Coverage Report

Created: 2024-10-29 12:10

/root/bitcoin/src/net_processing.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <net_processing.h>
7
8
#include <addrman.h>
9
#include <banman.h>
10
#include <blockencodings.h>
11
#include <blockfilter.h>
12
#include <chainparams.h>
13
#include <consensus/amount.h>
14
#include <consensus/validation.h>
15
#include <deploymentstatus.h>
16
#include <hash.h>
17
#include <headerssync.h>
18
#include <index/blockfilterindex.h>
19
#include <kernel/chain.h>
20
#include <kernel/mempool_entry.h>
21
#include <logging.h>
22
#include <merkleblock.h>
23
#include <netbase.h>
24
#include <netmessagemaker.h>
25
#include <node/blockstorage.h>
26
#include <node/timeoffsets.h>
27
#include <node/txdownloadman.h>
28
#include <node/txreconciliation.h>
29
#include <node/warnings.h>
30
#include <policy/fees.h>
31
#include <policy/policy.h>
32
#include <policy/settings.h>
33
#include <primitives/block.h>
34
#include <primitives/transaction.h>
35
#include <random.h>
36
#include <scheduler.h>
37
#include <streams.h>
38
#include <sync.h>
39
#include <tinyformat.h>
40
#include <txmempool.h>
41
#include <txorphanage.h>
42
#include <txrequest.h>
43
#include <util/check.h>
44
#include <util/strencodings.h>
45
#include <util/time.h>
46
#include <util/trace.h>
47
#include <validation.h>
48
49
#include <algorithm>
50
#include <atomic>
51
#include <future>
52
#include <memory>
53
#include <optional>
54
#include <ranges>
55
#include <typeinfo>
56
#include <utility>
57
58
using namespace util::hex_literals;
59
60
/** Headers download timeout.
61
 *  Timeout = base + per_header * (expected number of headers) */
62
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
63
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
64
/** How long to wait for a peer to respond to a getheaders request */
65
static constexpr auto HEADERS_RESPONSE_TIME{2min};
66
/** Protect at least this many outbound peers from disconnection due to slow/
67
 * behind headers chain.
68
 */
69
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
70
/** Timeout for (unprotected) outbound peers to sync to our chainwork */
71
static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
72
/** How frequently to check for stale tips */
73
static constexpr auto STALE_CHECK_INTERVAL{10min};
74
/** How frequently to check for extra outbound peers and disconnect */
75
static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
76
/** Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict */
77
static constexpr auto MINIMUM_CONNECT_TIME{30s};
78
/** SHA256("main address relay")[0:8] */
79
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
80
/// Age after which a stale block will no longer be served if requested as
81
/// protection against fingerprinting. Set to one month, denominated in seconds.
82
static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
83
/// Age after which a block is considered historical for purposes of rate
84
/// limiting block relay. Set to one week, denominated in seconds.
85
static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
86
/** Time between pings automatically sent out for latency probing and keepalive */
87
static constexpr auto PING_INTERVAL{2min};
88
/** The maximum number of entries in a locator */
89
static const unsigned int MAX_LOCATOR_SZ = 101;
90
/** The maximum number of entries in an 'inv' protocol message */
91
static const unsigned int MAX_INV_SZ = 50000;
92
/** Limit to avoid sending big packets. Not used in processing incoming GETDATA for compatibility */
93
static const unsigned int MAX_GETDATA_SZ = 1000;
94
/** Number of blocks that can be requested at any given time from a single peer. */
95
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
96
/** Default time during which a peer must stall block download progress before being disconnected.
97
 * the actual timeout is increased temporarily if peers are disconnected for hitting the timeout */
98
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
99
/** Maximum timeout for stalling block download. */
100
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
101
/** Maximum depth of blocks we're willing to serve as compact blocks to peers
102
 *  when requested. For older blocks, a regular BLOCK response will be sent. */
103
static const int MAX_CMPCTBLOCK_DEPTH = 5;
104
/** Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for. */
105
static const int MAX_BLOCKTXN_DEPTH = 10;
106
static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
107
/** Size of the "block download window": how far ahead of our current height do we fetch?
108
 *  Larger windows tolerate larger download speed differences between peer, but increase the potential
109
 *  degree of disordering of blocks on disk (which make reindexing and pruning harder). We'll probably
110
 *  want to make this a per-peer adaptive value at some point. */
111
static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
112
/** Block download timeout base, expressed in multiples of the block interval (i.e. 10 min) */
113
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
114
/** Additional block download timeout per parallel downloading peer (i.e. 5 min) */
115
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
116
/** Maximum number of headers to announce when relaying blocks with headers message.*/
117
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
118
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
119
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
120
/** Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers */
121
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
122
/** Average delay between local address broadcasts */
123
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
124
/** Average delay between peer address broadcasts */
125
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
126
/** Delay between rotating the peers we relay a particular address to */
127
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
128
/** Average delay between trickled inventory transmissions for inbound peers.
