/root/bitcoin/src/test/fuzz/crypto_diff_fuzz_chacha20.cpp
| Line | Count | Source | 
| 1 |  | // Copyright (c) 2020-2021 The Bitcoin Core developers | 
| 2 |  | // Distributed under the MIT software license, see the accompanying | 
| 3 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 4 |  |  | 
| 5 |  | #include <crypto/chacha20.h> | 
| 6 |  | #include <test/fuzz/FuzzedDataProvider.h> | 
| 7 |  | #include <test/fuzz/fuzz.h> | 
| 8 |  | #include <test/fuzz/util.h> | 
| 9 |  |  | 
| 10 |  | #include <cstdint> | 
| 11 |  | #include <vector> | 
| 12 |  |  | 
| 13 |  | /* | 
| 14 |  | From https://cr.yp.to/chacha.html | 
| 15 |  | chacha-merged.c version 20080118 | 
| 16 |  | D. J. Bernstein | 
| 17 |  | Public domain. | 
| 18 |  | */ | 
| 19 |  |  | 
| 20 |  | typedef unsigned int u32; | 
| 21 |  | typedef unsigned char u8; | 
| 22 |  |  | 
| 23 | 0 | #define U8C(v) (v##U) | 
| 24 | 0 | #define U32C(v) (v##U) | 
| 25 |  |  | 
| 26 | 0 | #define U8V(v) ((u8)(v)&U8C(0xFF)) | 
| 27 | 0 | #define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF)) | 
| 28 |  |  | 
| 29 | 0 | #define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n)))) | 
| 30 |  |  | 
| 31 |  | #define U8TO32_LITTLE(p)                                              \ | 
| 32 | 0 |     (((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \ | 
| 33 | 0 |      ((u32)((p)[3]) << 24)) | 
| 34 |  |  | 
| 35 |  | #define U32TO8_LITTLE(p, v)      \ | 
| 36 | 0 |     do {                         \ | 
| 37 | 0 |         (p)[0] = U8V((v));       \ | 
| 38 | 0 |         (p)[1] = U8V((v) >> 8);  \ | 
| 39 | 0 |         (p)[2] = U8V((v) >> 16); \ | 
| 40 | 0 |         (p)[3] = U8V((v) >> 24); \ | 
| 41 | 0 |     } while (0) | 
| 42 |  |  | 
| 43 |  | /* ------------------------------------------------------------------------- */ | 
| 44 |  | /* Data structures */ | 
| 45 |  |  | 
| 46 |  | typedef struct | 
| 47 |  | { | 
| 48 |  |     u32 input[16]; | 
| 49 |  | } ECRYPT_ctx; | 
| 50 |  |  | 
| 51 |  | /* ------------------------------------------------------------------------- */ | 
| 52 |  | /* Mandatory functions */ | 
| 53 |  |  | 
| 54 |  | void ECRYPT_keysetup( | 
| 55 |  |     ECRYPT_ctx* ctx, | 
| 56 |  |     const u8* key, | 
| 57 |  |     u32 keysize, /* Key size in bits. */ | 
| 58 |  |     u32 ivsize); /* IV size in bits. */ | 
| 59 |  |  | 
| 60 |  | void ECRYPT_ivsetup( | 
| 61 |  |     ECRYPT_ctx* ctx, | 
| 62 |  |     const u8* iv); | 
| 63 |  |  | 
| 64 |  | void ECRYPT_encrypt_bytes( | 
| 65 |  |     ECRYPT_ctx* ctx, | 
| 66 |  |     const u8* plaintext, | 
| 67 |  |     u8* ciphertext, | 
| 68 |  |     u32 msglen); /* Message length in bytes. */ | 
| 69 |  |  | 
| 70 |  | /* ------------------------------------------------------------------------- */ | 
| 71 |  |  | 
| 72 |  | /* Optional features */ | 
| 73 |  |  | 
| 74 |  | void ECRYPT_keystream_bytes( | 
| 75 |  |     ECRYPT_ctx* ctx, | 
| 76 |  |     u8* keystream, | 
| 77 |  |     u32 length); /* Length of keystream in bytes. */ | 
| 78 |  |  | 
| 79 |  | /* ------------------------------------------------------------------------- */ | 
| 80 |  |  | 
