Coverage Report

Created: 2024-10-29 12:10

/root/bitcoin/src/secp256k1/src/modinv64_impl.h
Line
Count
Source (jump to first uncovered line)
1
/***********************************************************************
2
 * Copyright (c) 2020 Peter Dettman                                    *
3
 * Distributed under the MIT software license, see the accompanying    *
4
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5
 **********************************************************************/
6
7
#ifndef SECP256K1_MODINV64_IMPL_H
8
#define SECP256K1_MODINV64_IMPL_H
9
10
#include "int128.h"
11
#include "modinv64.h"
12
13
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
14
 * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
15
 *
16
 * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
17
 * implementation for N=62, using 62-bit signed limbs represented as int64_t.
18
 */
19
20
/* Data type for transition matrices (see section 3 of explanation).
21
 *
22
 * t = [ u  v ]
23
 *     [ q  r ]
24
 */
25
typedef struct {
26
    int64_t u, v, q, r;
27
} secp256k1_modinv64_trans2x2;
28
29
#ifdef VERIFY
30
/* Helper function to compute the absolute value of an int64_t.
31
 * (we don't use abs/labs/llabs as it depends on the int sizes). */
32
static int64_t secp256k1_modinv64_abs(int64_t v) {
33
    VERIFY_CHECK(v > INT64_MIN);
34
    if (v < 0) return -v;
35
    return v;
36
}
37
38
static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
39
40
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
41
static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
42
    const uint64_t M62 = UINT64_MAX >> 2;
43
    secp256k1_int128 c, d;
44
    int i;
45
    secp256k1_i128_from_i64(&c, 0);
46
    for (i = 0; i < 4; ++i) {
47
        if (i < alen) secp256k1_i128_accum_mul(&c, a->v[i], factor);
48
        r->v[i] = secp256k1_i128_to_u64(&c) & M62; secp256k1_i128_rshift(&c, 62);
49
    }
50
    if (4 < alen) secp256k1_i128_accum_mul(&c, a->v[4], factor);
51
    secp256k1_i128_from_i64(&d, secp256k1_i128_to_i64(&c));
52
    VERIFY_CHECK(secp256k1_i128_eq_var(&c, &d));
53
    r->v[4] = secp256k1_i128_to_i64(&c);
54
}
55
56
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
57
static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
58
    int i;
59
    secp256k1_modinv64_signed62 am, bm;
60
    secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
61
    secp256k1_modinv64_mul_62(&bm, b, 5, factor);
62
    for (i = 0; i < 4; ++i) {
63
        /* Verify that all but the top limb of a and b are normalized. */
64
        VERIFY_CHECK(am.v[i] >> 62 == 0);
65
        VERIFY_CHECK(bm.v[i] >> 62 == 0);
66
    }
67
    for (i = 4; i >= 0; --i) {
68
        if (am.v[i] < bm.v[i]) return -1;
69
        if (am.v[i] > bm.v[i]) return 1;
70
    }
71
    return 0;
72
}
73
74
/* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */
75
static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n, int abs) {
76
    secp256k1_int128 a;
77
    secp256k1_i128_det(&a, t->u, t->v, t->q, t->r);
78
    if (secp256k1_i128_check_pow2(&a, n, 1)) return 1;
79
    if (abs && secp256k1_i128_check_pow2(&a, n, -1)) return 1;
80
    return 0;
81
}
82
#endif
83
84
/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
85
 * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
86
 * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
87
 * [0,2^62). */
88
0
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
89
0
    const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
90
0
    int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
91
0
    volatile int64_t cond_add, cond_negate;
92
93
#ifdef VERIFY
94
    /* Verify that all limbs are in range (-2^62,2^62). */
95
    int i;
96
    for (i = 0; i < 5; ++i) {
97
        VERIFY_CHECK(r->v[i] >= -M62);
98
        VERIFY_CHECK(r->v[i] <= M62);
99
    }
100
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
101
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
102
#endif
103
104
    /* In a first step, add the modulus if the input is negative, and then negate if requested.
