/root/bitcoin/src/secp256k1/src/modinv64_impl.h
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | * Copyright (c) 2020 Peter Dettman * |
3 | | * Distributed under the MIT software license, see the accompanying * |
4 | | * file COPYING or https://www.opensource.org/licenses/mit-license.php.* |
5 | | **********************************************************************/ |
6 | | |
7 | | #ifndef SECP256K1_MODINV64_IMPL_H |
8 | | #define SECP256K1_MODINV64_IMPL_H |
9 | | |
10 | | #include "int128.h" |
11 | | #include "modinv64.h" |
12 | | |
13 | | /* This file implements modular inversion based on the paper "Fast constant-time gcd computation and |
14 | | * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. |
15 | | * |
16 | | * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an |
17 | | * implementation for N=62, using 62-bit signed limbs represented as int64_t. |
18 | | */ |
19 | | |
20 | | /* Data type for transition matrices (see section 3 of explanation). |
21 | | * |
22 | | * t = [ u v ] |
23 | | * [ q r ] |
24 | | */ |
25 | | typedef struct { |
26 | | int64_t u, v, q, r; |
27 | | } secp256k1_modinv64_trans2x2; |
28 | | |
29 | | #ifdef VERIFY |
30 | | /* Helper function to compute the absolute value of an int64_t. |
31 | | * (we don't use abs/labs/llabs as it depends on the int sizes). */ |
32 | | static int64_t secp256k1_modinv64_abs(int64_t v) { |
33 | | VERIFY_CHECK(v > INT64_MIN); |
34 | | if (v < 0) return -v; |
35 | | return v; |
36 | | } |
37 | | |
38 | | static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}}; |
39 | | |
40 | | /* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */ |
41 | | static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) { |
42 | | const uint64_t M62 = UINT64_MAX >> 2; |
43 | | secp256k1_int128 c, d; |
44 | | int i; |
45 | | secp256k1_i128_from_i64(&c, 0); |
46 | | for (i = 0; i < 4; ++i) { |
47 | | if (i < alen) secp256k1_i128_accum_mul(&c, a->v[i], factor); |
48 | | r->v[i] = secp256k1_i128_to_u64(&c) & M62; secp256k1_i128_rshift(&c, 62); |
49 | | } |
50 | | if (4 < alen) secp256k1_i128_accum_mul(&c, a->v[4], factor); |
51 | | secp256k1_i128_from_i64(&d, secp256k1_i128_to_i64(&c)); |
52 | | VERIFY_CHECK(secp256k1_i128_eq_var(&c, &d)); |
53 | | r->v[4] = secp256k1_i128_to_i64(&c); |
54 | | } |
55 | | |
56 | | /* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */ |
57 | | static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) { |
58 | | int i; |
59 | | secp256k1_modinv64_signed62 am, bm; |
60 | | secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */ |
61 | | secp256k1_modinv64_mul_62(&bm, b, 5, factor); |
62 | | for (i = 0; i < 4; ++i) { |
63 | | /* Verify that all but the top limb of a and b are normalized. */ |
64 | | VERIFY_CHECK(am.v[i] >> 62 == 0); |
65 | | VERIFY_CHECK(bm.v[i] >> 62 == 0); |
66 | | } |
67 | | for (i = 4; i >= 0; --i) { |
68 | | if (am.v[i] < bm.v[i]) return -1; |
69 | | if (am.v[i] > bm.v[i]) return 1; |
70 | | } |
71 | | return 0; |
72 | | } |
73 | | |
74 | | /* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */ |
75 | | static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n, int abs) { |
76 | | secp256k1_int128 a; |
77 | | secp256k1_i128_det(&a, t->u, t->v, t->q, t->r); |
78 | | if (secp256k1_i128_check_pow2(&a, n, 1)) return 1; |
79 | | if (abs && secp256k1_i128_check_pow2(&a, n, -1)) return 1; |
80 | | return 0; |
81 | | } |
82 | | #endif |
83 | | |
84 | | /* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus |
85 | | * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the |
86 | | * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range |
87 | | * [0,2^62). */ |
88 | 0 | static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) { |
89 | 0 | const int64_t M62 = (int64_t)(UINT64_MAX >> 2); |
90 | 0 | int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4]; |
91 | 0 | volatile int64_t cond_add, cond_negate; |
92 | |
|
93 | | #ifdef VERIFY |
94 | | /* Verify that all limbs are in range (-2^62,2^62). */ |
95 | | int i; |
96 | | for (i = 0; i < 5; ++i) { |
97 | | VERIFY_CHECK(r->v[i] >= -M62); |
98 | | VERIFY_CHECK(r->v[i] <= M62); |
99 | | } |
100 | | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */ |
101 | | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */ |
102 | | #endif |
103 | | |
104 | | /* In a first step, add the modulus if the input is negative, and then negate if requested. |
105 | | * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input |
106 | | * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right |
107 | | * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is |
