | 
| 938 |  |                 // We don't account for OP_VERIFY here; that will be corrected for when the actual | 
| 939 |  |                 // node is constructed below. | 
| 940 | 0 |                 break; | 
| 941 | 0 |             case Fragment::WRAP_J: | 
| 942 | 0 |                 ops += 4; | 
| 943 | 0 |                 break; | 
| 944 | 0 |             case Fragment::WRAP_N: | 
| 945 | 0 |                 ops += 1; | 
| 946 | 0 |                 break; | 
| 947 | 0 |             } | 
| 948 | 0 |             if (ops > MAX_OPS_PER_SCRIPT) return {}; | 
| 949 | 0 |             auto subtypes = node_info->subtypes; | 
| 950 | 0 |             todo.back().second = std::move(node_info); | 
| 951 | 0 |             todo.reserve(todo.size() + subtypes.size()); | 
| 952 |  |             // As elements on the todo stack are processed back to front, construct | 
| 953 |  |             // them in reverse order (so that the first subnode is generated first). | 
| 954 | 0 |             for (size_t i = 0; i < subtypes.size(); ++i) { | 
| 955 | 0 |                 todo.emplace_back(*(subtypes.rbegin() + i), std::nullopt); | 
| 956 | 0 |             } | 
| 957 | 0 |         } else { | 
| 958 |  |             // The back of todo has fragment and number of children decided, and | 
| 959 |  |             // those children have been constructed at the back of stack. Pop | 
| 960 |  |             // that entry off todo, and use it to construct a new NodeRef on | 
| 961 |  |             // stack. | 
| 962 | 0 |             NodeInfo& info = *todo.back().second; | 
| 963 |  |             // Gather children from the back of stack. | 
| 964 | 0 |             std::vector<NodeRef> sub; | 
| 965 | 0 |             sub.reserve(info.subtypes.size()); | 
| 966 | 0 |             for (size_t i = 0; i < info.subtypes.size(); ++i) { | 
| 967 | 0 |                 sub.push_back(std::move(*(stack.end() - info.subtypes.size() + i))); | 
| 968 | 0 |             } | 
| 969 | 0 |             stack.erase(stack.end() - info.subtypes.size(), stack.end()); | 
| 970 |  |             // Construct new NodeRef. | 
| 971 | 0 |             NodeRef node; | 
| 972 | 0 |             if (info.keys.empty()) { | 
| 973 | 0 |                 node = MakeNodeRef(script_ctx, info.fragment, std::move(sub), std::move(info.hash), info.k); | 
| 974 | 0 |             } else { | 
| 975 | 0 |                 assert(sub.empty()); | 
| 976 | 0 |                 assert(info.hash.empty()); | 
| 977 | 0 |                 node = MakeNodeRef(script_ctx, info.fragment, std::move(info.keys), info.k); | 
| 978 | 0 |             } | 
| 979 |  |             // Verify acceptability. | 
| 980 | 0 |             if (!node || (node->GetType() & "KVWB"_mst) == ""_mst) { | 
| 981 | 0 |                 assert(!strict_valid); | 
| 982 | 0 |                 return {}; | 
| 983 | 0 |             } | 
| 984 | 0 |             if (!(type_needed == ""_mst)) { | 
| 985 | 0 |                 assert(node->GetType() << type_needed); | 
| 986 | 0 |             } | 
| 987 | 0 |             if (!node->IsValid()) return {}; | 
| 988 |  |             // Update resource predictions. | 
| 989 | 0 |             if (node->fragment == Fragment::WRAP_V && node->subs[0]->GetType() << "x"_mst) { | 
| 990 | 0 |                 ops += 1; | 
| 991 | 0 |                 scriptsize += 1; | 
| 992 | 0 |             } | 
| 993 | 0 |             if (!miniscript::IsTapscript(script_ctx) && ops > MAX_OPS_PER_SCRIPT) return {}; | 