105
     * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
106
     * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
107
     * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
108
     * indeed the behavior of the right shift operator). */
109
0
    cond_add = r4 >> 63;
110
0
    r0 += modinfo->modulus.v[0] & cond_add;
111
0
    r1 += modinfo->modulus.v[1] & cond_add;
112
0
    r2 += modinfo->modulus.v[2] & cond_add;
113
0
    r3 += modinfo->modulus.v[3] & cond_add;
114
0
    r4 += modinfo->modulus.v[4] & cond_add;
115
0
    cond_negate = sign >> 63;
116
0
    r0 = (r0 ^ cond_negate) - cond_negate;
117
0
    r1 = (r1 ^ cond_negate) - cond_negate;
118
0
    r2 = (r2 ^ cond_negate) - cond_negate;
119
0
    r3 = (r3 ^ cond_negate) - cond_negate;
120
0
    r4 = (r4 ^ cond_negate) - cond_negate;
121
    /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
122
0
    r1 += r0 >> 62; r0 &= M62;
123
0
    r2 += r1 >> 62; r1 &= M62;
124
0
    r3 += r2 >> 62; r2 &= M62;
125
0
    r4 += r3 >> 62; r3 &= M62;
126
127
    /* In a second step add the modulus again if the result is still negative, bringing
128
     * r to range [0,modulus). */
129
0
    cond_add = r4 >> 63;
130
0
    r0 += modinfo->modulus.v[0] & cond_add;
131
0
    r1 += modinfo->modulus.v[1] & cond_add;
132
0
    r2 += modinfo->modulus.v[2] & cond_add;
133
0
    r3 += modinfo->modulus.v[3] & cond_add;
134
0
    r4 += modinfo->modulus.v[4] & cond_add;
135
    /* And propagate again. */
136
0
    r1 += r0 >> 62; r0 &= M62;
137
0
    r2 += r1 >> 62; r1 &= M62;
138
0
    r3 += r2 >> 62; r2 &= M62;
139
0
    r4 += r3 >> 62; r3 &= M62;
140
141
0
    r->v[0] = r0;
142
0
    r->v[1] = r1;
143
0
    r->v[2] = r2;
144
0
    r->v[3] = r3;
145
0
    r->v[4] = r4;
146
147
0
    VERIFY_CHECK(r0 >> 62 == 0);
148
0
    VERIFY_CHECK(r1 >> 62 == 0);
149
0
    VERIFY_CHECK(r2 >> 62 == 0);
150
0
    VERIFY_CHECK(r3 >> 62 == 0);
151
0
    VERIFY_CHECK(r4 >> 62 == 0);
152
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
153
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
154
0
}
155
156
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
157
 * Note that the transformation matrix is scaled by 2^62 and not 2^59.
158
 *
159
 * Input:  zeta: initial zeta
160
 *         f0:   bottom limb of initial f
161
 *         g0:   bottom limb of initial g
162
 * Output: t: transition matrix
163
 * Return: final zeta
164
 *
165
 * Implements the divsteps_n_matrix function from the explanation.
166
 */
167
0
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
168
    /* u,v,q,r are the elements of the transformation matrix being built up,
169
     * starting with the identity matrix times 8 (because the caller expects
170
     * a result scaled by 2^62). Semantically they are signed integers
171
     * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
172
     * permits left shifting (which is UB for negative numbers). The range
173
     * being inside [-2^63,2^63) means that casting to signed works correctly.
174
     */
175
0
    uint64_t u = 8, v = 0, q = 0, r = 8;
176
0
    volatile uint64_t c1, c2;
177
0
    uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
178
0
    int i;
179
180
0
    for (i = 3; i < 62; ++i) {
181
0
        VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
182
0
        VERIFY_CHECK((u * f0 + v * g0) == f << i);
183
0
        VERIFY_CHECK((q * f0 + r * g0) == g << i);
184
        /* Compute conditional masks for (zeta < 0) and for (g & 1). */
185
0
        c1 = zeta >> 63;
186
0
        mask1 = c1;
187
0
        c2 = g & 1;
188
0
        mask2 = -c2;
189
        /* Compute x,y,z, conditionally negated versions of f,u,v. */
190
0
        x = (f ^ mask1) - mask1;
191
0
        y = (u ^ mask1) - mask1;
192
0
        z = (v ^ mask1) - mask1;
193
        /* Conditionally add x,y,z to g,q,r. */
194
0
        g += x & mask2;
195
0
        q += y & mask2;
196
0
        r += z & mask2;
197
        /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
198
0
        mask1 &= mask2;
199
        /* Conditionally change zeta into -zeta-2 or zeta-1. */
200
0
        zeta = (zeta ^ mask1) - 1;
201
        /* Conditionally add g,q,r to f,u,v. */
202
0
        f += g & mask1;
203
0
        u += q & mask1;
204
0
        v += r & mask1;
205
        /* Shifts */
206
0
        g >>= 1;
207
0
        u <<= 1;
208
0
        v <<= 1;
209
        /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
210
0
        VERIFY_CHECK(zeta >= -591 && zeta <= 591);
211
0
    }
212
    /* Return data in t and return value. */
213
0
    t->u = (int64_t)u;
214
0
    t->v = (int64_t)v;
215
0
    t->q = (int64_t)q;
216
0
    t->r = (int64_t)r;
217
218
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
219
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
220
     * will be divided out again). As each divstep's individual matrix has determinant 2, the
221
     * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
222
     * 8*identity (which has determinant 2^6) means the overall outputs has determinant
223
     * 2^65. */
224
0
    VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0));
225
226
0
    return zeta;
227
0
}
228
229
/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
230
 *
231
 * Input:  eta: initial eta
232
 *         f0:  bottom limb of initial f
233
 *         g0:  bottom limb of initial g
234
 * Output: t: transition matrix
235
 * Return: final eta
236
 *
237
 * Implements the divsteps_n_matrix_var function from the explanation.
