/root/bitcoin/src/random.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2009-2010 Satoshi Nakamoto |
2 | | // Copyright (c) 2009-2022 The Bitcoin Core developers |
3 | | // Distributed under the MIT software license, see the accompanying |
4 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
5 | | |
6 | | #include <bitcoin-build-config.h> // IWYU pragma: keep |
7 | | |
8 | | #include <random.h> |
9 | | |
10 | | #include <compat/compat.h> |
11 | | #include <compat/cpuid.h> |
12 | | #include <crypto/chacha20.h> |
13 | | #include <crypto/sha256.h> |
14 | | #include <crypto/sha512.h> |
15 | | #include <logging.h> |
16 | | #include <randomenv.h> |
17 | | #include <span.h> |
18 | | #include <support/allocators/secure.h> |
19 | | #include <support/cleanse.h> |
20 | | #include <sync.h> |
21 | | #include <util/time.h> |
22 | | |
23 | | #include <array> |
24 | | #include <cmath> |
25 | | #include <cstdlib> |
26 | | #include <optional> |
27 | | #include <thread> |
28 | | |
29 | | #ifdef WIN32 |
30 | | #include <windows.h> |
31 | | #include <wincrypt.h> |
32 | | #else |
33 | | #include <fcntl.h> |
34 | | #include <sys/time.h> |
35 | | #endif |
36 | | |
37 | | #if defined(HAVE_GETRANDOM) || (defined(HAVE_GETENTROPY_RAND) && defined(__APPLE__)) |
38 | | #include <sys/random.h> |
39 | | #endif |
40 | | |
41 | | #ifdef HAVE_SYSCTL_ARND |
42 | | #include <sys/sysctl.h> |
43 | | #endif |
44 | | #if defined(HAVE_STRONG_GETAUXVAL) && defined(__aarch64__) |
45 | | #include <sys/auxv.h> |
46 | | #endif |
47 | | |
48 | | namespace { |
49 | | |
50 | | /* Number of random bytes returned by GetOSRand. |
51 | | * When changing this constant make sure to change all call sites, and make |
52 | | * sure that the underlying OS APIs for all platforms support the number. |
53 | | * (many cap out at 256 bytes). |
54 | | */ |
55 | | static const int NUM_OS_RANDOM_BYTES = 32; |
56 | | |
57 | | |
58 | | [[noreturn]] void RandFailure() |
59 | 0 | { |
60 | 0 | LogError("Failed to read randomness, aborting\n"); |
61 | 0 | std::abort(); |
62 | 0 | } |
63 | | |
64 | | inline int64_t GetPerformanceCounter() noexcept |
65 | 39.5k | { |
66 | | // Read the hardware time stamp counter when available. |
67 | | // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information. |
68 | | #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) |
69 | | return __rdtsc(); |
70 | | #elif !defined(_MSC_VER) && defined(__i386__) |
71 | | uint64_t r = 0; |
72 | | __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair. |
73 | | return r; |
74 | | #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__)) |
75 | | uint64_t r1 = 0, r2 = 0; |
76 | 39.5k | __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx. |
77 | 39.5k | return (r2 << 32) | r1; |
78 | | #else |
79 | | // Fall back to using standard library clock (usually microsecond or nanosecond precision) |
80 | | return std::chrono::high_resolution_clock::now().time_since_epoch().count(); |
81 | | #endif |
82 | 39.5k | } |
83 | | |
84 | | #ifdef HAVE_GETCPUID |
85 | | bool g_rdrand_supported = false; |
86 | | bool g_rdseed_supported = false; |
87 | | constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000; |
88 | | constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000; |
89 | | #ifdef bit_RDRND |
90 | | static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND, "Unexpected value for bit_RDRND"); |
91 | | #endif |
92 | | #ifdef bit_RDSEED |
93 | | static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED, "Unexpected value for bit_RDSEED"); |
94 | | #endif |
95 | | |
96 | | void InitHardwareRand() |
97 | 0 | { |
98 | 0 | uint32_t eax, ebx, ecx, edx; |
99 | 0 | GetCPUID(1, 0, eax, ebx, ecx, edx); |
100 | 0 | if (ecx & CPUID_F1_ECX_RDRAND) { |
101 | 0 | g_rdrand_supported = true; |
102 | 0 | } |
103 | 0 | GetCPUID(7, 0, eax, ebx, ecx, edx); |
104 | 0 | if (ebx & CPUID_F7_EBX_RDSEED) { |