| 81 | 0 | #define ROTATE(v, c) (ROTL32(v, c)) | 
| 82 | 0 | #define XOR(v, w) ((v) ^ (w)) | 
| 83 | 0 | #define PLUS(v, w) (U32V((v) + (w))) | 
| 84 | 0 | #define PLUSONE(v) (PLUS((v), 1)) | 
| 85 |  |  | 
| 86 |  | #define QUARTERROUND(a, b, c, d) \ | 
| 87 | 0 |     a = PLUS(a, b); d = ROTATE(XOR(d, a), 16);   \ | 
| 88 | 0 |     c = PLUS(c, d); b = ROTATE(XOR(b, c), 12);   \ | 
| 89 | 0 |     a = PLUS(a, b); d = ROTATE(XOR(d, a), 8);    \ | 
| 90 | 0 |     c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); | 
| 91 |  |  | 
| 92 |  | static const char sigma[] = "expand 32-byte k"; | 
| 93 |  | static const char tau[] = "expand 16-byte k"; | 
| 94 |  |  | 
| 95 |  | void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits) | 
| 96 | 0 | { | 
| 97 | 0 |     const char* constants; | 
| 98 |  | 
 | 
| 99 | 0 |     x->input[4] = U8TO32_LITTLE(k + 0); | 
| 100 | 0 |     x->input[5] = U8TO32_LITTLE(k + 4); | 
| 101 | 0 |     x->input[6] = U8TO32_LITTLE(k + 8); | 
| 102 | 0 |     x->input[7] = U8TO32_LITTLE(k + 12); | 
| 103 | 0 |     if (kbits == 256) { /* recommended */ | 
| 104 | 0 |         k += 16; | 
| 105 | 0 |         constants = sigma; | 
| 106 | 0 |     } else { /* kbits == 128 */ | 
| 107 | 0 |         constants = tau; | 
| 108 | 0 |     } | 
| 109 | 0 |     x->input[8] = U8TO32_LITTLE(k + 0); | 
| 110 | 0 |     x->input[9] = U8TO32_LITTLE(k + 4); | 
| 111 | 0 |     x->input[10] = U8TO32_LITTLE(k + 8); | 
| 112 | 0 |     x->input[11] = U8TO32_LITTLE(k + 12); | 
| 113 | 0 |     x->input[0] = U8TO32_LITTLE(constants + 0); | 
| 114 | 0 |     x->input[1] = U8TO32_LITTLE(constants + 4); | 
| 115 | 0 |     x->input[2] = U8TO32_LITTLE(constants + 8); | 
| 116 | 0 |     x->input[3] = U8TO32_LITTLE(constants + 12); | 
| 117 | 0 | } | 
| 118 |  |  | 
| 119 |  | void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv) | 
| 120 | 0 | { | 
| 121 | 0 |     x->input[12] = 0; | 
| 122 | 0 |     x->input[13] = 0; | 
| 123 | 0 |     x->input[14] = U8TO32_LITTLE(iv + 0); | 
| 124 | 0 |     x->input[15] = U8TO32_LITTLE(iv + 4); | 
| 125 | 0 | } | 
| 126 |  |  | 
| 127 |  | void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes) | 
| 128 | 0 | { | 
| 129 | 0 |     u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; | 
| 130 | 0 |     u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; | 
| 131 | 0 |     u8* ctarget = nullptr; | 
| 132 | 0 |     u8 tmp[64]; | 
| 133 | 0 |     uint32_t i; | 
| 134 |  | 
 | 
| 135 | 0 |     if (!bytes) return; | 
| 136 |  |  | 
| 137 | 0 |     j0 = x->input[0]; | 
| 138 | 0 |     j1 = x->input[1]; | 
| 139 | 0 |     j2 = x->input[2]; | 
| 140 | 0 |     j3 = x->input[3]; | 
| 141 | 0 |     j4 = x->input[4]; | 
| 142 | 0 |     j5 = x->input[5]; | 
| 143 | 0 |     j6 = x->input[6]; | 
| 144 | 0 |     j7 = x->input[7]; | 
| 145 | 0 |     j8 = x->input[8]; | 
| 146 | 0 |     j9 = x->input[9]; | 
| 147 | 0 |     j10 = x->input[10]; | 
| 148 | 0 |     j11 = x->input[11]; | 
| 149 | 0 |     j12 = x->input[12]; | 
| 150 | 0 |     j13 = x->input[13]; | 
| 151 | 0 |     j14 = x->input[14]; | 
| 152 | 0 |     j15 = x->input[15]; | 
| 153 |  | 
 | 
| 154 | 0 |     for (;;) { | 