238
 */
239
0
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
240
    /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
241
0
    uint64_t u = 1, v = 0, q = 0, r = 1;
242
0
    uint64_t f = f0, g = g0, m;
243
0
    uint32_t w;
244
0
    int i = 62, limit, zeros;
245
246
0
    for (;;) {
247
        /* Use a sentinel bit to count zeros only up to i. */
248
0
        zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
249
        /* Perform zeros divsteps at once; they all just divide g by two. */
250
0
        g >>= zeros;
251
0
        u <<= zeros;
252
0
        v <<= zeros;
253
0
        eta -= zeros;
254
0
        i -= zeros;
255
        /* We're done once we've done 62 divsteps. */
256
0
        if (i == 0) break;
257
0
        VERIFY_CHECK((f & 1) == 1);
258
0
        VERIFY_CHECK((g & 1) == 1);
259
0
        VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
260
0
        VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
261
        /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
262
0
        VERIFY_CHECK(eta >= -745 && eta <= 745);
263
        /* If eta is negative, negate it and replace f,g with g,-f. */
264
0
        if (eta < 0) {
265
0
            uint64_t tmp;
266
0
            eta = -eta;
267
0
            tmp = f; f = g; g = -tmp;
268
0
            tmp = u; u = q; q = -tmp;
269
0
            tmp = v; v = r; r = -tmp;
270
            /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
271
             * out (as we'd be done before that point), and no more than eta+1 can be done as its
272
             * sign will flip again once that happens. */
273
0
            limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
274
0
            VERIFY_CHECK(limit > 0 && limit <= 62);
275
            /* m is a mask for the bottom min(limit, 6) bits. */
276
0
            m = (UINT64_MAX >> (64 - limit)) & 63U;
277
            /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
278
             * bits. */
279
0
            w = (f * g * (f * f - 2)) & m;
280
0
        } else {
281
            /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
282
             * eta tends to be smaller here. */
283
0
            limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
284
0
            VERIFY_CHECK(limit > 0 && limit <= 62);
285
            /* m is a mask for the bottom min(limit, 4) bits. */
286
0
            m = (UINT64_MAX >> (64 - limit)) & 15U;
287
            /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
288
             * bits. */
289
0
            w = f + (((f + 1) & 4) << 1);
290
0
            w = (-w * g) & m;
291
0
        }
292
0
        g += f * w;
293
0
        q += u * w;
294
0
        r += v * w;
295
0
        VERIFY_CHECK((g & m) == 0);
296
0
    }
297
    /* Return data in t and return value. */
298
0
    t->u = (int64_t)u;
299
0
    t->v = (int64_t)v;
300
0
    t->q = (int64_t)q;
301
0
    t->r = (int64_t)r;
302
303
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
304
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
305
     * will be divided out again). As each divstep's individual matrix has determinant 2, the
306
     * aggregate of 62 of them will have determinant 2^62. */
307
0
    VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0));
308
309
0
    return eta;
310
0
}
311
312
/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
313
 * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
314
 * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
315
 *
316
 * Input:        eta: initial eta
317
 *               f0:  bottom limb of initial f
318
 *               g0:  bottom limb of initial g
319
 * Output:       t: transition matrix
320
 * Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
321
 *               by applying the returned transformation matrix to it. The other bits of *jacp may
322
 *               change, but are meaningless.