105 | 0 | g_rdseed_supported = true; |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | | void ReportHardwareRand() |
110 | 0 | { |
111 | | // This must be done in a separate function, as InitHardwareRand() may be indirectly called |
112 | | // from global constructors, before logging is initialized. |
113 | 0 | if (g_rdseed_supported) { |
114 | 0 | LogPrintf("Using RdSeed as an additional entropy source\n"); |
115 | 0 | } |
116 | 0 | if (g_rdrand_supported) { |
117 | 0 | LogPrintf("Using RdRand as an additional entropy source\n"); |
118 | 0 | } |
119 | 0 | } |
120 | | |
121 | | /** Read 64 bits of entropy using rdrand. |
122 | | * |
123 | | * Must only be called when RdRand is supported. |
124 | | */ |
125 | | uint64_t GetRdRand() noexcept |
126 | 39.5k | { |
127 | | // RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce this risk. |
128 | | #ifdef __i386__ |
129 | | uint8_t ok; |
130 | | // Initialize to 0 to silence a compiler warning that r1 or r2 may be used |
131 | | // uninitialized. Even if rdrand fails (!ok) it will set the output to 0, |
132 | | // but there is no way that the compiler could know that. |
133 | | uint32_t r1 = 0, r2 = 0; |
134 | | for (int i = 0; i < 10; ++i) { |
135 | | __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %eax |
136 | | if (ok) break; |
137 | | } |
138 | | for (int i = 0; i < 10; ++i) { |
139 | | __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdrand %eax |
140 | | if (ok) break; |
141 | | } |
142 | | return (((uint64_t)r2) << 32) | r1; |
143 | | #elif defined(__x86_64__) || defined(__amd64__) |
144 | | uint8_t ok; |
145 | 39.5k | uint64_t r1 = 0; // See above why we initialize to 0. |
146 | 39.5k | for (int i = 0; i < 10; ++i) { |
147 | 39.5k | __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %rax |
148 | 39.5k | if (ok) break; |
149 | 39.5k | } |
150 | 39.5k | return r1; |
151 | | #else |
152 | | #error "RdRand is only supported on x86 and x86_64" |
153 | | #endif |
154 | 39.5k | } |
155 | | |
156 | | /** Read 64 bits of entropy using rdseed. |
157 | | * |
158 | | * Must only be called when RdSeed is supported. |
159 | | */ |
160 | | uint64_t GetRdSeed() noexcept |
161 | 0 | { |
162 | | // RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until enough entropy is gathered, |
163 | | // but pause after every failure. |
164 | | #ifdef __i386__ |
165 | | uint8_t ok; |
166 | | uint32_t r1, r2; |
167 | | do { |
168 | | __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %eax |
169 | | if (ok) break; |
170 | | __asm__ volatile ("pause"); |
171 | | } while(true); |
172 | | do { |
173 | | __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdseed %eax |
174 | | if (ok) break; |
175 | | __asm__ volatile ("pause"); |
176 | | } while(true); |
177 | | return (((uint64_t)r2) << 32) | r1; |
178 | | #elif defined(__x86_64__) || defined(__amd64__) |
179 | | uint8_t ok; |
180 | 0 | uint64_t r1; |
181 | 0 | do { |
182 | 0 | __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %rax |
183 | 0 | if (ok) break; |
184 | 0 | __asm__ volatile ("pause"); |
185 | 0 | } while(true); |
186 | 0 | return r1; |
187 | | #else |
188 | | #error "RdSeed is only supported on x86 and x86_64" |
189 | | #endif |
190 | 0 | } |
191 | | |
192 | | #elif defined(__aarch64__) && defined(HWCAP2_RNG) |
193 | | |
194 | | bool g_rndr_supported = false; |
195 | | |
196 | | void InitHardwareRand() |
197 | | { |
198 | | if (getauxval(AT_HWCAP2) & HWCAP2_RNG) { |
199 | | g_rndr_supported = true; |
200 | | } |
201 | | } |
202 | | |
203 | | void ReportHardwareRand() |
204 | | { |
205 | | // This must be done in a separate function, as InitHardwareRand() may be indirectly called |
206 | | // from global constructors, before logging is initialized. |
207 | | if (g_rndr_supported) { |
208 | | LogPrintf("Using RNDR and RNDRRS as additional entropy sources\n"); |
209 | | } |
210 | | } |
211 | | |
212 | | /** Read 64 bits of entropy using rndr. |
213 | | * |
214 | | * Must only be called when RNDR is supported. |
