/root/bitcoin/src/minisketch/src/false_positives.h
Line | Count | Source |
1 | | /********************************************************************** |
2 | | * Copyright (c) 2020 Pieter Wuille, Greg Maxwell, Gleb Naumenko * |
3 | | * Distributed under the MIT software license, see the accompanying * |
4 | | * file LICENSE or http://www.opensource.org/licenses/mit-license.php.* |
5 | | **********************************************************************/ |
6 | | |
7 | | #ifndef _MINISKETCH_FALSE_POSITIVES_H_ |
8 | | #define _MINISKETCH_FALSE_POSITIVES_H_ |
9 | | |
10 | | #include "util.h" |
11 | | |
12 | | #include "int_utils.h" |
13 | | |
14 | | #include <stdint.h> |
15 | | |
16 | | namespace { |
17 | | |
18 | | /** Compute floor(log2(x!)), exactly up to x=57; an underestimate up to x=2^32-1. */ |
19 | 0 | uint64_t Log2Factorial(uint32_t x) { |
20 | | //! Values of floor(106*log2(1 + i/32)) for i=0..31 |
21 | 0 | static constexpr uint8_t T[32] = { |
22 | 0 | 0, 4, 9, 13, 18, 22, 26, 30, 34, 37, 41, 45, 48, 52, 55, 58, 62, 65, 68, |
23 | 0 | 71, 74, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 103 |
24 | 0 | }; |
25 | 0 | int bits = CountBits(x, 32); |
26 | | // Compute an (under)estimate of floor(106*log2(x)). |
27 | | // This works by relying on floor(log2(x)) = countbits(x)-1, and adding |
28 | | // precision using the top 6 bits of x (the highest one of which is always |
29 | | // one). |
30 | 0 | unsigned l2_106 = 106 * (bits - 1) + T[((x << (32 - bits)) >> 26) & 31]; |
31 | | // Based on Stirling approximation for log2(x!): |
32 | | // log2(x!) = log(x!) / log(2) |
33 | | // = ((x + 1/2) * log(x) - x + log(2*pi)/2 + ...) / log(2) |
34 | | // = (x + 1/2) * log2(x) - x/log(2) + log2(2*pi)/2 + ... |
35 | | // = 1/2*(2*x+1)*log2(x) - (1/log(2))*x + log2(2*pi)/2 + ... |
36 | | // = 1/212*(2*x+1)*(106*log2(x)) + (-1/log(2))*x + log2(2*pi)/2 + ... |
37 | | // where 418079/88632748 is exactly 1/212 |
38 | | // -127870026/88632748 is slightly less than -1/log(2) |
39 | | // 117504694/88632748 is less than log2(2*pi)/2 |
40 | | // A correction term is only needed for x < 3. |
41 | | // |
42 | | // See doc/log2_factorial.sage for how these constants were obtained. |
43 | 0 | return (418079 * (2 * uint64_t{x} + 1) * l2_106 - 127870026 * uint64_t{x} + 117504694 + 88632748 * (x < 3)) / 88632748; |
44 | 0 | } |
45 | | |
46 | | /** Compute floor(log2(2^(bits * capacity) / sum((2^bits - 1) choose k, k=0..capacity))), for bits>1 |
47 | | * |
48 | | * See doc/gen_basefpbits.sage for how the tables were obtained. */ |
49 | 0 | uint64_t BaseFPBits(uint32_t bits, uint32_t capacity) { |
50 | | // Correction table for low bits/capacities |
51 | 0 | static constexpr uint8_t ADD5[] = {1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12}; |
52 | 0 | static constexpr uint8_t ADD6[] = {1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 24}; |
53 | 0 | static constexpr uint8_t ADD7[] = {1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 7, 8, 9, 9, 9, 10, 11, 11, 12, 12, 13, 13, 15, 15, 15, 16, 17, 17, 18, 19, 20, 20}; |
54 | 0 | static constexpr uint8_t ADD8[] = {1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9}; |
55 | 0 | static constexpr uint8_t ADD9[] = {1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4}; |
56 | |
|
57 | 0 | if (capacity == 0) return 0; |