323
 * Return:       final eta
324
 */
325
0
static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
326
    /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
327
0
    uint64_t u = 1, v = 0, q = 0, r = 1;
328
0
    uint64_t f = f0, g = g0, m;
329
0
    uint32_t w;
330
0
    int i = 62, limit, zeros;
331
0
    int jac = *jacp;
332
333
0
    for (;;) {
334
        /* Use a sentinel bit to count zeros only up to i. */
335
0
        zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
336
        /* Perform zeros divsteps at once; they all just divide g by two. */
337
0
        g >>= zeros;
338
0
        u <<= zeros;
339
0
        v <<= zeros;
340
0
        eta -= zeros;
341
0
        i -= zeros;
342
        /* Update the bottom bit of jac: when dividing g by an odd power of 2,
343
         * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
344
0
        jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
345
        /* We're done once we've done 62 posdivsteps. */
346
0
        if (i == 0) break;
347
0
        VERIFY_CHECK((f & 1) == 1);
348
0
        VERIFY_CHECK((g & 1) == 1);
349
0
        VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
350
0
        VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
351
        /* If eta is negative, negate it and replace f,g with g,f. */
352
0
        if (eta < 0) {
353
0
            uint64_t tmp;
354
0
            eta = -eta;
355
0
            tmp = f; f = g; g = tmp;
356
0
            tmp = u; u = q; q = tmp;
357
0
            tmp = v; v = r; r = tmp;
358
            /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
359
             * if both f and g are 3 mod 4. */
360
0
            jac ^= ((f & g) >> 1);
361
            /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
362
             * out (as we'd be done before that point), and no more than eta+1 can be done as its
363
             * sign will flip again once that happens. */
364
0
            limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
365
0
            VERIFY_CHECK(limit > 0 && limit <= 62);
366
            /* m is a mask for the bottom min(limit, 6) bits. */
367
0
            m = (UINT64_MAX >> (64 - limit)) & 63U;
368
            /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
369
             * bits. */
370
0
            w = (f * g * (f * f - 2)) & m;
371
0
        } else {
372
            /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
373
             * eta tends to be smaller here. */
374
0
            limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
375
0
            VERIFY_CHECK(limit > 0 && limit <= 62);
376
            /* m is a mask for the bottom min(limit, 4) bits. */
377
0
            m = (UINT64_MAX >> (64 - limit)) & 15U;
378
            /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
379
             * bits. */
380
0
            w = f + (((f + 1) & 4) << 1);
381
0
            w = (-w * g) & m;
382
0
        }
383
0
        g += f * w;
384
0
        q += u * w;
385
0
        r += v * w;
386
0
        VERIFY_CHECK((g & m) == 0);
387
0
    }
388
    /* Return data in t and return value. */
389
0
    t->u = (int64_t)u;
390
0
    t->v = (int64_t)v;
391
0
    t->q = (int64_t)q;
392
0
    t->r = (int64_t)r;
393
394
    /* The determinant of t must be a power of two. This guarantees that multiplication with t
395
     * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
396
     * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
397
     * the aggregate of 62 of them will have determinant 2^62 or -2^62. */
398
0
    VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1));
399
400
0
    *jacp = jac;
401
0
    return eta;
402
0
}
403
404
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
405
 *
406
 * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
407
 * (-2^62,2^62).
408
 *
409
 * This implements the update_de function from the explanation.