108 | | * indeed the behavior of the right shift operator). */ |
109 | 0 | cond_add = r4 >> 63; |
110 | 0 | r0 += modinfo->modulus.v[0] & cond_add; |
111 | 0 | r1 += modinfo->modulus.v[1] & cond_add; |
112 | 0 | r2 += modinfo->modulus.v[2] & cond_add; |
113 | 0 | r3 += modinfo->modulus.v[3] & cond_add; |
114 | 0 | r4 += modinfo->modulus.v[4] & cond_add; |
115 | 0 | cond_negate = sign >> 63; |
116 | 0 | r0 = (r0 ^ cond_negate) - cond_negate; |
117 | 0 | r1 = (r1 ^ cond_negate) - cond_negate; |
118 | 0 | r2 = (r2 ^ cond_negate) - cond_negate; |
119 | 0 | r3 = (r3 ^ cond_negate) - cond_negate; |
120 | 0 | r4 = (r4 ^ cond_negate) - cond_negate; |
121 | | /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */ |
122 | 0 | r1 += r0 >> 62; r0 &= M62; |
123 | 0 | r2 += r1 >> 62; r1 &= M62; |
124 | 0 | r3 += r2 >> 62; r2 &= M62; |
125 | 0 | r4 += r3 >> 62; r3 &= M62; |
126 | | |
127 | | /* In a second step add the modulus again if the result is still negative, bringing |
128 | | * r to range [0,modulus). */ |
129 | 0 | cond_add = r4 >> 63; |
130 | 0 | r0 += modinfo->modulus.v[0] & cond_add; |
131 | 0 | r1 += modinfo->modulus.v[1] & cond_add; |
132 | 0 | r2 += modinfo->modulus.v[2] & cond_add; |
133 | 0 | r3 += modinfo->modulus.v[3] & cond_add; |
134 | 0 | r4 += modinfo->modulus.v[4] & cond_add; |
135 | | /* And propagate again. */ |
136 | 0 | r1 += r0 >> 62; r0 &= M62; |
137 | 0 | r2 += r1 >> 62; r1 &= M62; |
138 | 0 | r3 += r2 >> 62; r2 &= M62; |
139 | 0 | r4 += r3 >> 62; r3 &= M62; |
140 | |
|
141 | 0 | r->v[0] = r0; |
142 | 0 | r->v[1] = r1; |
143 | 0 | r->v[2] = r2; |
144 | 0 | r->v[3] = r3; |
145 | 0 | r->v[4] = r4; |
146 | |
|
147 | 0 | VERIFY_CHECK(r0 >> 62 == 0); |
148 | 0 | VERIFY_CHECK(r1 >> 62 == 0); |
149 | 0 | VERIFY_CHECK(r2 >> 62 == 0); |
150 | 0 | VERIFY_CHECK(r3 >> 62 == 0); |
151 | 0 | VERIFY_CHECK(r4 >> 62 == 0); |
152 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */ |
153 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */ |
154 | 0 | } |
155 | | |
156 | | /* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)). |
157 | | * Note that the transformation matrix is scaled by 2^62 and not 2^59. |
158 | | * |
159 | | * Input: zeta: initial zeta |
160 | | * f0: bottom limb of initial f |
161 | | * g0: bottom limb of initial g |
162 | | * Output: t: transition matrix |
163 | | * Return: final zeta |
164 | | * |
165 | | * Implements the divsteps_n_matrix function from the explanation. |
166 | | */ |
167 | 0 | static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { |
168 | | /* u,v,q,r are the elements of the transformation matrix being built up, |
169 | | * starting with the identity matrix times 8 (because the caller expects |
170 | | * a result scaled by 2^62). Semantically they are signed integers |
171 | | * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This |
172 | | * permits left shifting (which is UB for negative numbers). The range |
173 | | * being inside [-2^63,2^63) means that casting to signed works correctly. |
174 | | */ |
175 | 0 | uint64_t u = 8, v = 0, q = 0, r = 8; |
176 | 0 | volatile uint64_t c1, c2; |
177 | 0 | uint64_t mask1, mask2, f = f0, g = g0, x, y, z; |
178 | 0 | int i; |
179 | |
|
180 | 0 | for (i = 3; i < 62; ++i) { |
181 | 0 | VERIFY_CHECK((f & 1) == 1); /* f must always be odd */ |
182 | 0 | VERIFY_CHECK((u * f0 + v * g0) == f << i); |
183 | 0 | VERIFY_CHECK((q * f0 + r * g0) == g << i); |
184 | | /* Compute conditional masks for (zeta < 0) and for (g & 1). */ |
185 | 0 | c1 = zeta >> 63; |
186 | 0 | mask1 = c1; |
187 | 0 | c2 = g & 1; |
188 | 0 | mask2 = -c2; |
189 | | /* Compute x,y,z, conditionally negated versions of f,u,v. */ |
190 | 0 | x = (f ^ mask1) - mask1; |
191 | 0 | y = (u ^ mask1) - mask1; |
192 | 0 | z = (v ^ mask1) - mask1; |
193 | | /* Conditionally add x,y,z to g,q,r. */ |
194 | 0 | g += x & mask2; |
195 | 0 | q += y & mask2; |
196 | 0 | r += z & mask2; |
197 | | /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */ |
198 | 0 | mask1 &= mask2; |
199 | | /* Conditionally change zeta into -zeta-2 or zeta-1. */ |
200 | 0 | zeta = (zeta ^ mask1) - 1; |
201 | | /* Conditionally add g,q,r to f,u,v. */ |
202 | 0 | f += g & mask1; |
203 | 0 | u += q & mask1; |
204 | 0 | v += r & mask1; |
205 | | /* Shifts */ |
206 | 0 | g >>= 1; |
207 | 0 | u <<= 1; |
208 | 0 | v <<= 1; |
209 | | /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */ |
210 | 0 | VERIFY_CHECK(zeta >= -591 && zeta <= 591); |
211 | 0 | } |
212 | | /* Return data in t and return value. */ |
213 | 0 | t->u = (int64_t)u; |
214 | 0 | t->v = (int64_t)v; |