| 155 | 0 |         if (bytes < 64) { | 
| 156 | 0 |             for (i = 0; i < bytes; ++i) | 
| 157 | 0 |                 tmp[i] = m[i]; | 
| 158 | 0 |             m = tmp; | 
| 159 | 0 |             ctarget = c; | 
| 160 | 0 |             c = tmp; | 
| 161 | 0 |         } | 
| 162 | 0 |         x0 = j0; | 
| 163 | 0 |         x1 = j1; | 
| 164 | 0 |         x2 = j2; | 
| 165 | 0 |         x3 = j3; | 
| 166 | 0 |         x4 = j4; | 
| 167 | 0 |         x5 = j5; | 
| 168 | 0 |         x6 = j6; | 
| 169 | 0 |         x7 = j7; | 
| 170 | 0 |         x8 = j8; | 
| 171 | 0 |         x9 = j9; | 
| 172 | 0 |         x10 = j10; | 
| 173 | 0 |         x11 = j11; | 
| 174 | 0 |         x12 = j12; | 
| 175 | 0 |         x13 = j13; | 
| 176 | 0 |         x14 = j14; | 
| 177 | 0 |         x15 = j15; | 
| 178 | 0 |         for (i = 20; i > 0; i -= 2) { | 
| 179 | 0 |             QUARTERROUND(x0, x4, x8, x12) | 
| 180 | 0 |             QUARTERROUND(x1, x5, x9, x13) | 
| 181 | 0 |             QUARTERROUND(x2, x6, x10, x14) | 
| 182 | 0 |             QUARTERROUND(x3, x7, x11, x15) | 
| 183 | 0 |             QUARTERROUND(x0, x5, x10, x15) | 
| 184 | 0 |             QUARTERROUND(x1, x6, x11, x12) | 
| 185 | 0 |             QUARTERROUND(x2, x7, x8, x13) | 
| 186 | 0 |             QUARTERROUND(x3, x4, x9, x14) | 
| 187 | 0 |         } | 
| 188 | 0 |         x0 = PLUS(x0, j0); | 
| 189 | 0 |         x1 = PLUS(x1, j1); | 
| 190 | 0 |         x2 = PLUS(x2, j2); | 
| 191 | 0 |         x3 = PLUS(x3, j3); | 
| 192 | 0 |         x4 = PLUS(x4, j4); | 
| 193 | 0 |         x5 = PLUS(x5, j5); | 
| 194 | 0 |         x6 = PLUS(x6, j6); | 
| 195 | 0 |         x7 = PLUS(x7, j7); | 
| 196 | 0 |         x8 = PLUS(x8, j8); | 
| 197 | 0 |         x9 = PLUS(x9, j9); | 
| 198 | 0 |         x10 = PLUS(x10, j10); | 
| 199 | 0 |         x11 = PLUS(x11, j11); | 
| 200 | 0 |         x12 = PLUS(x12, j12); | 
| 201 | 0 |         x13 = PLUS(x13, j13); | 
| 202 | 0 |         x14 = PLUS(x14, j14); | 
| 203 | 0 |         x15 = PLUS(x15, j15); | 
| 204 |  | 
 | 
| 205 | 0 |         x0 = XOR(x0, U8TO32_LITTLE(m + 0)); | 
| 206 | 0 |         x1 = XOR(x1, U8TO32_LITTLE(m + 4)); | 
| 207 | 0 |         x2 = XOR(x2, U8TO32_LITTLE(m + 8)); | 
| 208 | 0 |         x3 = XOR(x3, U8TO32_LITTLE(m + 12)); | 
| 209 | 0 |         x4 = XOR(x4, U8TO32_LITTLE(m + 16)); | 
| 210 | 0 |         x5 = XOR(x5, U8TO32_LITTLE(m + 20)); | 
| 211 | 0 |         x6 = XOR(x6, U8TO32_LITTLE(m + 24)); | 
| 212 | 0 |         x7 = XOR(x7, U8TO32_LITTLE(m + 28)); | 
| 213 | 0 |         x8 = XOR(x8, U8TO32_LITTLE(m + 32)); | 
| 214 | 0 |         x9 = XOR(x9, U8TO32_LITTLE(m + 36)); | 
| 215 | 0 |         x10 = XOR(x10, U8TO32_LITTLE(m + 40)); | 
| 216 | 0 |         x11 = XOR(x11, U8TO32_LITTLE(m + 44)); | 
| 217 | 0 |         x12 = XOR(x12, U8TO32_LITTLE(m + 48)); | 
| 218 | 0 |         x13 = XOR(x13, U8TO32_LITTLE(m + 52)); | 
| 219 | 0 |         x14 = XOR(x14, U8TO32_LITTLE(m + 56)); | 
| 220 | 0 |         x15 = XOR(x15, U8TO32_LITTLE(m + 60)); | 
| 221 |  | 
 | 
| 222 | 0 |         j12 = PLUSONE(j12); | 
| 223 | 0 |         if (!j12) { | 
| 224 | 0 |             j13 = PLUSONE(j13); | 