410
 */
411
0
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) {
412
0
    const uint64_t M62 = UINT64_MAX >> 2;
413
0
    const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
414
0
    const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
415
0
    const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
416
0
    int64_t md, me, sd, se;
417
0
    secp256k1_int128 cd, ce;
418
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
419
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0);  /* d <    modulus */
420
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
421
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0);  /* e <    modulus */
422
0
    VERIFY_CHECK(secp256k1_modinv64_abs(u) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(v))); /* |u|+|v| <= 2^62 */
423
0
    VERIFY_CHECK(secp256k1_modinv64_abs(q) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(r))); /* |q|+|r| <= 2^62 */
424
425
    /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
426
0
    sd = d4 >> 63;
427
0
    se = e4 >> 63;
428
0
    md = (u & sd) + (v & se);
429
0
    me = (q & sd) + (r & se);
430
    /* Begin computing t*[d,e]. */
431
0
    secp256k1_i128_mul(&cd, u, d0);
432
0
    secp256k1_i128_accum_mul(&cd, v, e0);
433
0
    secp256k1_i128_mul(&ce, q, d0);
434
0
    secp256k1_i128_accum_mul(&ce, r, e0);
435
    /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
436
0
    md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62;
437
0
    me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62;
438
    /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
439
0
    secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
440
0
    secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
441
    /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
442
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&cd) & M62) == 0); secp256k1_i128_rshift(&cd, 62);
443
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&ce) & M62) == 0); secp256k1_i128_rshift(&ce, 62);
444
    /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
445
0
    secp256k1_i128_accum_mul(&cd, u, d1);
446
0
    secp256k1_i128_accum_mul(&cd, v, e1);
447
0
    secp256k1_i128_accum_mul(&ce, q, d1);
448
0
    secp256k1_i128_accum_mul(&ce, r, e1);
449
0
    if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
450
0
        secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
451
0
        secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
452
0
    }
453
0
    d->v[0] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
454
0
    e->v[0] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
455
    /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
456
0
    secp256k1_i128_accum_mul(&cd, u, d2);
457
0
    secp256k1_i128_accum_mul(&cd, v, e2);
458
0
    secp256k1_i128_accum_mul(&ce, q, d2);
459
0
    secp256k1_i128_accum_mul(&ce, r, e2);
460
0
    if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
461
0
        secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[2], md);
462
0
        secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[2], me);
463
0
    }
464
0
    d->v[1] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
465
0
    e->v[1] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
466
    /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
467
0
    secp256k1_i128_accum_mul(&cd, u, d3);
468
0
    secp256k1_i128_accum_mul(&cd, v, e3);
469
0
    secp256k1_i128_accum_mul(&ce, q, d3);
470
0
    secp256k1_i128_accum_mul(&ce, r, e3);
471
0
    if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
472
0
        secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[3], md);
473
0
        secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[3], me);
474
0
    }
475
0
    d->v[2] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
476
0
    e->v[2] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
477
    /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
478
0
    secp256k1_i128_accum_mul(&cd, u, d4);
479
0
    secp256k1_i128_accum_mul(&cd, v, e4);
480
0
    secp256k1_i128_accum_mul(&ce, q, d4);
481
0
    secp256k1_i128_accum_mul(&ce, r, e4);
482
0
    secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[4], md);
483
0
    secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[4], me);
484
0
    d->v[3] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
485
0
    e->v[3] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
486
    /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
487
0
    d->v[4] = secp256k1_i128_to_i64(&cd);
488
0
    e->v[4] = secp256k1_i128_to_i64(&ce);
489
490
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
491
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0);  /* d <    modulus */
492
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
493
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0);  /* e <    modulus */
494
0
}
495
496
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
497
 *
498
 * This implements the update_fg function from the explanation.
499
 */
500
0
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
501
0
    const uint64_t M62 = UINT64_MAX >> 2;
502
0
    const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
503
0
    const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
504
0
    const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
505
0
    secp256k1_int128 cf, cg;
506
    /* Start computing t*[f,g]. */
507
0
    secp256k1_i128_mul(&cf, u, f0);
508
0
    secp256k1_i128_accum_mul(&cf, v, g0);
509
0
    secp256k1_i128_mul(&cg, q, f0);
510
0
    secp256k1_i128_accum_mul(&cg, r, g0);
511
    /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
512
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
513
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
514
    /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
515
0
    secp256k1_i128_accum_mul(&cf, u, f1);
516
0
    secp256k1_i128_accum_mul(&cf, v, g1);
517
0
    secp256k1_i128_accum_mul(&cg, q, f1);
518
0
    secp256k1_i128_accum_mul(&cg, r, g1);
519
0
    f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
520
0
    g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
521
    /* Compute limb 2 of t*[f,g], and store it as output limb 1. */
522
0
    secp256k1_i128_accum_mul(&cf, u, f2);
523
0
    secp256k1_i128_accum_mul(&cf, v, g2);
524
0
    secp256k1_i128_accum_mul(&cg, q, f2);
525
0
    secp256k1_i128_accum_mul(&cg, r, g2);
526
0
    f->v[1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
527
0
    g->v[1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
528
    /* Compute limb 3 of t*[f,g], and store it as output limb 2. */
529
0
    secp256k1_i128_accum_mul(&cf, u, f3);
530
0
    secp256k1_i128_accum_mul(&cf, v, g3);
531
0
    secp256k1_i128_accum_mul(&cg, q, f3);
532
0
    secp256k1_i128_accum_mul(&cg, r, g3);
533
0
    f->v[2] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
534
0
    g->v[2] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
535
    /* Compute limb 4 of t*[f,g], and store it as output limb 3. */
536
0
    secp256k1_i128_accum_mul(&cf, u, f4);
537
0
    secp256k1_i128_accum_mul(&cf, v, g4);
538
0
    secp256k1_i128_accum_mul(&cg, q, f4);
539
0
    secp256k1_i128_accum_mul(&cg, r, g4);
540
0
    f->v[3] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
541
0
    g->v[3] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
542
    /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
543
0
    f->v[4] = secp256k1_i128_to_i64(&cf);
544
0
    g->v[4] = secp256k1_i128_to_i64(&cg);
545
0
}
546
547
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
548
 *
549
 * Version that operates on a variable number of limbs in f and g.