| 994 | 0 |             if (scriptsize > miniscript::internal::MaxScriptSize(script_ctx)) { | 
| 995 | 0 |                 return {}; | 
| 996 | 0 |             } | 
| 997 |  |             // Move it to the stack. | 
| 998 | 0 |             stack.push_back(std::move(node)); | 
| 999 | 0 |             todo.pop_back(); | 
| 1000 | 0 |         } | 
| 1001 | 0 |     } | 
| 1002 | 0 |     assert(stack.size() == 1); | 
| 1003 | 0 |     assert(stack[0]->GetStaticOps() == ops); | 
| 1004 | 0 |     assert(stack[0]->ScriptSize() == scriptsize); | 
| 1005 | 0 |     stack[0]->DuplicateKeyCheck(KEY_COMP); | 
| 1006 | 0 |     return std::move(stack[0]); | 
| 1007 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_17GenNodeIZ29miniscript_stable_fuzz_targetSt4spanIKhLm18446744073709551615EEE3$_0EESt10unique_ptrIKN10miniscript4NodeI7CPubKeyEESt14default_deleteISA_EENS6_17MiniscriptContextET_NS6_4TypeEbUnexecuted instantiation: miniscript.cpp:_ZN12_GLOBAL__N_17GenNodeIZ28miniscript_smart_fuzz_targetSt4spanIKhLm18446744073709551615EEE3$_0EESt10unique_ptrIKN10miniscript4NodeI7CPubKeyEESt14default_deleteISA_EENS6_17MiniscriptContextET_NS6_4TypeEb | 
| 1008 |  |  | 
| 1009 |  | //! The spk for this script under the given context. If it's a Taproot output also record the spend data. | 
| 1010 |  | CScript ScriptPubKey(MsCtx ctx, const CScript& script, TaprootBuilder& builder) | 
| 1011 | 0 | { | 
| 1012 | 0 |     if (!miniscript::IsTapscript(ctx)) return CScript() << OP_0 << WitnessV0ScriptHash(script); | 
| 1013 |  |  | 
| 1014 |  |     // For Taproot outputs we always use a tree with a single script and a dummy internal key. | 
| 1015 | 0 |     builder.Add(0, script, TAPROOT_LEAF_TAPSCRIPT); | 
| 1016 | 0 |     builder.Finalize(XOnlyPubKey::NUMS_H); | 
| 1017 | 0 |     return GetScriptForDestination(builder.GetOutput()); | 
| 1018 | 0 | } | 
| 1019 |  |  | 
| 1020 |  | //! Fill the witness with the data additional to the script satisfaction. | 
| 1021 | 0 | void SatisfactionToWitness(MsCtx ctx, CScriptWitness& witness, const CScript& script, TaprootBuilder& builder) { | 
| 1022 |  |     // For P2WSH, it's only the witness script. | 
| 1023 | 0 |     witness.stack.emplace_back(script.begin(), script.end()); | 
| 1024 | 0 |     if (!miniscript::IsTapscript(ctx)) return; | 
| 1025 |  |     // For Tapscript we also need the control block. | 
| 1026 | 0 |     witness.stack.push_back(*builder.GetSpendData().scripts.begin()->second.begin()); | 
| 1027 | 0 | } | 
| 1028 |  |  | 
| 1029 |  | /** Perform various applicable tests on a miniscript Node. */ | 
| 1030 |  | void TestNode(const MsCtx script_ctx, const NodeRef& node, FuzzedDataProvider& provider) | 
| 1031 | 0 | { | 
| 1032 | 0 |     if (!node) return; | 
| 1033 |  |  | 
| 1034 |  |     // Check that it roundtrips to text representation | 
| 1035 | 0 |     const ParserContext parser_ctx{script_ctx}; | 
| 1036 | 0 |     std::optional<std::string> str{node->ToString(parser_ctx)}; | 
| 1037 | 0 |     assert(str); | 
| 1038 | 0 |     auto parsed = miniscript::FromString(*str, parser_ctx); | 
| 1039 | 0 |     assert(parsed); | 
| 1040 | 0 |     assert(*parsed == *node); | 
| 1041 |  |  | 
| 1042 |  |     // Check consistency between script size estimation and real size. | 
| 1043 | 0 |     auto script = node->ToScript(parser_ctx); | 
| 1044 | 0 |     assert(node->ScriptSize() == script.size()); | 
| 1045 |  |  | 
