/root/bitcoin/src/bip324.cpp
| Line | Count | Source | 
| 1 |  | // Copyright (c) 2023-present The Bitcoin Core developers | 
| 2 |  | // Distributed under the MIT software license, see the accompanying | 
| 3 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 4 |  |  | 
| 5 |  | #include <bip324.h> | 
| 6 |  |  | 
| 7 |  | #include <chainparams.h> | 
| 8 |  | #include <crypto/chacha20.h> | 
| 9 |  | #include <crypto/chacha20poly1305.h> | 
| 10 |  | #include <crypto/hkdf_sha256_32.h> | 
| 11 |  | #include <key.h> | 
| 12 |  | #include <pubkey.h> | 
| 13 |  | #include <random.h> | 
| 14 |  | #include <span.h> | 
| 15 |  | #include <support/cleanse.h> | 
| 16 |  | #include <uint256.h> | 
| 17 |  |  | 
| 18 |  | #include <algorithm> | 
| 19 |  | #include <cassert> | 
| 20 |  | #include <cstddef> | 
| 21 |  | #include <cstdint> | 
| 22 |  | #include <iterator> | 
| 23 |  | #include <string> | 
| 24 |  |  | 
| 25 |  | BIP324Cipher::BIP324Cipher(const CKey& key, std::span<const std::byte> ent32) noexcept | 
| 26 | 0 |     : m_key(key) | 
| 27 | 0 | { | 
| 28 | 0 |     m_our_pubkey = m_key.EllSwiftCreate(ent32); | 
| 29 | 0 | } | 
| 30 |  |  | 
| 31 |  | BIP324Cipher::BIP324Cipher(const CKey& key, const EllSwiftPubKey& pubkey) noexcept : | 
| 32 | 0 |     m_key(key), m_our_pubkey(pubkey) {} | 
| 33 |  |  | 
| 34 |  | void BIP324Cipher::Initialize(const EllSwiftPubKey& their_pubkey, bool initiator, bool self_decrypt) noexcept | 
| 35 | 0 | { | 
| 36 |  |     // Determine salt (fixed string + network magic bytes) | 
| 37 | 0 |     const auto& message_header = Params().MessageStart(); | 
| 38 | 0 |     std::string salt = std::string{"bitcoin_v2_shared_secret"} + std::string(std::begin(message_header), std::end(message_header)); | 
| 39 |  |  | 
| 40 |  |     // Perform ECDH to derive shared secret. | 
| 41 | 0 |     ECDHSecret ecdh_secret = m_key.ComputeBIP324ECDHSecret(their_pubkey, m_our_pubkey, initiator); | 
| 42 |  |  | 
| 43 |  |     // Derive encryption keys from shared secret, and initialize stream ciphers and AEADs. | 
| 44 | 0 |     bool side = (initiator != self_decrypt); | 
| 45 | 0 |     CHKDF_HMAC_SHA256_L32 hkdf(UCharCast(ecdh_secret.data()), ecdh_secret.size(), salt); | 
| 46 | 0 |     std::array<std::byte, 32> hkdf_32_okm; | 
| 47 | 0 |     hkdf.Expand32("initiator_L", UCharCast(hkdf_32_okm.data())); | 
| 48 | 0 |     (side ? m_send_l_cipher : m_recv_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); | 
| 49 | 0 |     hkdf.Expand32("initiator_P", UCharCast(hkdf_32_okm.data())); | 
| 50 | 0 |     (side ? m_send_p_cipher : m_recv_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); | 
| 51 | 0 |     hkdf.Expand32("responder_L", UCharCast(hkdf_32_okm.data())); | 
| 52 | 0 |     (side ? m_recv_l_cipher : m_send_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); | 
| 53 | 0 |     hkdf.Expand32("responder_P", UCharCast(hkdf_32_okm.data())); | 
| 54 | 0 |     (side ? m_recv_p_cipher : m_send_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); | 
| 55 |  |  | 