215 | 0 | t->q = (int64_t)q; |
216 | 0 | t->r = (int64_t)r; |
217 | | |
218 | | /* The determinant of t must be a power of two. This guarantees that multiplication with t |
219 | | * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which |
220 | | * will be divided out again). As each divstep's individual matrix has determinant 2, the |
221 | | * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial |
222 | | * 8*identity (which has determinant 2^6) means the overall outputs has determinant |
223 | | * 2^65. */ |
224 | 0 | VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0)); |
225 | |
|
226 | 0 | return zeta; |
227 | 0 | } |
228 | | |
229 | | /* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta). |
230 | | * |
231 | | * Input: eta: initial eta |
232 | | * f0: bottom limb of initial f |
233 | | * g0: bottom limb of initial g |
234 | | * Output: t: transition matrix |
235 | | * Return: final eta |
236 | | * |
237 | | * Implements the divsteps_n_matrix_var function from the explanation. |
238 | | */ |
239 | 0 | static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { |
240 | | /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */ |
241 | 0 | uint64_t u = 1, v = 0, q = 0, r = 1; |
242 | 0 | uint64_t f = f0, g = g0, m; |
243 | 0 | uint32_t w; |
244 | 0 | int i = 62, limit, zeros; |
245 | |
|
246 | 0 | for (;;) { |
247 | | /* Use a sentinel bit to count zeros only up to i. */ |
248 | 0 | zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i)); |
249 | | /* Perform zeros divsteps at once; they all just divide g by two. */ |
250 | 0 | g >>= zeros; |
251 | 0 | u <<= zeros; |
252 | 0 | v <<= zeros; |
253 | 0 | eta -= zeros; |
254 | 0 | i -= zeros; |
255 | | /* We're done once we've done 62 divsteps. */ |
256 | 0 | if (i == 0) break; |
257 | 0 | VERIFY_CHECK((f & 1) == 1); |
258 | 0 | VERIFY_CHECK((g & 1) == 1); |
259 | 0 | VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i)); |
260 | 0 | VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i)); |
261 | | /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */ |
262 | 0 | VERIFY_CHECK(eta >= -745 && eta <= 745); |
263 | | /* If eta is negative, negate it and replace f,g with g,-f. */ |
264 | 0 | if (eta < 0) { |
265 | 0 | uint64_t tmp; |
266 | 0 | eta = -eta; |
267 | 0 | tmp = f; f = g; g = -tmp; |
268 | 0 | tmp = u; u = q; q = -tmp; |
269 | 0 | tmp = v; v = r; r = -tmp; |
270 | | /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled |
271 | | * out (as we'd be done before that point), and no more than eta+1 can be done as its |
272 | | * sign will flip again once that happens. */ |
273 | 0 | limit = ((int)eta + 1) > i ? i : ((int)eta + 1); |
274 | 0 | VERIFY_CHECK(limit > 0 && limit <= 62); |
275 | | /* m is a mask for the bottom min(limit, 6) bits. */ |
276 | 0 | m = (UINT64_MAX >> (64 - limit)) & 63U; |
277 | | /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6) |
278 | | * bits. */ |
279 | 0 | w = (f * g * (f * f - 2)) & m; |
280 | 0 | } else { |
281 | | /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as |
282 | | * eta tends to be smaller here. */ |
283 | 0 | limit = ((int)eta + 1) > i ? i : ((int)eta + 1); |
284 | 0 | VERIFY_CHECK(limit > 0 && limit <= 62); |
285 | | /* m is a mask for the bottom min(limit, 4) bits. */ |
286 | 0 | m = (UINT64_MAX >> (64 - limit)) & 15U; |
287 | | /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4) |
288 | | * bits. */ |
289 | 0 | w = f + (((f + 1) & 4) << 1); |
290 | 0 | w = (-w * g) & m; |
291 | 0 | } |
292 | 0 | g += f * w; |
293 | 0 | q += u * w; |
294 | 0 | r += v * w; |
295 | 0 | VERIFY_CHECK((g & m) == 0); |
296 | 0 | } |
297 | | /* Return data in t and return value. */ |
298 | 0 | t->u = (int64_t)u; |
299 | 0 | t->v = (int64_t)v; |
300 | 0 | t->q = (int64_t)q; |
301 | 0 | t->r = (int64_t)r; |
302 | | |
303 | | /* The determinant of t must be a power of two. This guarantees that multiplication with t |
304 | | * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which |
305 | | * will be divided out again). As each divstep's individual matrix has determinant 2, the |
306 | | * aggregate of 62 of them will have determinant 2^62. */ |
307 | 0 | VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0)); |
308 | |
|
309 | 0 | return eta; |
310 | 0 | } |
311 | | |
312 | | /* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track |
313 | | * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because |
314 | | * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2). |
315 | | * |
316 | | * Input: eta: initial eta |
317 | | * f0: bottom limb of initial f |
318 | | * g0: bottom limb of initial g |