| 1046 |  |     // Check consistency of "x" property with the script (type K is excluded, because it can end | 
| 1047 |  |     // with a push of a key, which could match these opcodes). | 
| 1048 | 0 |     if (!(node->GetType() << "K"_mst)) { | 
| 1049 | 0 |         bool ends_in_verify = !(node->GetType() << "x"_mst); | 
| 1050 | 0 |         assert(ends_in_verify == (script.back() == OP_CHECKSIG || script.back() == OP_CHECKMULTISIG || script.back() == OP_EQUAL || script.back() == OP_NUMEQUAL)); | 
| 1051 | 0 |     } | 
| 1052 |  |  | 
| 1053 |  |     // The rest of the checks only apply when testing a valid top-level script. | 
| 1054 | 0 |     if (!node->IsValidTopLevel()) return; | 
| 1055 |  |  | 
| 1056 |  |     // Check roundtrip to script | 
| 1057 | 0 |     auto decoded = miniscript::FromScript(script, parser_ctx); | 
| 1058 | 0 |     assert(decoded); | 
| 1059 |  |     // Note we can't use *decoded == *node because the miniscript representation may differ, so we check that: | 
| 1060 |  |     // - The script corresponding to that decoded form matches exactly | 
| 1061 |  |     // - The type matches exactly | 
| 1062 | 0 |     assert(decoded->ToScript(parser_ctx) == script); | 
| 1063 | 0 |     assert(decoded->GetType() == node->GetType()); | 
| 1064 |  |  | 
| 1065 |  |     // Optionally pad the script or the witness in order to increase the sensitivity of the tests of | 
| 1066 |  |     // the resources limits logic. | 
| 1067 | 0 |     CScriptWitness witness_mal, witness_nonmal; | 
| 1068 | 0 |     if (provider.ConsumeBool()) { | 
| 1069 |  |         // Under P2WSH, optionally pad the script with OP_NOPs to max op the ops limit of the constructed script. | 
| 1070 |  |         // This makes the script obviously not actually miniscript-compatible anymore, but the | 
| 1071 |  |         // signatures constructed in this test don't commit to the script anyway, so the same | 
| 1072 |  |         // miniscript satisfier will work. This increases the sensitivity of the test to the ops | 
| 1073 |  |         // counting logic being too low, especially for simple scripts. | 
| 1074 |  |         // Do this optionally because we're not solely interested in cases where the number of ops is | 
| 1075 |  |         // maximal. | 
| 1076 |  |         // Do not pad more than what would cause MAX_STANDARD_P2WSH_SCRIPT_SIZE to be reached, however, | 
| 1077 |  |         // as that also invalidates scripts. | 
| 1078 | 0 |         const auto node_ops{node->GetOps()}; | 
| 1079 | 0 |         if (!IsTapscript(script_ctx) && node_ops && *node_ops < MAX_OPS_PER_SCRIPT | 
| 1080 | 0 |             && node->ScriptSize() < MAX_STANDARD_P2WSH_SCRIPT_SIZE) { | 
| 1081 | 0 |             int add = std::min<int>( | 
| 1082 | 0 |                 MAX_OPS_PER_SCRIPT - *node_ops, | 
| 1083 | 0 |                 MAX_STANDARD_P2WSH_SCRIPT_SIZE - node->ScriptSize()); | 
| 1084 | 0 |             for (int i = 0; i < add; ++i) script.push_back(OP_NOP); | 
| 1085 | 0 |         } | 
| 1086 |  |  | 
| 1087 |  |         // Under Tapscript, optionally pad the stack up to the limit minus the calculated maximum execution stack | 
| 1088 |  |         // size to assert a Miniscript would never add more elements to the stack during execution than anticipated. | 
| 1089 | 0 |         const auto node_exec_ss{node->GetExecStackSize()}; | 
| 1090 | 0 |         if (miniscript::IsTapscript(script_ctx) && node_exec_ss && *node_exec_ss < MAX_STACK_SIZE) { | 