| 56 |  |     // Derive garbage terminators from shared secret. | 
| 57 | 0 |     hkdf.Expand32("garbage_terminators", UCharCast(hkdf_32_okm.data())); | 
| 58 | 0 |     std::copy(std::begin(hkdf_32_okm), std::begin(hkdf_32_okm) + GARBAGE_TERMINATOR_LEN, | 
| 59 | 0 |         (initiator ? m_send_garbage_terminator : m_recv_garbage_terminator).begin()); | 
| 60 | 0 |     std::copy(std::end(hkdf_32_okm) - GARBAGE_TERMINATOR_LEN, std::end(hkdf_32_okm), | 
| 61 | 0 |         (initiator ? m_recv_garbage_terminator : m_send_garbage_terminator).begin()); | 
| 62 |  |  | 
| 63 |  |     // Derive session id from shared secret. | 
| 64 | 0 |     hkdf.Expand32("session_id", UCharCast(m_session_id.data())); | 
| 65 |  |  | 
| 66 |  |     // Wipe all variables that contain information which could be used to re-derive encryption keys. | 
| 67 | 0 |     memory_cleanse(ecdh_secret.data(), ecdh_secret.size()); | 
| 68 | 0 |     memory_cleanse(hkdf_32_okm.data(), sizeof(hkdf_32_okm)); | 
| 69 | 0 |     memory_cleanse(&hkdf, sizeof(hkdf)); | 
| 70 | 0 |     m_key = CKey(); | 
| 71 | 0 | } | 
| 72 |  |  | 
| 73 |  | void BIP324Cipher::Encrypt(std::span<const std::byte> contents, std::span<const std::byte> aad, bool ignore, std::span<std::byte> output) noexcept | 
| 74 | 0 | { | 
| 75 | 0 |     assert(output.size() == contents.size() + EXPANSION); | 
| 76 |  |  | 
| 77 |  |     // Encrypt length. | 
| 78 | 0 |     std::byte len[LENGTH_LEN]; | 
| 79 | 0 |     len[0] = std::byte{(uint8_t)(contents.size() & 0xFF)}; | 
| 80 | 0 |     len[1] = std::byte{(uint8_t)((contents.size() >> 8) & 0xFF)}; | 
| 81 | 0 |     len[2] = std::byte{(uint8_t)((contents.size() >> 16) & 0xFF)}; | 
| 82 | 0 |     m_send_l_cipher->Crypt(len, output.first(LENGTH_LEN)); | 
| 83 |  |  | 
| 84 |  |     // Encrypt plaintext. | 
| 85 | 0 |     std::byte header[HEADER_LEN] = {ignore ? IGNORE_BIT : std::byte{0}}; | 
| 86 | 0 |     m_send_p_cipher->Encrypt(header, contents, aad, output.subspan(LENGTH_LEN)); | 
| 87 | 0 | } | 
| 88 |  |  | 
| 89 |  | uint32_t BIP324Cipher::DecryptLength(std::span<const std::byte> input) noexcept | 
| 90 | 0 | { | 
| 91 | 0 |     assert(input.size() == LENGTH_LEN); | 
| 92 |  |  | 
| 93 | 0 |     std::byte buf[LENGTH_LEN]; | 
| 94 |  |     // Decrypt length | 
| 95 | 0 |     m_recv_l_cipher->Crypt(input, buf); | 
| 96 |  |     // Convert to number. | 
| 97 | 0 |     return uint32_t(buf[0]) + (uint32_t(buf[1]) << 8) + (uint32_t(buf[2]) << 16); | 
| 98 | 0 | } | 
| 99 |  |  | 
| 100 |  | bool BIP324Cipher::Decrypt(std::span<const std::byte> input, std::span<const std::byte> aad, bool& ignore, std::span<std::byte> contents) noexcept | 
| 101 | 0 | { | 
| 102 | 0 |     assert(input.size() + LENGTH_LEN == contents.size() + EXPANSION); | 
| 103 |  |  | 
| 104 | 0 |     std::byte header[HEADER_LEN]; | 
| 105 | 0 |     if (!m_recv_p_cipher->Decrypt(input, aad, header, contents)) return false; | 
| 106 |  |  | 
| 107 | 0 |     ignore = (header[0] & IGNORE_BIT) == IGNORE_BIT; | 
| 108 | 0 |     return true; | 
| 109 | 0 | } |