319 | | * Output: t: transition matrix |
320 | | * Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign |
321 | | * by applying the returned transformation matrix to it. The other bits of *jacp may |
322 | | * change, but are meaningless. |
323 | | * Return: final eta |
324 | | */ |
325 | 0 | static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) { |
326 | | /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */ |
327 | 0 | uint64_t u = 1, v = 0, q = 0, r = 1; |
328 | 0 | uint64_t f = f0, g = g0, m; |
329 | 0 | uint32_t w; |
330 | 0 | int i = 62, limit, zeros; |
331 | 0 | int jac = *jacp; |
332 | |
|
333 | 0 | for (;;) { |
334 | | /* Use a sentinel bit to count zeros only up to i. */ |
335 | 0 | zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i)); |
336 | | /* Perform zeros divsteps at once; they all just divide g by two. */ |
337 | 0 | g >>= zeros; |
338 | 0 | u <<= zeros; |
339 | 0 | v <<= zeros; |
340 | 0 | eta -= zeros; |
341 | 0 | i -= zeros; |
342 | | /* Update the bottom bit of jac: when dividing g by an odd power of 2, |
343 | | * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */ |
344 | 0 | jac ^= (zeros & ((f >> 1) ^ (f >> 2))); |
345 | | /* We're done once we've done 62 posdivsteps. */ |
346 | 0 | if (i == 0) break; |
347 | 0 | VERIFY_CHECK((f & 1) == 1); |
348 | 0 | VERIFY_CHECK((g & 1) == 1); |
349 | 0 | VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i)); |
350 | 0 | VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i)); |
351 | | /* If eta is negative, negate it and replace f,g with g,f. */ |
352 | 0 | if (eta < 0) { |
353 | 0 | uint64_t tmp; |
354 | 0 | eta = -eta; |
355 | 0 | tmp = f; f = g; g = tmp; |
356 | 0 | tmp = u; u = q; q = tmp; |
357 | 0 | tmp = v; v = r; r = tmp; |
358 | | /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign |
359 | | * if both f and g are 3 mod 4. */ |
360 | 0 | jac ^= ((f & g) >> 1); |
361 | | /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled |
362 | | * out (as we'd be done before that point), and no more than eta+1 can be done as its |
363 | | * sign will flip again once that happens. */ |
364 | 0 | limit = ((int)eta + 1) > i ? i : ((int)eta + 1); |
365 | 0 | VERIFY_CHECK(limit > 0 && limit <= 62); |
366 | | /* m is a mask for the bottom min(limit, 6) bits. */ |
367 | 0 | m = (UINT64_MAX >> (64 - limit)) & 63U; |
368 | | /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6) |
369 | | * bits. */ |
370 | 0 | w = (f * g * (f * f - 2)) & m; |
371 | 0 | } else { |
372 | | /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as |
373 | | * eta tends to be smaller here. */ |
374 | 0 | limit = ((int)eta + 1) > i ? i : ((int)eta + 1); |
375 | 0 | VERIFY_CHECK(limit > 0 && limit <= 62); |
376 | | /* m is a mask for the bottom min(limit, 4) bits. */ |
377 | 0 | m = (UINT64_MAX >> (64 - limit)) & 15U; |
378 | | /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4) |
379 | | * bits. */ |
380 | 0 | w = f + (((f + 1) & 4) << 1); |
381 | 0 | w = (-w * g) & m; |
382 | 0 | } |
383 | 0 | g += f * w; |
384 | 0 | q += u * w; |
385 | 0 | r += v * w; |
386 | 0 | VERIFY_CHECK((g & m) == 0); |
387 | 0 | } |
388 | | /* Return data in t and return value. */ |
389 | 0 | t->u = (int64_t)u; |
390 | 0 | t->v = (int64_t)v; |
391 | 0 | t->q = (int64_t)q; |
392 | 0 | t->r = (int64_t)r; |
393 | | |
394 | | /* The determinant of t must be a power of two. This guarantees that multiplication with t |
395 | | * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which |
396 | | * will be divided out again). As each divstep's individual matrix has determinant 2 or -2, |
397 | | * the aggregate of 62 of them will have determinant 2^62 or -2^62. */ |
398 | 0 | VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1)); |
399 | |
|
400 | 0 | *jacp = jac; |
401 | 0 | return eta; |
402 | 0 | } |
403 | | |
404 | | /* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62. |
405 | | * |
406 | | * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range |
407 | | * (-2^62,2^62). |
408 | | * |
409 | | * This implements the update_de function from the explanation. |
410 | | */ |
411 | 0 | static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) { |
412 | 0 | const uint64_t M62 = UINT64_MAX >> 2; |
413 | 0 | const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4]; |
414 | 0 | const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4]; |
415 | 0 | const int64_t u = t->u, v = t->v, q = t->q, r = t->r; |
416 | 0 | int64_t md, me, sd, se; |
417 | 0 | secp256k1_int128 cd, ce; |
418 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ |
419 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */ |
420 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ |
421 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */ |
422 | 0 | VERIFY_CHECK(secp256k1_modinv64_abs(u) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(v))); /* |u|+|v| <= 2^62 */ |
423 | 0 | VERIFY_CHECK(secp256k1_modinv64_abs(q) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(r))); /* |q|+|r| <= 2^62 */ |
424 | | |
425 | | /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */ |
426 | 0 | sd = d4 >> 63; |
427 | 0 | se = e4 >> 63; |
428 | 0 | md = (u & sd) + (v & se); |
429 | 0 | me = (q & sd) + (r & se); |
430 | | /* Begin computing t*[d,e]. */ |
431 | 0 | secp256k1_i128_mul(&cd, u, d0); |
432 | 0 | secp256k1_i128_accum_mul(&cd, v, e0); |
433 | 0 | secp256k1_i128_mul(&ce, q, d0); |
434 | 0 | secp256k1_i128_accum_mul(&ce, r, e0); |
435 | | /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */ |
436 | 0 | md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62; |
437 | 0 | me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62; |
438 | | /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */ |
439 | 0 | secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md); |
440 | 0 | secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me); |
441 | | /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */ |
442 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&cd) & M62) == 0); secp256k1_i128_rshift(&cd, 62); |
443 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&ce) & M62) == 0); secp256k1_i128_rshift(&ce, 62); |
444 | | /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */ |
445 | 0 | secp256k1_i128_accum_mul(&cd, u, d1); |
446 | 0 | secp256k1_i128_accum_mul(&cd, v, e1); |
447 | 0 | secp256k1_i128_accum_mul(&ce, q, d1); |
448 | 0 | secp256k1_i128_accum_mul(&ce, r, e1); |
449 | 0 | if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */ |
450 | 0 | secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md); |
451 | 0 | secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me); |
452 | 0 | } |
453 | 0 | d->v[0] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62); |
454 | 0 | e->v[0] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62); |
455 | | /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */ |
456 | 0 | secp256k1_i128_accum_mul(&cd, u, d2); |
457 | 0 | secp256k1_i128_accum_mul(&cd, v, e2); |
458 | 0 | secp256k1_i128_accum_mul(&ce, q, d2); |
459 | 0 | secp256k1_i128_accum_mul(&ce, r, e2); |
460 | 0 | if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */ |
461 | 0 | secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[2], md); |
462 | 0 | secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[2], me); |
463 | 0 | } |
464 | 0 | d->v[1] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62); |
465 | 0 | e->v[1] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62); |
466 | | /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */ |
467 | 0 | secp256k1_i128_accum_mul(&cd, u, d3); |
468 | 0 | secp256k1_i128_accum_mul(&cd, v, e3); |
469 | 0 | secp256k1_i128_accum_mul(&ce, q, d3); |
470 | 0 | secp256k1_i128_accum_mul(&ce, r, e3); |
471 | 0 | if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */ |
472 | 0 | secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[3], md); |
473 | 0 | secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[3], me); |
474 | 0 | } |
475 | 0 | d->v[2] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62); |
476 | 0 | e->v[2] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62); |
477 | | /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */ |
478 | 0 | secp256k1_i128_accum_mul(&cd, u, d4); |
479 | 0 | secp256k1_i128_accum_mul(&cd, v, e4); |
480 | 0 | secp256k1_i128_accum_mul(&ce, q, d4); |
481 | 0 | secp256k1_i128_accum_mul(&ce, r, e4); |
482 | 0 | secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[4], md); |
483 | 0 | secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[4], me); |
484 | 0 | d->v[3] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62); |
485 | 0 | e->v[3] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62); |
486 | | /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */ |
487 | 0 | d->v[4] = secp256k1_i128_to_i64(&cd); |
488 | 0 | e->v[4] = secp256k1_i128_to_i64(&ce); |
489 | |
|
490 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ |
491 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */ |
492 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ |
493 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */ |
494 | 0 | } |
495 | | |