550
 *
551
 * This implements the update_fg function from the explanation.
552
 */
553
0
static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) {
554
0
    const uint64_t M62 = UINT64_MAX >> 2;
555
0
    const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
556
0
    int64_t fi, gi;
557
0
    secp256k1_int128 cf, cg;
558
0
    int i;
559
0
    VERIFY_CHECK(len > 0);
560
    /* Start computing t*[f,g]. */
561
0
    fi = f->v[0];
562
0
    gi = g->v[0];
563
0
    secp256k1_i128_mul(&cf, u, fi);
564
0
    secp256k1_i128_accum_mul(&cf, v, gi);
565
0
    secp256k1_i128_mul(&cg, q, fi);
566
0
    secp256k1_i128_accum_mul(&cg, r, gi);
567
    /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
568
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
569
0
    VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
570
    /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
571
     * down by 62 bits). */
572
0
    for (i = 1; i < len; ++i) {
573
0
        fi = f->v[i];
574
0
        gi = g->v[i];
575
0
        secp256k1_i128_accum_mul(&cf, u, fi);
576
0
        secp256k1_i128_accum_mul(&cf, v, gi);
577
0
        secp256k1_i128_accum_mul(&cg, q, fi);
578
0
        secp256k1_i128_accum_mul(&cg, r, gi);
579
0
        f->v[i - 1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
580
0
        g->v[i - 1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
581
0
    }
582
    /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
583
0
    f->v[len - 1] = secp256k1_i128_to_i64(&cf);
584
0
    g->v[len - 1] = secp256k1_i128_to_i64(&cg);
585
0
}
586
587
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
588
0
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
589
    /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
590
0
    secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
591
0
    secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
592
0
    secp256k1_modinv64_signed62 f = modinfo->modulus;
593
0
    secp256k1_modinv64_signed62 g = *x;
594
0
    int i;
595
0
    int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
596
597
    /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
598
0
    for (i = 0; i < 10; ++i) {
599
        /* Compute transition matrix and new zeta after 59 divsteps. */
600
0
        secp256k1_modinv64_trans2x2 t;
601
0
        zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
602
        /* Update d,e using that transition matrix. */
603
0
        secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
604
        /* Update f,g using that transition matrix. */
605
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
606
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
607
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
608
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0);  /* g <  modulus */
609
610
0
        secp256k1_modinv64_update_fg_62(&f, &g, &t);
611
612
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
613
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
614
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
615
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0);  /* g <  modulus */
616
0
    }
617
618
    /* At this point sufficient iterations have been performed that g must have reached 0
619
     * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
620
     * values i.e. +/- 1, and d now contains +/- the modular inverse. */
621
622
    /* g == 0 */
623
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
624
    /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
625
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
626
0
                 secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
627
0
                 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
628
0
                  secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
629
0
                  (secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
630
0
                   secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
631
632
    /* Optionally negate d, normalize to [0,modulus), and return it. */
633
0
    secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
634
0
    *x = d;
635
0
}
636
637
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
638
0
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
639
    /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
640
0
    secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
641
0
    secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
642
0
    secp256k1_modinv64_signed62 f = modinfo->modulus;
643
0
    secp256k1_modinv64_signed62 g = *x;
644
#ifdef VERIFY
645
    int i = 0;
646
#endif
647
0
    int j, len = 5;
648
0
    int64_t eta = -1; /* eta = -delta; delta is initially 1 */
649
0
    int64_t cond, fn, gn;
650
651
    /* Do iterations of 62 divsteps each until g=0. */
652
0
    while (1) {
653
        /* Compute transition matrix and new eta after 62 divsteps. */
654
0
        secp256k1_modinv64_trans2x2 t;
655
0
        eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
656
        /* Update d,e using that transition matrix. */
657
0
        secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
658
        /* Update f,g using that transition matrix. */
659
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