| 1091 | 0 |             unsigned add{(unsigned)MAX_STACK_SIZE - *node_exec_ss}; | 
| 1092 | 0 |             witness_mal.stack.resize(add); | 
| 1093 | 0 |             witness_nonmal.stack.resize(add); | 
| 1094 | 0 |             script.reserve(add); | 
| 1095 | 0 |             for (unsigned i = 0; i < add; ++i) script.push_back(OP_NIP); | 
| 1096 | 0 |         } | 
| 1097 | 0 |     } | 
| 1098 |  | 
 | 
| 1099 | 0 |     const SatisfierContext satisfier_ctx{script_ctx}; | 
| 1100 |  |  | 
| 1101 |  |     // Get the ScriptPubKey for this script, filling spend data if it's Taproot. | 
| 1102 | 0 |     TaprootBuilder builder; | 
| 1103 | 0 |     const CScript script_pubkey{ScriptPubKey(script_ctx, script, builder)}; | 
| 1104 |  |  | 
| 1105 |  |     // Run malleable satisfaction algorithm. | 
| 1106 | 0 |     std::vector<std::vector<unsigned char>> stack_mal; | 
| 1107 | 0 |     const bool mal_success = node->Satisfy(satisfier_ctx, stack_mal, false) == miniscript::Availability::YES; | 
| 1108 |  |  | 
| 1109 |  |     // Run non-malleable satisfaction algorithm. | 
| 1110 | 0 |     std::vector<std::vector<unsigned char>> stack_nonmal; | 
| 1111 | 0 |     const bool nonmal_success = node->Satisfy(satisfier_ctx, stack_nonmal, true) == miniscript::Availability::YES; | 
| 1112 |  | 
 | 
| 1113 | 0 |     if (nonmal_success) { | 
| 1114 |  |         // Non-malleable satisfactions are bounded by the satisfaction size plus: | 
| 1115 |  |         // - For P2WSH spends, the witness script | 
| 1116 |  |         // - For Tapscript spends, both the witness script and the control block | 
| 1117 | 0 |         const size_t max_stack_size{*node->GetStackSize() + 1 + miniscript::IsTapscript(script_ctx)}; | 
| 1118 | 0 |         assert(stack_nonmal.size() <= max_stack_size); | 
| 1119 |  |         // If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it. | 
| 1120 | 0 |         assert(mal_success); | 
| 1121 | 0 |         assert(stack_nonmal == stack_mal); | 
| 1122 |  |         // Compute witness size (excluding script push, control block, and witness count encoding). | 
| 1123 | 0 |         const size_t wit_size = GetSerializeSize(stack_nonmal) - GetSizeOfCompactSize(stack_nonmal.size()); | 
| 1124 | 0 |         assert(wit_size <= *node->GetWitnessSize()); | 
| 1125 |  |  | 
| 1126 |  |         // Test non-malleable satisfaction. | 
| 1127 | 0 |         witness_nonmal.stack.insert(witness_nonmal.stack.end(), std::make_move_iterator(stack_nonmal.begin()), std::make_move_iterator(stack_nonmal.end())); | 
| 1128 | 0 |         SatisfactionToWitness(script_ctx, witness_nonmal, script, builder); | 
| 1129 | 0 |         ScriptError serror; | 
| 1130 | 0 |         bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror); | 
| 1131 |  |         // Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions(). | 
| 1132 | 0 |         if (node->ValidSatisfactions()) assert(res); | 
| 1133 |  |         // More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed), | 
| 1134 |  |         // or with a stack size error (if CheckStackSize check failed). | 
| 1135 | 0 |         assert(res || | 
| 1136 | 0 |                (!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) || | 
| 1137 | 0 |                (!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE)); | 
| 1138 | 0 |     } | 
| 1139 |  |  | 
| 1140 | 0 |     if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) { | 