496 | | /* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62. |
497 | | * |
498 | | * This implements the update_fg function from the explanation. |
499 | | */ |
500 | 0 | static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) { |
501 | 0 | const uint64_t M62 = UINT64_MAX >> 2; |
502 | 0 | const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4]; |
503 | 0 | const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4]; |
504 | 0 | const int64_t u = t->u, v = t->v, q = t->q, r = t->r; |
505 | 0 | secp256k1_int128 cf, cg; |
506 | | /* Start computing t*[f,g]. */ |
507 | 0 | secp256k1_i128_mul(&cf, u, f0); |
508 | 0 | secp256k1_i128_accum_mul(&cf, v, g0); |
509 | 0 | secp256k1_i128_mul(&cg, q, f0); |
510 | 0 | secp256k1_i128_accum_mul(&cg, r, g0); |
511 | | /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */ |
512 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62); |
513 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62); |
514 | | /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */ |
515 | 0 | secp256k1_i128_accum_mul(&cf, u, f1); |
516 | 0 | secp256k1_i128_accum_mul(&cf, v, g1); |
517 | 0 | secp256k1_i128_accum_mul(&cg, q, f1); |
518 | 0 | secp256k1_i128_accum_mul(&cg, r, g1); |
519 | 0 | f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62); |
520 | 0 | g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62); |
521 | | /* Compute limb 2 of t*[f,g], and store it as output limb 1. */ |
522 | 0 | secp256k1_i128_accum_mul(&cf, u, f2); |
523 | 0 | secp256k1_i128_accum_mul(&cf, v, g2); |
524 | 0 | secp256k1_i128_accum_mul(&cg, q, f2); |
525 | 0 | secp256k1_i128_accum_mul(&cg, r, g2); |
526 | 0 | f->v[1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62); |
527 | 0 | g->v[1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62); |
528 | | /* Compute limb 3 of t*[f,g], and store it as output limb 2. */ |
529 | 0 | secp256k1_i128_accum_mul(&cf, u, f3); |
530 | 0 | secp256k1_i128_accum_mul(&cf, v, g3); |
531 | 0 | secp256k1_i128_accum_mul(&cg, q, f3); |
532 | 0 | secp256k1_i128_accum_mul(&cg, r, g3); |
533 | 0 | f->v[2] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62); |
534 | 0 | g->v[2] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62); |
535 | | /* Compute limb 4 of t*[f,g], and store it as output limb 3. */ |
536 | 0 | secp256k1_i128_accum_mul(&cf, u, f4); |
537 | 0 | secp256k1_i128_accum_mul(&cf, v, g4); |
538 | 0 | secp256k1_i128_accum_mul(&cg, q, f4); |
539 | 0 | secp256k1_i128_accum_mul(&cg, r, g4); |
540 | 0 | f->v[3] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62); |
541 | 0 | g->v[3] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62); |
542 | | /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */ |
543 | 0 | f->v[4] = secp256k1_i128_to_i64(&cf); |
544 | 0 | g->v[4] = secp256k1_i128_to_i64(&cg); |
545 | 0 | } |
546 | | |
547 | | /* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps. |
548 | | * |
549 | | * Version that operates on a variable number of limbs in f and g. |
550 | | * |
551 | | * This implements the update_fg function from the explanation. |
552 | | */ |
553 | 0 | static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) { |
554 | 0 | const uint64_t M62 = UINT64_MAX >> 2; |
555 | 0 | const int64_t u = t->u, v = t->v, q = t->q, r = t->r; |
556 | 0 | int64_t fi, gi; |
557 | 0 | secp256k1_int128 cf, cg; |
558 | 0 | int i; |
559 | 0 | VERIFY_CHECK(len > 0); |
560 | | /* Start computing t*[f,g]. */ |
561 | 0 | fi = f->v[0]; |
562 | 0 | gi = g->v[0]; |
563 | 0 | secp256k1_i128_mul(&cf, u, fi); |
564 | 0 | secp256k1_i128_accum_mul(&cf, v, gi); |
565 | 0 | secp256k1_i128_mul(&cg, q, fi); |
566 | 0 | secp256k1_i128_accum_mul(&cg, r, gi); |
567 | | /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */ |
568 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62); |
569 | 0 | VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62); |
570 | | /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting |
571 | | * down by 62 bits). */ |
572 | 0 | for (i = 1; i < len; ++i) { |
573 | 0 | fi = f->v[i]; |
574 | 0 | gi = g->v[i]; |
575 | 0 | secp256k1_i128_accum_mul(&cf, u, fi); |
576 | 0 | secp256k1_i128_accum_mul(&cf, v, gi); |
577 | 0 | secp256k1_i128_accum_mul(&cg, q, fi); |
578 | 0 | secp256k1_i128_accum_mul(&cg, r, gi); |
579 | 0 | f->v[i - 1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62); |
580 | 0 | g->v[i - 1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62); |
581 | 0 | } |
582 | | /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */ |
583 | 0 | f->v[len - 1] = secp256k1_i128_to_i64(&cf); |
584 | 0 | g->v[len - 1] = secp256k1_i128_to_i64(&cg); |