660
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
661
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
662
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */
663
664
0
        secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
665
        /* If the bottom limb of g is zero, there is a chance that g=0. */
666
0
        if (g.v[0] == 0) {
667
0
            cond = 0;
668
            /* Check if the other limbs are also 0. */
669
0
            for (j = 1; j < len; ++j) {
670
0
                cond |= g.v[j];
671
0
            }
672
            /* If so, we're done. */
673
0
            if (cond == 0) break;
674
0
        }
675
676
        /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
677
0
        fn = f.v[len - 1];
678
0
        gn = g.v[len - 1];
679
0
        cond = ((int64_t)len - 2) >> 63;
680
0
        cond |= fn ^ (fn >> 63);
681
0
        cond |= gn ^ (gn >> 63);
682
        /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
683
0
        if (cond == 0) {
684
0
            f.v[len - 2] |= (uint64_t)fn << 62;
685
0
            g.v[len - 2] |= (uint64_t)gn << 62;
686
0
            --len;
687
0
        }
688
689
0
        VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
690
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
691
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
692
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
693
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g <  modulus */
694
0
    }
695
696
    /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
697
     * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
698
699
    /* g == 0 */
700
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
701
    /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
702
0
    VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
703
0
                 secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
704
0
                 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
705
0
                  secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
706
0
                  (secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
707
0
                   secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
708
709
    /* Optionally negate d, normalize to [0,modulus), and return it. */
710
0
    secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
711
0
    *x = d;
712
0
}
713
714
/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
715
 * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
716
#ifdef VERIFY
717
#define JACOBI64_ITERATIONS 12
718
#else
719
0
#define JACOBI64_ITERATIONS 25
720
#endif
721
722
/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
723
0
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
724
    /* Start with f=modulus, g=x, eta=-1. */
725
0
    secp256k1_modinv64_signed62 f = modinfo->modulus;
726
0
    secp256k1_modinv64_signed62 g = *x;
727
0
    int j, len = 5;
728
0
    int64_t eta = -1; /* eta = -delta; delta is initially 1 */
729
0
    int64_t cond, fn, gn;
730
0
    int jac = 0;
731
0
    int count;
732
733
    /* The input limbs must all be non-negative. */
734
0
    VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
735
736
    /* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
737
     * require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
738
     * time out). */
739
0
    VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0);
740
741
0
    for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
742
        /* Compute transition matrix and new eta after 62 posdivsteps. */
743
0
        secp256k1_modinv64_trans2x2 t;
744
0
        eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
745
        /* Update f,g using that transition matrix. */
746
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
747
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
748
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
749
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */
750
751
0
        secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
752
        /* If the bottom limb of f is 1, there is a chance that f=1. */
753
0
        if (f.v[0] == 1) {
754
0
            cond = 0;
755
            /* Check if the other limbs are also 0. */
756
0
            for (j = 1; j < len; ++j) {
757
0
                cond |= f.v[j];
758
0
            }
759
            /* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */
760
0
            if (cond == 0) return 1 - 2*(jac & 1);
761
0
        }
762
763
        /* Determine if len>1 and limb (len-1) of both f and g is 0. */
764
0
        fn = f.v[len - 1];
765
0
        gn = g.v[len - 1];
766
0
        cond = ((int64_t)len - 2) >> 63;
767
0
        cond |= fn;
768
0
        cond |= gn;
769
        /* If so, reduce length. */
770
0
        if (cond == 0) --len;
771
772
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
773
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
774
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
775
0
        VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0);  /* g < modulus */
776
0
    }
777
778
    /* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */
779
0
    return 0;
780
0
}
781
782
#endif /* SECP256K1_MODINV64_IMPL_H */