215 | | */ |
216 | | uint64_t GetRNDR() noexcept |
217 | | { |
218 | | uint8_t ok; |
219 | | uint64_t r1; |
220 | | do { |
221 | | // https://developer.arm.com/documentation/ddi0601/2022-12/AArch64-Registers/RNDR--Random-Number |
222 | | __asm__ volatile("mrs %0, s3_3_c2_c4_0; cset %w1, ne;" |
223 | | : "=r"(r1), "=r"(ok)::"cc"); |
224 | | if (ok) break; |
225 | | __asm__ volatile("yield"); |
226 | | } while (true); |
227 | | return r1; |
228 | | } |
229 | | |
230 | | /** Read 64 bits of entropy using rndrrs. |
231 | | * |
232 | | * Must only be called when RNDRRS is supported. |
233 | | */ |
234 | | uint64_t GetRNDRRS() noexcept |
235 | | { |
236 | | uint8_t ok; |
237 | | uint64_t r1; |
238 | | do { |
239 | | // https://developer.arm.com/documentation/ddi0601/2022-12/AArch64-Registers/RNDRRS--Reseeded-Random-Number |
240 | | __asm__ volatile("mrs %0, s3_3_c2_c4_1; cset %w1, ne;" |
241 | | : "=r"(r1), "=r"(ok)::"cc"); |
242 | | if (ok) break; |
243 | | __asm__ volatile("yield"); |
244 | | } while (true); |
245 | | return r1; |
246 | | } |
247 | | |
248 | | #else |
249 | | /* Access to other hardware random number generators could be added here later, |
250 | | * assuming it is sufficiently fast (in the order of a few hundred CPU cycles). |
251 | | * Slower sources should probably be invoked separately, and/or only from |
252 | | * RandAddPeriodic (which is called once a minute). |
253 | | */ |
254 | | void InitHardwareRand() {} |
255 | | void ReportHardwareRand() {} |
256 | | #endif |
257 | | |
258 | | /** Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */ |
259 | 39.5k | void SeedHardwareFast(CSHA512& hasher) noexcept { |
260 | 39.5k | #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) |
261 | 39.5k | if (g_rdrand_supported) { |
262 | 39.5k | uint64_t out = GetRdRand(); |
263 | 39.5k | hasher.Write((const unsigned char*)&out, sizeof(out)); |
264 | 39.5k | return; |
265 | 39.5k | } |
266 | | #elif defined(__aarch64__) && defined(HWCAP2_RNG) |
267 | | if (g_rndr_supported) { |
268 | | uint64_t out = GetRNDR(); |
269 | | hasher.Write((const unsigned char*)&out, sizeof(out)); |
270 | | return; |
271 | | } |
272 | | #endif |
273 | 39.5k | } |
274 | | |
275 | | /** Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */ |
276 | 0 | void SeedHardwareSlow(CSHA512& hasher) noexcept { |
277 | 0 | #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) |
278 | | // When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's |
279 | | // guaranteed to produce independent randomness on every call. |
280 | 0 | if (g_rdseed_supported) { |
281 | 0 | for (int i = 0; i < 4; ++i) { |
282 | 0 | uint64_t out = GetRdSeed(); |
283 | 0 | hasher.Write((const unsigned char*)&out, sizeof(out)); |
284 | 0 | } |
285 | 0 | return; |
286 | 0 | } |
287 | | // When falling back to RdRand, XOR the result of 1024 results. |
288 | | // This guarantees a reseeding occurs between each. |
289 | 0 | if (g_rdrand_supported) { |
290 | 0 | for (int i = 0; i < 4; ++i) { |
291 | 0 | uint64_t out = 0; |
292 | 0 | for (int j = 0; j < 1024; ++j) out ^= GetRdRand(); |
293 | 0 | hasher.Write((const unsigned char*)&out, sizeof(out)); |
294 | 0 | } |
295 | 0 | return; |
296 | 0 | } |
297 | | #elif defined(__aarch64__) && defined(HWCAP2_RNG) |
298 | | if (g_rndr_supported) { |
299 | | for (int i = 0; i < 4; ++i) { |
300 | | uint64_t out = GetRNDRRS(); |
301 | | hasher.Write((const unsigned char*)&out, sizeof(out)); |
302 | | } |
303 | | return; |
304 | | } |
305 | | #endif |
306 | 0 | } |
307 | | |
308 | | /** Use repeated SHA512 to strengthen the randomness in seed32, and feed into hasher. */ |
309 | | void Strengthen(const unsigned char (&seed)[32], SteadyClock::duration dur, CSHA512& hasher) noexcept |
310 | 0 | { |
311 | 0 | CSHA512 inner_hasher; |
312 | 0 | inner_hasher.Write(seed, sizeof(seed)); |
313 | | |
314 | | // Hash loop |
315 | 0 | unsigned char buffer[64]; |
316 | 0 | const auto stop{SteadyClock::now() + dur}; |