585 | 0 | } |
586 | | |
587 | | /* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */ |
588 | 0 | static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { |
589 | | /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */ |
590 | 0 | secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; |
591 | 0 | secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; |
592 | 0 | secp256k1_modinv64_signed62 f = modinfo->modulus; |
593 | 0 | secp256k1_modinv64_signed62 g = *x; |
594 | 0 | int i; |
595 | 0 | int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */ |
596 | | |
597 | | /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */ |
598 | 0 | for (i = 0; i < 10; ++i) { |
599 | | /* Compute transition matrix and new zeta after 59 divsteps. */ |
600 | 0 | secp256k1_modinv64_trans2x2 t; |
601 | 0 | zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t); |
602 | | /* Update d,e using that transition matrix. */ |
603 | 0 | secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); |
604 | | /* Update f,g using that transition matrix. */ |
605 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */ |
606 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
607 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */ |
608 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */ |
609 | |
|
610 | 0 | secp256k1_modinv64_update_fg_62(&f, &g, &t); |
611 | |
|
612 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */ |
613 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
614 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */ |
615 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */ |
616 | 0 | } |
617 | | |
618 | | /* At this point sufficient iterations have been performed that g must have reached 0 |
619 | | * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g |
620 | | * values i.e. +/- 1, and d now contains +/- the modular inverse. */ |
621 | | |
622 | | /* g == 0 */ |
623 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0); |
624 | | /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ |
625 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 || |
626 | 0 | secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 || |
627 | 0 | (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && |
628 | 0 | secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && |
629 | 0 | (secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 || |
630 | 0 | secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0))); |
631 | | |
632 | | /* Optionally negate d, normalize to [0,modulus), and return it. */ |
633 | 0 | secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo); |
634 | 0 | *x = d; |
635 | 0 | } |
636 | | |
637 | | /* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */ |
638 | 0 | static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { |
639 | | /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */ |
640 | 0 | secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; |
641 | 0 | secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; |
642 | 0 | secp256k1_modinv64_signed62 f = modinfo->modulus; |
643 | 0 | secp256k1_modinv64_signed62 g = *x; |
644 | | #ifdef VERIFY |
645 | | int i = 0; |
646 | | #endif |
647 | 0 | int j, len = 5; |
648 | 0 | int64_t eta = -1; /* eta = -delta; delta is initially 1 */ |
649 | 0 | int64_t cond, fn, gn; |
650 | | |
651 | | /* Do iterations of 62 divsteps each until g=0. */ |
652 | 0 | while (1) { |
653 | | /* Compute transition matrix and new eta after 62 divsteps. */ |
654 | 0 | secp256k1_modinv64_trans2x2 t; |
655 | 0 | eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t); |
656 | | /* Update d,e using that transition matrix. */ |
657 | 0 | secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); |
658 | | /* Update f,g using that transition matrix. */ |
659 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ |
660 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
661 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ |
662 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ |
663 | |
|
664 | 0 | secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t); |
665 | | /* If the bottom limb of g is zero, there is a chance that g=0. */ |
666 | 0 | if (g.v[0] == 0) { |
667 | 0 | cond = 0; |
668 | | /* Check if the other limbs are also 0. */ |
669 | 0 | for (j = 1; j < len; ++j) { |
670 | 0 | cond |= g.v[j]; |
671 | 0 | } |
672 | | /* If so, we're done. */ |
673 | 0 | if (cond == 0) break; |
674 | 0 | } |
675 | | |
676 | | /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */ |
677 | 0 | fn = f.v[len - 1]; |