| 225 |  |             /* stopping at 2^70 bytes per nonce is user's responsibility */ | 
| 226 | 0 |         } | 
| 227 |  | 
 | 
| 228 | 0 |         U32TO8_LITTLE(c + 0, x0); | 
| 229 | 0 |         U32TO8_LITTLE(c + 4, x1); | 
| 230 | 0 |         U32TO8_LITTLE(c + 8, x2); | 
| 231 | 0 |         U32TO8_LITTLE(c + 12, x3); | 
| 232 | 0 |         U32TO8_LITTLE(c + 16, x4); | 
| 233 | 0 |         U32TO8_LITTLE(c + 20, x5); | 
| 234 | 0 |         U32TO8_LITTLE(c + 24, x6); | 
| 235 | 0 |         U32TO8_LITTLE(c + 28, x7); | 
| 236 | 0 |         U32TO8_LITTLE(c + 32, x8); | 
| 237 | 0 |         U32TO8_LITTLE(c + 36, x9); | 
| 238 | 0 |         U32TO8_LITTLE(c + 40, x10); | 
| 239 | 0 |         U32TO8_LITTLE(c + 44, x11); | 
| 240 | 0 |         U32TO8_LITTLE(c + 48, x12); | 
| 241 | 0 |         U32TO8_LITTLE(c + 52, x13); | 
| 242 | 0 |         U32TO8_LITTLE(c + 56, x14); | 
| 243 | 0 |         U32TO8_LITTLE(c + 60, x15); | 
| 244 |  | 
 | 
| 245 | 0 |         if (bytes <= 64) { | 
| 246 | 0 |             if (bytes < 64) { | 
| 247 | 0 |                 for (i = 0; i < bytes; ++i) | 
| 248 | 0 |                     ctarget[i] = c[i]; | 
| 249 | 0 |             } | 
| 250 | 0 |             x->input[12] = j12; | 
| 251 | 0 |             x->input[13] = j13; | 
| 252 | 0 |             return; | 
| 253 | 0 |         } | 
| 254 | 0 |         bytes -= 64; | 
| 255 | 0 |         c += 64; | 
| 256 | 0 |         m += 64; | 
| 257 | 0 |     } | 
| 258 | 0 | } | 
| 259 |  |  | 
| 260 |  | void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes) | 
| 261 | 0 | { | 
| 262 | 0 |     u32 i; | 
| 263 | 0 |     for (i = 0; i < bytes; ++i) | 
| 264 | 0 |         stream[i] = 0; | 
| 265 | 0 |     ECRYPT_encrypt_bytes(x, stream, stream, bytes); | 
| 266 | 0 | } | 
| 267 |  |  | 
| 268 |  | FUZZ_TARGET(crypto_diff_fuzz_chacha20) | 
| 269 | 0 | { | 
| 270 | 0 |     FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; | 
| 271 |  | 
 | 
| 272 | 0 |     ECRYPT_ctx ctx; | 
| 273 |  | 
 | 
| 274 | 0 |     const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32); | 
| 275 | 0 |     ChaCha20 chacha20{MakeByteSpan(key)}; | 
| 276 | 0 |     ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); | 
| 277 |  |  | 
| 278 |  |     // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does | 
| 279 | 0 |     static const uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
| 280 | 0 |     ChaCha20::Nonce96 nonce{0, 0}; | 
| 281 | 0 |     uint32_t counter{0}; | 
| 282 | 0 |     ECRYPT_ivsetup(&ctx, iv); | 
| 283 |  | 
 | 
| 284 | 0 |     LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) { | 
| 285 | 0 |         CallOneOf( | 
| 286 | 0 |             fuzzed_data_provider, | 
| 287 | 0 |             [&] { | 
| 288 | 0 |                 const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32); | 
| 289 | 0 |                 chacha20.SetKey(MakeByteSpan(key)); | 
| 290 | 0 |                 nonce = {0, 0}; | 
| 291 | 0 |                 counter = 0; | 
| 292 | 0 |                 ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); | 
| 293 |  |                 // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does | 