| 1141 |  |         // Test malleable satisfaction only if it's different from the non-malleable one. | 
| 1142 | 0 |         witness_mal.stack.insert(witness_mal.stack.end(), std::make_move_iterator(stack_mal.begin()), std::make_move_iterator(stack_mal.end())); | 
| 1143 | 0 |         SatisfactionToWitness(script_ctx, witness_mal, script, builder); | 
| 1144 | 0 |         ScriptError serror; | 
| 1145 | 0 |         bool res = VerifyScript(DUMMY_SCRIPTSIG, script_pubkey, &witness_mal, STANDARD_SCRIPT_VERIFY_FLAGS, CHECKER_CTX, &serror); | 
| 1146 |  |         // Malleable satisfactions are not guaranteed to be valid under any conditions, but they can only | 
| 1147 |  |         // fail due to stack or ops limits. | 
| 1148 | 0 |         assert(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE); | 
| 1149 | 0 |     } | 
| 1150 |  |  | 
| 1151 | 0 |     if (node->IsSane()) { | 
| 1152 |  |         // For sane nodes, the two algorithms behave identically. | 
| 1153 | 0 |         assert(mal_success == nonmal_success); | 
| 1154 | 0 |     } | 
| 1155 |  |  | 
| 1156 |  |     // Verify that if a node is policy-satisfiable, the malleable satisfaction | 
| 1157 |  |     // algorithm succeeds. Given that under IsSane() both satisfactions | 
| 1158 |  |     // are identical, this implies that for such nodes, the non-malleable | 
| 1159 |  |     // satisfaction will also match the expected policy. | 
| 1160 | 0 |     const auto is_key_satisfiable = [script_ctx](const CPubKey& pubkey) -> bool { | 
| 1161 | 0 |         auto sig_ptr{TEST_DATA.GetSig(script_ctx, pubkey)}; | 
| 1162 | 0 |         return sig_ptr != nullptr && sig_ptr->second; | 
| 1163 | 0 |     }; | 
| 1164 | 0 |     bool satisfiable = node->IsSatisfiable([&](const Node& node) -> bool { | 
| 1165 | 0 |         switch (node.fragment) { | 
| 1166 | 0 |         case Fragment::PK_K: | 
| 1167 | 0 |         case Fragment::PK_H: | 
| 1168 | 0 |             return is_key_satisfiable(node.keys[0]); | 
| 1169 | 0 |         case Fragment::MULTI: | 
| 1170 | 0 |         case Fragment::MULTI_A: { | 
| 1171 | 0 |             size_t sats = std::count_if(node.keys.begin(), node.keys.end(), [&](const auto& key) { | 
| 1172 | 0 |                 return size_t(is_key_satisfiable(key)); | 
| 1173 | 0 |             }); | 
| 1174 | 0 |             return sats >= node.k; | 
| 1175 | 0 |         } | 
| 1176 | 0 |         case Fragment::OLDER: | 
| 1177 | 0 |         case Fragment::AFTER: | 
| 1178 | 0 |             return node.k & 1; | 
| 1179 | 0 |         case Fragment::SHA256: | 
| 1180 | 0 |             return TEST_DATA.sha256_preimages.count(node.data); | 
| 1181 | 0 |         case Fragment::HASH256: | 
| 1182 | 0 |             return TEST_DATA.hash256_preimages.count(node.data); | 
| 1183 | 0 |         case Fragment::RIPEMD160: | 
| 1184 | 0 |             return TEST_DATA.ripemd160_preimages.count(node.data); | 
| 1185 | 0 |         case Fragment::HASH160: | 
| 1186 | 0 |             return TEST_DATA.hash160_preimages.count(node.data); | 
| 1187 | 0 |         default: | 
| 1188 | 0 |             assert(false); | 
| 1189 | 0 |         } | 
| 1190 | 0 |         return false; | 
| 1191 | 0 |     }); | 
| 1192 | 0 |     assert(mal_success == satisfiable); | 
| 1193 | 0 | } | 
| 1194 |  |  | 
| 1195 |  | } // namespace | 
| 1196 |  |  | 
| 1197 |  | void FuzzInit() | 
| 1198 | 0 | { | 
| 1199 | 0 |     static ECC_Context ecc_context{}; | 