317 | 0 | do { |
318 | 0 | for (int i = 0; i < 1000; ++i) { |
319 | 0 | inner_hasher.Finalize(buffer); |
320 | 0 | inner_hasher.Reset(); |
321 | 0 | inner_hasher.Write(buffer, sizeof(buffer)); |
322 | 0 | } |
323 | | // Benchmark operation and feed it into outer hasher. |
324 | 0 | int64_t perf = GetPerformanceCounter(); |
325 | 0 | hasher.Write((const unsigned char*)&perf, sizeof(perf)); |
326 | 0 | } while (SteadyClock::now() < stop); |
327 | | |
328 | | // Produce output from inner state and feed it to outer hasher. |
329 | 0 | inner_hasher.Finalize(buffer); |
330 | 0 | hasher.Write(buffer, sizeof(buffer)); |
331 | | // Try to clean up. |
332 | 0 | inner_hasher.Reset(); |
333 | 0 | memory_cleanse(buffer, sizeof(buffer)); |
334 | 0 | } |
335 | | |
336 | | #ifndef WIN32 |
337 | | /** Fallback: get 32 bytes of system entropy from /dev/urandom. The most |
338 | | * compatible way to get cryptographic randomness on UNIX-ish platforms. |
339 | | */ |
340 | | [[maybe_unused]] void GetDevURandom(unsigned char *ent32) |
341 | 0 | { |
342 | 0 | int f = open("/dev/urandom", O_RDONLY); |
343 | 0 | if (f == -1) { |
344 | 0 | RandFailure(); |
345 | 0 | } |
346 | 0 | int have = 0; |
347 | 0 | do { |
348 | 0 | ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have); |
349 | 0 | if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) { |
350 | 0 | close(f); |
351 | 0 | RandFailure(); |
352 | 0 | } |
353 | 0 | have += n; |
354 | 0 | } while (have < NUM_OS_RANDOM_BYTES); |
355 | 0 | close(f); |
356 | 0 | } |
357 | | #endif |
358 | | |
359 | | /** Get 32 bytes of system entropy. */ |
360 | | void GetOSRand(unsigned char *ent32) |
361 | 0 | { |
362 | | #if defined(WIN32) |
363 | | HCRYPTPROV hProvider; |
364 | | int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); |
365 | | if (!ret) { |
366 | | RandFailure(); |
367 | | } |
368 | | ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32); |
369 | | if (!ret) { |
370 | | RandFailure(); |
371 | | } |
372 | | CryptReleaseContext(hProvider, 0); |
373 | | #elif defined(HAVE_GETRANDOM) |
374 | | /* Linux. From the getrandom(2) man page: |
375 | | * "If the urandom source has been initialized, reads of up to 256 bytes |
376 | | * will always return as many bytes as requested and will not be |
377 | | * interrupted by signals." |
378 | | */ |
379 | 0 | if (getrandom(ent32, NUM_OS_RANDOM_BYTES, 0) != NUM_OS_RANDOM_BYTES) { |
380 | 0 | RandFailure(); |
381 | 0 | } |
382 | | #elif defined(__OpenBSD__) |
383 | | /* OpenBSD. From the arc4random(3) man page: |
384 | | "Use of these functions is encouraged for almost all random number |
385 | | consumption because the other interfaces are deficient in either |
386 | | quality, portability, standardization, or availability." |
387 | | The function call is always successful. |
388 | | */ |
389 | | arc4random_buf(ent32, NUM_OS_RANDOM_BYTES); |
390 | | #elif defined(HAVE_GETENTROPY_RAND) && defined(__APPLE__) |
391 | | if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { |
392 | | RandFailure(); |
393 | | } |
394 | | #elif defined(HAVE_SYSCTL_ARND) |
395 | | /* FreeBSD, NetBSD and similar. It is possible for the call to return less |
396 | | * bytes than requested, so need to read in a loop. |
397 | | */ |
398 | | static int name[2] = {CTL_KERN, KERN_ARND}; |
399 | | int have = 0; |
400 | | do { |
401 | | size_t len = NUM_OS_RANDOM_BYTES - have; |
402 | | if (sysctl(name, std::size(name), ent32 + have, &len, nullptr, 0) != 0) { |
403 | | RandFailure(); |
404 | | } |
405 | | have += len; |
406 | | } while (have < NUM_OS_RANDOM_BYTES); |
407 | | #else |
408 | | /* Fall back to /dev/urandom if there is no specific method implemented to |
409 | | * get system entropy for this OS. |
410 | | */ |
411 | | GetDevURandom(ent32); |
412 | | #endif |
413 | 0 | } |
414 | | |
415 | | class RNGState { |
416 | | Mutex m_mutex; |
417 | | /* The RNG state consists of 256 bits of entropy, taken from the output of |