| 294 | 0 |                 uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
| 295 | 0 |                 ECRYPT_ivsetup(&ctx, iv); | 
| 296 | 0 |             }, | 
| 297 | 0 |             [&] { | 
| 298 | 0 |                 uint32_t iv_prefix = fuzzed_data_provider.ConsumeIntegral<uint32_t>(); | 
| 299 | 0 |                 uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>(); | 
| 300 | 0 |                 nonce = {iv_prefix, iv}; | 
| 301 | 0 |                 counter = fuzzed_data_provider.ConsumeIntegral<uint32_t>(); | 
| 302 | 0 |                 chacha20.Seek(nonce, counter); | 
| 303 | 0 |                 ctx.input[12] = counter; | 
| 304 | 0 |                 ctx.input[13] = iv_prefix; | 
| 305 | 0 |                 ctx.input[14] = iv; | 
| 306 | 0 |                 ctx.input[15] = iv >> 32; | 
| 307 | 0 |             }, | 
| 308 | 0 |             [&] { | 
| 309 | 0 |                 uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); | 
| 310 | 0 |                 std::vector<uint8_t> output(integralInRange); | 
| 311 | 0 |                 chacha20.Keystream(MakeWritableByteSpan(output)); | 
| 312 | 0 |                 std::vector<uint8_t> djb_output(integralInRange); | 
| 313 | 0 |                 ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size()); | 
| 314 | 0 |                 assert(output == djb_output); | 
| 315 |  |                 // DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that. | 
| 316 | 0 |                 uint32_t old_counter = counter; | 
| 317 | 0 |                 counter += (integralInRange + 63) >> 6; | 
| 318 | 0 |                 if (counter < old_counter) ++nonce.first; | 
| 319 | 0 |                 if (integralInRange & 63) { | 
| 320 | 0 |                     chacha20.Seek(nonce, counter); | 
| 321 | 0 |                 } | 
| 322 | 0 |                 assert(counter == ctx.input[12]); | 
| 323 | 0 |             }, | 
| 324 | 0 |             [&] { | 
| 325 | 0 |                 uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); | 
| 326 | 0 |                 std::vector<uint8_t> output(integralInRange); | 
| 327 | 0 |                 const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size()); | 
| 328 | 0 |                 chacha20.Crypt(MakeByteSpan(input), MakeWritableByteSpan(output)); | 
| 329 | 0 |                 std::vector<uint8_t> djb_output(integralInRange); | 
| 330 | 0 |                 ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size()); | 
| 331 | 0 |                 assert(output == djb_output); | 
| 332 |  |                 // DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that. | 
| 333 | 0 |                 uint32_t old_counter = counter; | 
| 334 | 0 |                 counter += (integralInRange + 63) >> 6; | 
| 335 | 0 |                 if (counter < old_counter) ++nonce.first; | 
| 336 | 0 |                 if (integralInRange & 63) { | 
| 337 | 0 |                     chacha20.Seek(nonce, counter); | 
| 338 | 0 |                 } | 
| 339 |  |                 assert(counter == ctx.input[12]); | 
| 340 | 0 |             }); | 
| 341 | 0 |     } | 
| 342 | 0 | } |