| 1200 | 0 |     TEST_DATA.Init(); | 
| 1201 | 0 | } | 
| 1202 |  |  | 
| 1203 |  | void FuzzInitSmart() | 
| 1204 | 0 | { | 
| 1205 | 0 |     FuzzInit(); | 
| 1206 | 0 |     SMARTINFO.Init(); | 
| 1207 | 0 | } | 
| 1208 |  |  | 
| 1209 |  | /** Fuzz target that runs TestNode on nodes generated using ConsumeNodeStable. */ | 
| 1210 |  | FUZZ_TARGET(miniscript_stable, .init = FuzzInit) | 
| 1211 | 0 | { | 
| 1212 |  |     // Run it under both P2WSH and Tapscript contexts. | 
| 1213 | 0 |     for (const auto script_ctx: {MsCtx::P2WSH, MsCtx::TAPSCRIPT}) { | 
| 1214 | 0 |         FuzzedDataProvider provider(buffer.data(), buffer.size()); | 
| 1215 | 0 |         TestNode(script_ctx, GenNode(script_ctx, [&](Type needed_type) { | 
| 1216 | 0 |             return ConsumeNodeStable(script_ctx, provider, needed_type); | 
| 1217 | 0 |         }, ""_mst), provider); | 
| 1218 | 0 |     } | 
| 1219 | 0 | } | 
| 1220 |  |  | 
| 1221 |  | /** Fuzz target that runs TestNode on nodes generated using ConsumeNodeSmart. */ | 
| 1222 |  | FUZZ_TARGET(miniscript_smart, .init = FuzzInitSmart) | 
| 1223 | 0 | { | 
| 1224 |  |     /** The set of types we aim to construct nodes for. Together they cover all. */ | 
| 1225 | 0 |     static constexpr std::array<Type, 4> BASE_TYPES{"B"_mst, "V"_mst, "K"_mst, "W"_mst}; | 
| 1226 |  | 
 | 
| 1227 | 0 |     FuzzedDataProvider provider(buffer.data(), buffer.size()); | 
| 1228 | 0 |     const auto script_ctx{(MsCtx)provider.ConsumeBool()}; | 
| 1229 | 0 |     TestNode(script_ctx, GenNode(script_ctx, [&](Type needed_type) { | 
| 1230 | 0 |         return ConsumeNodeSmart(script_ctx, provider, needed_type); | 
| 1231 | 0 |     }, PickValue(provider, BASE_TYPES), true), provider); | 
| 1232 | 0 | } | 
| 1233 |  |  | 
| 1234 |  | /* Fuzz tests that test parsing from a string, and roundtripping via string. */ | 
| 1235 |  | FUZZ_TARGET(miniscript_string, .init = FuzzInit) | 
| 1236 | 0 | { | 
| 1237 | 0 |     if (buffer.empty()) return; | 
| 1238 | 0 |     FuzzedDataProvider provider(buffer.data(), buffer.size()); | 
| 1239 | 0 |     auto str = provider.ConsumeBytesAsString(provider.remaining_bytes() - 1); | 
| 1240 | 0 |     const ParserContext parser_ctx{(MsCtx)provider.ConsumeBool()}; | 
| 1241 | 0 |     auto parsed = miniscript::FromString(str, parser_ctx); | 
| 1242 | 0 |     if (!parsed) return; | 
| 1243 |  |  | 
| 1244 | 0 |     const auto str2 = parsed->ToString(parser_ctx); | 
| 1245 | 0 |     assert(str2); | 
| 1246 | 0 |     auto parsed2 = miniscript::FromString(*str2, parser_ctx); | 
| 1247 | 0 |     assert(parsed2); | 
| 1248 | 0 |     assert(*parsed == *parsed2); | 
| 1249 | 0 | } | 
| 1250 |  |  | 
| 1251 |  | /* Fuzz tests that test parsing from a script, and roundtripping via script. */ | 
| 1252 |  | FUZZ_TARGET(miniscript_script) | 
| 1253 | 0 | { | 
| 1254 | 0 |     FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); | 
| 1255 | 0 |     const std::optional<CScript> script = ConsumeDeserializable<CScript>(fuzzed_data_provider); | 
| 1256 | 0 |     if (!script) return; | 
| 1257 |  |  | 
| 1258 | 0 |     const ScriptParserContext script_parser_ctx{(MsCtx)fuzzed_data_provider.ConsumeBool()}; | 
| 1259 | 0 |     const auto ms = miniscript::FromScript(*script, script_parser_ctx); | 
| 1260 | 0 |     if (!ms) return; | 
| 1261 |  |  | 
| 1262 | 0 |     assert(ms->ToScript(script_parser_ctx) == *script); | 
| 1263 | 0 | } |