418 | | * one operation's SHA512 output, and fed as input to the next one. |
419 | | * Carrying 256 bits of entropy should be sufficient to guarantee |
420 | | * unpredictability as long as any entropy source was ever unpredictable |
421 | | * to an attacker. To protect against situations where an attacker might |
422 | | * observe the RNG's state, fresh entropy is always mixed when |
423 | | * GetStrongRandBytes is called. |
424 | | */ |
425 | | unsigned char m_state[32] GUARDED_BY(m_mutex) = {0}; |
426 | | uint64_t m_counter GUARDED_BY(m_mutex) = 0; |
427 | | bool m_strongly_seeded GUARDED_BY(m_mutex) = false; |
428 | | |
429 | | /** If not nullopt, the output of this RNGState is redirected and drawn from here |
430 | | * (unless always_use_real_rng is passed to MixExtract). */ |
431 | | std::optional<ChaCha20> m_deterministic_prng GUARDED_BY(m_mutex); |
432 | | |
433 | | Mutex m_events_mutex; |
434 | | CSHA256 m_events_hasher GUARDED_BY(m_events_mutex); |
435 | | |
436 | | public: |
437 | | RNGState() noexcept |
438 | 0 | { |
439 | 0 | InitHardwareRand(); |
440 | 0 | } |
441 | | |
442 | 1 | ~RNGState() = default; |
443 | | |
444 | | void AddEvent(uint32_t event_info) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex) |
445 | 0 | { |
446 | 0 | LOCK(m_events_mutex); |
447 | |
|
448 | 0 | m_events_hasher.Write((const unsigned char *)&event_info, sizeof(event_info)); |
449 | | // Get the low four bytes of the performance counter. This translates to roughly the |
450 | | // subsecond part. |
451 | 0 | uint32_t perfcounter = (GetPerformanceCounter() & 0xffffffff); |
452 | 0 | m_events_hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter)); |
453 | 0 | } |
454 | | |
455 | | /** |
456 | | * Feed (the hash of) all events added through AddEvent() to hasher. |
457 | | */ |
458 | | void SeedEvents(CSHA512& hasher) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex) |
459 | 0 | { |
460 | | // We use only SHA256 for the events hashing to get the ASM speedups we have for SHA256, |
461 | | // since we want it to be fast as network peers may be able to trigger it repeatedly. |
462 | 0 | LOCK(m_events_mutex); |
463 | |
|
464 | 0 | unsigned char events_hash[32]; |
465 | 0 | m_events_hasher.Finalize(events_hash); |
466 | 0 | hasher.Write(events_hash, 32); |
467 | | |
468 | | // Re-initialize the hasher with the finalized state to use later. |
469 | 0 | m_events_hasher.Reset(); |
470 | 0 | m_events_hasher.Write(events_hash, 32); |
471 | 0 | } |
472 | | |
473 | | /** Make the output of MixExtract (unless always_use_real_rng) deterministic, with specified seed. */ |
474 | | void MakeDeterministic(const uint256& seed) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) |
475 | 0 | { |
476 | 0 | LOCK(m_mutex); |
477 | 0 | m_deterministic_prng.emplace(MakeByteSpan(seed)); |
478 | 0 | } |
479 | | |
480 | | /** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher. |
481 | | * |
482 | | * If this function has never been called with strong_seed = true, false is returned. |
483 | | * |
484 | | * If always_use_real_rng is false, and MakeDeterministic has been called before, output |
485 | | * from the deterministic PRNG instead. |
486 | | */ |
487 | | bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed, bool always_use_real_rng) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) |
488 | 39.5k | { |
489 | 39.5k | assert(num <= 32); |
490 | 39.5k | unsigned char buf[64]; |
491 | 39.5k | static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size"); |
492 | 39.5k | bool ret; |
493 | 39.5k | { |
494 | 39.5k | LOCK(m_mutex); |
495 | 39.5k | ret = (m_strongly_seeded |= strong_seed); |
496 | | // Write the current state of the RNG into the hasher |
497 | 39.5k | hasher.Write(m_state, 32); |
498 | | // Write a new counter number into the state |
499 | 39.5k | hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter)); |
500 | 39.5k | ++m_counter; |