58 | 0 | uint64_t ret = 0; |
59 | 0 | if (bits < 32 && capacity >= (1U << bits)) { |
60 | 0 | ret = uint64_t{bits} * (capacity - (1U << bits) + 1); |
61 | 0 | capacity = (1U << bits) - 1; |
62 | 0 | } |
63 | 0 | ret += Log2Factorial(capacity); |
64 | 0 | switch (bits) { |
65 | 0 | case 2: return ret + (capacity <= 2 ? 0 : 1); |
66 | 0 | case 3: return ret + (capacity <= 2 ? 0 : (0x2a5 >> 2 * (capacity - 3)) & 3); |
67 | 0 | case 4: return ret + (capacity <= 3 ? 0 : (0xb6d91a449 >> 3 * (capacity - 4)) & 7); |
68 | 0 | case 5: return ret + (capacity <= 4 ? 0 : ADD5[capacity - 5]); |
69 | 0 | case 6: return ret + (capacity <= 4 ? 0 : capacity > 54 ? 25 : ADD6[capacity - 5]); |
70 | 0 | case 7: return ret + (capacity <= 4 ? 0 : capacity > 57 ? 21 : ADD7[capacity - 5]); |
71 | 0 | case 8: return ret + (capacity <= 9 ? 0 : capacity > 56 ? 10 : ADD8[capacity - 10]); |
72 | 0 | case 9: return ret + (capacity <= 11 ? 0 : capacity > 54 ? 5 : ADD9[capacity - 12]); |
73 | 0 | case 10: return ret + (capacity <= 21 ? 0 : capacity > 50 ? 2 : (0x1a6665545555041 >> 2 * (capacity - 22)) & 3); |
74 | 0 | case 11: return ret + (capacity <= 21 ? 0 : capacity > 45 ? 1 : (0x5b3dc1 >> (capacity - 22)) & 1); |
75 | 0 | case 12: return ret + (capacity <= 21 ? 0 : capacity > 57 ? 0 : (0xe65522041 >> (capacity - 22)) & 1); |
76 | 0 | case 13: return ret + (capacity <= 27 ? 0 : capacity > 55 ? 0 : (0x8904081 >> (capacity - 28)) & 1); |
77 | 0 | case 14: return ret + (capacity <= 47 ? 0 : capacity > 48 ? 0 : 1); |
78 | 0 | default: return ret; |
79 | 0 | } |
80 | 0 | } |
81 | | |
82 | 0 | size_t ComputeCapacity(uint32_t bits, size_t max_elements, uint32_t fpbits) { |
83 | 0 | if (bits == 0) return 0; |
84 | 0 | if (max_elements > 0xffffffff) return max_elements; |
85 | 0 | uint64_t base_fpbits = BaseFPBits(bits, static_cast<uint32_t>(max_elements)); |
86 | | // The fpbits provided by the base max_elements==capacity case are sufficient. |
87 | 0 | if (base_fpbits >= fpbits) return max_elements; |
88 | | // Otherwise, increment capacity by ceil(fpbits / bits) beyond that. |
89 | 0 | return max_elements + (fpbits - base_fpbits + bits - 1) / bits; |
90 | 0 | } |
91 | | |
92 | 0 | size_t ComputeMaxElements(uint32_t bits, size_t capacity, uint32_t fpbits) { |
93 | 0 | if (bits == 0) return 0; |
94 | 0 | if (capacity > 0xffffffff) return capacity; |
95 | | // Start with max_elements=capacity, and decrease max_elements until the corresponding capacity is capacity. |
96 | 0 | size_t max_elements = capacity; |
97 | 0 | while (true) { |
98 | 0 | size_t capacity_for_max_elements = ComputeCapacity(bits, max_elements, fpbits); |
99 | 0 | CHECK_SAFE(capacity_for_max_elements >= capacity); |
100 | 0 | if (capacity_for_max_elements <= capacity) return max_elements; |
101 | 0 | size_t adjust = capacity_for_max_elements - capacity; |
102 | | // Decrementing max_elements by N will at most decrement the corresponding capacity by N. |
103 | | // As the observed capacity is adjust too high, we can safely decrease max_elements by adjust. |
104 | | // If that brings us into negative max_elements territory, no solution exists and we return 0. |
105 | 0 | if (max_elements < adjust) return 0; |
106 | 0 | max_elements -= adjust; |
107 | 0 | } |
108 | 0 | } |
109 | | |
110 | | } // namespace |
111 | | |
112 | | #endif |