678 | 0 | gn = g.v[len - 1]; |
679 | 0 | cond = ((int64_t)len - 2) >> 63; |
680 | 0 | cond |= fn ^ (fn >> 63); |
681 | 0 | cond |= gn ^ (gn >> 63); |
682 | | /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */ |
683 | 0 | if (cond == 0) { |
684 | 0 | f.v[len - 2] |= (uint64_t)fn << 62; |
685 | 0 | g.v[len - 2] |= (uint64_t)gn << 62; |
686 | 0 | --len; |
687 | 0 | } |
688 | |
|
689 | 0 | VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */ |
690 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ |
691 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
692 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ |
693 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ |
694 | 0 | } |
695 | | |
696 | | /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of |
697 | | * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */ |
698 | | |
699 | | /* g == 0 */ |
700 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0); |
701 | | /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ |
702 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 || |
703 | 0 | secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 || |
704 | 0 | (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && |
705 | 0 | secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && |
706 | 0 | (secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 || |
707 | 0 | secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0))); |
708 | | |
709 | | /* Optionally negate d, normalize to [0,modulus), and return it. */ |
710 | 0 | secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo); |
711 | 0 | *x = d; |
712 | 0 | } |
713 | | |
714 | | /* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1. |
715 | | * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */ |
716 | | #ifdef VERIFY |
717 | | #define JACOBI64_ITERATIONS 12 |
718 | | #else |
719 | 0 | #define JACOBI64_ITERATIONS 25 |
720 | | #endif |
721 | | |
722 | | /* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */ |
723 | 0 | static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { |
724 | | /* Start with f=modulus, g=x, eta=-1. */ |
725 | 0 | secp256k1_modinv64_signed62 f = modinfo->modulus; |
726 | 0 | secp256k1_modinv64_signed62 g = *x; |
727 | 0 | int j, len = 5; |
728 | 0 | int64_t eta = -1; /* eta = -delta; delta is initially 1 */ |
729 | 0 | int64_t cond, fn, gn; |
730 | 0 | int jac = 0; |
731 | 0 | int count; |
732 | | |
733 | | /* The input limbs must all be non-negative. */ |
734 | 0 | VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0); |
735 | | |
736 | | /* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we |
737 | | * require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or |
738 | | * time out). */ |
739 | 0 | VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0); |
740 | |
|
741 | 0 | for (count = 0; count < JACOBI64_ITERATIONS; ++count) { |
742 | | /* Compute transition matrix and new eta after 62 posdivsteps. */ |
743 | 0 | secp256k1_modinv64_trans2x2 t; |
744 | 0 | eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac); |
745 | | /* Update f,g using that transition matrix. */ |
746 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */ |
747 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
748 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */ |
749 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ |
750 | |
|
751 | 0 | secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t); |
752 | | /* If the bottom limb of f is 1, there is a chance that f=1. */ |
753 | 0 | if (f.v[0] == 1) { |
754 | 0 | cond = 0; |
755 | | /* Check if the other limbs are also 0. */ |
756 | 0 | for (j = 1; j < len; ++j) { |
757 | 0 | cond |= f.v[j]; |
758 | 0 | } |
759 | | /* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */ |
760 | 0 | if (cond == 0) return 1 - 2*(jac & 1); |
761 | 0 | } |
762 | | |
763 | | /* Determine if len>1 and limb (len-1) of both f and g is 0. */ |
764 | 0 | fn = f.v[len - 1]; |
765 | 0 | gn = g.v[len - 1]; |
766 | 0 | cond = ((int64_t)len - 2) >> 63; |
767 | 0 | cond |= fn; |
768 | 0 | cond |= gn; |
769 | | /* If so, reduce length. */ |
770 | 0 | if (cond == 0) --len; |
771 | |
|
772 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */ |
773 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ |
774 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */ |
775 | 0 | VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ |
776 | 0 | } |
777 | | |
778 | | /* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */ |
779 | 0 | return 0; |
780 | 0 | } |
781 | | |
782 | | #endif /* SECP256K1_MODINV64_IMPL_H */ |