501 | | // Finalize the hasher |
502 | 39.5k | hasher.Finalize(buf); |
503 | | // Store the last 32 bytes of the hash output as new RNG state. |
504 | 39.5k | memcpy(m_state, buf + 32, 32); |
505 | | // Handle requests for deterministic randomness. |
506 | 39.5k | if (!always_use_real_rng && m_deterministic_prng.has_value()) [[unlikely]] { |
507 | | // Overwrite the beginning of buf, which will be used for output. |
508 | 39.5k | m_deterministic_prng->Keystream(AsWritableBytes(Span{buf, num})); |
509 | | // Do not require strong seeding for deterministic output. |
510 | 39.5k | ret = true; |
511 | 39.5k | } |
512 | 39.5k | } |
513 | | // If desired, copy (up to) the first 32 bytes of the hash output as output. |
514 | 39.5k | if (num) { |
515 | 39.5k | assert(out != nullptr); |
516 | 39.5k | memcpy(out, buf, num); |
517 | 39.5k | } |
518 | | // Best effort cleanup of internal state |
519 | 39.5k | hasher.Reset(); |
520 | 39.5k | memory_cleanse(buf, 64); |
521 | 39.5k | return ret; |
522 | 39.5k | } |
523 | | }; |
524 | | |
525 | | RNGState& GetRNGState() noexcept |
526 | 39.5k | { |
527 | | // This idiom relies on the guarantee that static variable are initialized |
528 | | // on first call, even when multiple parallel calls are permitted. |
529 | 39.5k | static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1); |
530 | 39.5k | return g_rng[0]; |
531 | 39.5k | } |
532 | | |
533 | | /* A note on the use of noexcept in the seeding functions below: |
534 | | * |
535 | | * None of the RNG code should ever throw any exception. |
536 | | */ |
537 | | |
538 | | void SeedTimestamp(CSHA512& hasher) noexcept |
539 | 39.5k | { |
540 | 39.5k | int64_t perfcounter = GetPerformanceCounter(); |
541 | 39.5k | hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter)); |
542 | 39.5k | } |
543 | | |
544 | | void SeedFast(CSHA512& hasher) noexcept |
545 | 39.5k | { |
546 | 39.5k | unsigned char buffer[32]; |
547 | | |
548 | | // Stack pointer to indirectly commit to thread/callstack |
549 | 39.5k | const unsigned char* ptr = buffer; |
550 | 39.5k | hasher.Write((const unsigned char*)&ptr, sizeof(ptr)); |
551 | | |
552 | | // Hardware randomness is very fast when available; use it always. |
553 | 39.5k | SeedHardwareFast(hasher); |
554 | | |
555 | | // High-precision timestamp |
556 | 39.5k | SeedTimestamp(hasher); |
557 | 39.5k | } |
558 | | |
559 | | void SeedSlow(CSHA512& hasher, RNGState& rng) noexcept |
560 | 0 | { |
561 | 0 | unsigned char buffer[32]; |
562 | | |
563 | | // Everything that the 'fast' seeder includes |
564 | 0 | SeedFast(hasher); |
565 | | |
566 | | // OS randomness |
567 | 0 | GetOSRand(buffer); |
568 | 0 | hasher.Write(buffer, sizeof(buffer)); |
569 | | |
570 | | // Add the events hasher into the mix |
571 | 0 | rng.SeedEvents(hasher); |
572 | | |
573 | | // High-precision timestamp. |
574 | | // |
575 | | // Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a |
576 | | // benchmark of all the entropy gathering sources in this function). |
577 | 0 | SeedTimestamp(hasher); |
578 | 0 | } |
579 | | |
580 | | /** Extract entropy from rng, strengthen it, and feed it into hasher. */ |
581 | | void SeedStrengthen(CSHA512& hasher, RNGState& rng, SteadyClock::duration dur) noexcept |
582 | 0 | { |
583 | | // Generate 32 bytes of entropy from the RNG, and a copy of the entropy already in hasher. |
584 | | // Never use the deterministic PRNG for this, as the result is only used internally. |
585 | 0 | unsigned char strengthen_seed[32]; |
586 | 0 | rng.MixExtract(strengthen_seed, sizeof(strengthen_seed), CSHA512(hasher), false, /*always_use_real_rng=*/true); |
587 | | // Strengthen the seed, and feed it into hasher. |
588 | 0 | Strengthen(strengthen_seed, dur, hasher); |
589 | 0 | } |
590 | | |
591 | | void SeedPeriodic(CSHA512& hasher, RNGState& rng) noexcept |
592 | 0 | { |
593 | | // Everything that the 'fast' seeder includes |
594 | 0 | SeedFast(hasher); |
595 | | |
596 | | // High-precision timestamp |
597 | 0 | SeedTimestamp(hasher); |
598 | | |
599 | | // Add the events hasher into the mix |
600 | 0 | rng.SeedEvents(hasher); |
601 | | |
602 | | // Dynamic environment data (clocks, resource usage, ...) |
603 | 0 | auto old_size = hasher.Size(); |
604 | 0 | RandAddDynamicEnv(hasher); |
605 | 0 | LogDebug(BCLog::RAND, "Feeding %i bytes of dynamic environment data into RNG\n", hasher.Size() - old_size); |
606 | | |
607 | | // Strengthen for 10 ms |
608 | 0 | SeedStrengthen(hasher, rng, 10ms); |
609 | 0 | } |
610 | | |
611 | | void SeedStartup(CSHA512& hasher, RNGState& rng) noexcept |
612 | 0 | { |
613 | | // Gather 256 bits of hardware randomness, if available |
614 | 0 | SeedHardwareSlow(hasher); |
615 | | |
616 | | // Everything that the 'slow' seeder includes. |
617 | 0 | SeedSlow(hasher, rng); |
618 | | |
619 | | // Dynamic environment data (clocks, resource usage, ...) |
620 | 0 | auto old_size = hasher.Size(); |
621 | 0 | RandAddDynamicEnv(hasher); |
622 | | |
623 | | // Static environment data |
624 | 0 | RandAddStaticEnv(hasher); |
625 | 0 | LogDebug(BCLog::RAND, "Feeding %i bytes of environment data into RNG\n", hasher.Size() - old_size); |
626 | | |
627 | | // Strengthen for 100 ms |
628 | 0 | SeedStrengthen(hasher, rng, 100ms); |
629 | 0 | } |
630 | | |
631 | | enum class RNGLevel { |
632 | | FAST, //!< Automatically called by GetRandBytes |
633 | | SLOW, //!< Automatically called by GetStrongRandBytes |
634 | | PERIODIC, //!< Called by RandAddPeriodic() |
635 | | }; |
636 | | |
637 | | void ProcRand(unsigned char* out, int num, RNGLevel level, bool always_use_real_rng) noexcept |
638 | 39.5k | { |
639 | | // Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available). |
640 | 39.5k | RNGState& rng = GetRNGState(); |
641 | | |
642 | 39.5k | assert(num <= 32); |
643 | | |
644 | 39.5k | CSHA512 hasher; |
645 | 39.5k | switch (level) { |
646 | 39.5k | case RNGLevel::FAST: |
647 | 39.5k | SeedFast(hasher); |
648 | 39.5k | break; |
649 | 0 | case RNGLevel::SLOW: |
650 | 0 | SeedSlow(hasher, rng); |
651 | 0 | break; |
652 | 0 | case RNGLevel::PERIODIC: |
653 | 0 | SeedPeriodic(hasher, rng); |
654 | 0 | break; |
655 | 39.5k | } |
656 | | |
657 | | // Combine with and update state |
658 | 39.5k | if (!rng.MixExtract(out, num, std::move(hasher), false, always_use_real_rng)) { |
659 | | // On the first invocation, also seed with SeedStartup(). |
660 | 0 | CSHA512 startup_hasher; |
661 | 0 | SeedStartup(startup_hasher, rng); |
662 | 0 | rng.MixExtract(out, num, std::move(startup_hasher), true, always_use_real_rng); |
663 | 0 | } |
664 | 39.5k | } |
665 | | |
666 | | } // namespace |
667 | | |
668 | | |
669 | | /** Internal function to set g_determinstic_rng. Only accessed from tests. */ |
670 | | void MakeRandDeterministicDANGEROUS(const uint256& seed) noexcept |
671 | 0 | { |
672 | 0 | GetRNGState().MakeDeterministic(seed); |
673 | 0 | } |
674 | | |
675 | | void GetRandBytes(Span<unsigned char> bytes) noexcept |
676 | 39.5k | { |
677 | 39.5k | ProcRand(bytes.data(), bytes.size(), RNGLevel::FAST, /*always_use_real_rng=*/false); |
678 | 39.5k | } |
679 | | |
680 | | void GetStrongRandBytes(Span<unsigned char> bytes) noexcept |
681 | 0 | { |
682 | 0 | ProcRand(bytes.data(), bytes.size(), RNGLevel::SLOW, /*always_use_real_rng=*/true); |
683 | 0 | } |
684 | | |
685 | | void RandAddPeriodic() noexcept |
686 | 0 | { |
687 | 0 | ProcRand(nullptr, 0, RNGLevel::PERIODIC, /*always_use_real_rng=*/false); |
688 | 0 | } |
689 | | |
690 | 0 | void RandAddEvent(const uint32_t event_info) noexcept { GetRNGState().AddEvent(event_info); } |
691 | | |
692 | | void FastRandomContext::RandomSeed() noexcept |
693 | 39.5k | { |
694 | 39.5k | uint256 seed = GetRandHash(); |
695 | 39.5k | rng.SetKey(MakeByteSpan(seed)); |
696 | 39.5k | requires_seed = false; |
697 | 39.5k | } |
698 | | |
699 | | void FastRandomContext::fillrand(Span<std::byte> output) noexcept |
700 | 0 | { |
701 | 0 | if (requires_seed) RandomSeed(); |
702 | 0 | rng.Keystream(output); |
703 | 0 | } |
704 | | |
705 | 0 | FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), rng(MakeByteSpan(seed)) {} |
706 | | |
707 | | void FastRandomContext::Reseed(const uint256& seed) noexcept |
708 | 0 | { |
709 | 0 | FlushCache(); |
710 | 0 | requires_seed = false; |
711 | 0 | rng = {MakeByteSpan(seed)}; |
712 | 0 | } |
713 | | |
714 | | bool Random_SanityCheck() |
715 | 0 | { |
716 | 0 | uint64_t start = GetPerformanceCounter(); |
717 | | |
718 | | /* This does not measure the quality of randomness, but it does test that |
719 | | * GetOSRand() overwrites all 32 bytes of the output given a maximum |
720 | | * number of tries. |
721 | | */ |
722 | 0 | static constexpr int MAX_TRIES{1024}; |
723 | 0 | uint8_t data[NUM_OS_RANDOM_BYTES]; |
724 | 0 | bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */ |
725 | 0 | int num_overwritten; |
726 | 0 | int tries = 0; |
727 | | /* Loop until all bytes have been overwritten at least once, or max number tries reached */ |
728 | 0 | do { |
729 | 0 | memset(data, 0, NUM_OS_RANDOM_BYTES); |
730 | 0 | GetOSRand(data); |
731 | 0 | for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { |
732 | 0 | overwritten[x] |= (data[x] != 0); |
733 | 0 | } |
734 | |
|
735 | 0 | num_overwritten = 0; |
736 | 0 | for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) { |
737 | 0 | if (overwritten[x]) { |
738 | 0 | num_overwritten += 1; |
739 | 0 | } |
740 | 0 | } |
741 | |
|
742 | 0 | tries += 1; |
743 | 0 | } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES); |
744 | 0 | if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */ |
745 | | |
746 | | // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep. |
747 | 0 | std::this_thread::sleep_for(std::chrono::milliseconds(1)); |
748 | 0 | uint64_t stop = GetPerformanceCounter(); |
749 | 0 | if (stop == start) return false; |
750 | | |
751 | | // We called GetPerformanceCounter. Use it as entropy. |
752 | 0 | CSHA512 to_add; |
753 | 0 | to_add.Write((const unsigned char*)&start, sizeof(start)); |
754 | 0 | to_add.Write((const unsigned char*)&stop, sizeof(stop)); |
755 | 0 | GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false, /*always_use_real_rng=*/true); |
756 | |
|
757 | 0 | return true; |
758 | 0 | } |
759 | | |
760 | | static constexpr std::array<std::byte, ChaCha20::KEYLEN> ZERO_KEY{}; |
761 | | |
762 | 43.3k | FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), rng(ZERO_KEY) |
763 | 43.3k | { |
764 | | // Note that despite always initializing with ZERO_KEY, requires_seed is set to true if not |
765 | | // fDeterministic. That means the rng will be reinitialized with a secure random key upon first |
766 | | // use. |
767 | 43.3k | } |
768 | | |
769 | | void RandomInit() |
770 | 0 | { |
771 | | // Invoke RNG code to trigger initialization (if not already performed) |
772 | 0 | ProcRand(nullptr, 0, RNGLevel::FAST, /*always_use_real_rng=*/true); |
773 | |
|
774 | 0 | ReportHardwareRand(); |
775 | 0 | } |
776 | | |
777 | | double MakeExponentiallyDistributed(uint64_t uniform) noexcept |
778 | 0 | { |
779 | | // To convert uniform into an exponentially-distributed double, we use two steps: |
780 | | // - Convert uniform into a uniformly-distributed double in range [0, 1), use the expression |
781 | | // ((uniform >> 11) * 0x1.0p-53), as described in https://prng.di.unimi.it/ under |
782 | | // "Generating uniform doubles in the unit interval". Call this value x. |
783 | | // - Given an x in uniformly distributed in [0, 1), we find an exponentially distributed value |
784 | | // by applying the quantile function to it. For the exponential distribution with mean 1 this |
785 | | // is F(x) = -log(1 - x). |
786 | | // |
787 | | // Combining the two, and using log1p(x) = log(1 + x), we obtain the following: |
788 | 0 | return -std::log1p((uniform >> 11) * -0x1.0p-53); |
789 | 0 | } |