129
 *  Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
130
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
131
/** Average delay between trickled inventory transmissions for outbound peers.
132
 *  Use a smaller delay as there is less privacy concern for them.
133
 *  Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */
134
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
135
/** Maximum rate of inventory items to send per second.
136
 *  Limits the impact of low-fee transaction floods. */
137
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
138
/** Target number of tx inventory items to send per transmission. */
139
static constexpr unsigned int INVENTORY_BROADCAST_TARGET = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL);
140
/** Maximum number of inventory items to send per transmission. */
141
static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
142
static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
143
static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
144
/** Average delay between feefilter broadcasts in seconds. */
145
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
146
/** Maximum feefilter broadcast delay after significant change. */
147
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
148
/** Maximum number of compact filters that may be requested with one getcfilters. See BIP 157. */
149
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
150
/** Maximum number of cf hashes that may be requested with one getcfheaders. See BIP 157. */
151
static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
152
/** the maximum percentage of addresses from our addrman to return in response to a getaddr message. */
153
static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
154
/** The maximum number of address records permitted in an ADDR message. */
155
static constexpr size_t MAX_ADDR_TO_SEND{1000};
156
/** The maximum rate of address records we're willing to process on average. Can be bypassed using
157
 *  the NetPermissionFlags::Addr permission. */
158
static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
159
/** The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND
160
 *  based increments won't go above this, but the MAX_ADDR_TO_SEND increment following GETADDR
161
 *  is exempt from this limit). */
162
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND};
163
/** The compactblocks version we support. See BIP 152. */
164
static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
165
166
// Internal stuff
167
namespace {
168
/** Blocks that are in flight, and that are in the queue to be downloaded. */
169
struct QueuedBlock {
170
    /** BlockIndex. We must have this since we only request blocks when we've already validated the header. */
171
    const CBlockIndex* pindex;
172
    /** Optional, used for CMPCTBLOCK downloads */
173
    std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
174
};
175
176
/**
177
 * Data structure for an individual peer. This struct is not protected by
178
 * cs_main since it does not contain validation-critical data.
179
 *
180
 * Memory is owned by shared pointers and this object is destructed when
181
 * the refcount drops to zero.
182
 *
183
 * Mutexes inside this struct must not be held when locking m_peer_mutex.
184
 *
185
 * TODO: move most members from CNodeState to this structure.
186
 * TODO: move remaining application-layer data members from CNode to this structure.
187
 */
188
struct Peer {
189
    /** Same id as the CNode object for this peer */
190
    const NodeId m_id{0};
191
192
    /** Services we offered to this peer.
193
     *
194
     *  This is supplied by CConnman during peer initialization. It's const
195
     *  because there is no protocol defined for renegotiating services
196
     *  initially offered to a peer. The set of local services we offer should
197
     *  not change after initialization.
198
     *
199
     *  An interesting example of this is NODE_NETWORK and initial block
200
     *  download: a node which starts up from scratch doesn't have any blocks
201
     *  to serve, but still advertises NODE_NETWORK because it will eventually
202
     *  fulfill this role after IBD completes. P2P code is written in such a
203
     *  way that it can gracefully handle peers who don't make good on their
204
     *  service advertisements. */
205
    const ServiceFlags m_our_services;
206
    /** Services this peer offered to us. */
207
    std::atomic<ServiceFlags> m_their_services{NODE_NONE};
208
209
    //! Whether this peer is an inbound connection
210
    const bool m_is_inbound;
211
212
    /** Protects misbehavior data members */
213
    Mutex m_misbehavior_mutex;
214
    /** Whether this peer should be disconnected and marked as discouraged (unless it has NetPermissionFlags::NoBan permission). */
215
    bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
216
217
    /** Protects block inventory data members */
218
    Mutex m_block_inv_mutex;
219
    /** List of blocks that we'll announce via an `inv` message.
220
     * There is no final sorting before sending, as they are always sent
221
     * immediately and in the order requested. */
222
    std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
223
    /** Unfiltered list of blocks that we'd like to announce via a `headers`
224
     * message. If we can't announce via a `headers` message, we'll fall back to
225
     * announcing via `inv`. */
226
    std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
227
    /** The final block hash that we sent in an `inv` message to this peer.
228
     * When the peer requests this block, we send an `inv` message to trigger
229
     * the peer to request the next sequence of block hashes.
230
     * Most peers use headers-first syncing, which doesn't use this mechanism */
231
    uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
232
233
    /** Set to true once initial VERSION message was sent (only relevant for outbound peers). */
234
    bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
235
236
    /** This peer's reported block height when we connected */
237
    std::atomic<int> m_starting_height{-1};
238
239
    /** The pong reply we're expecting, or 0 if no pong expected. */
240
    std::atomic<uint64_t> m_ping_nonce_sent{0};
241
    /** When the last ping was sent, or 0 if no ping was ever sent */
242
    std::atomic<std::chrono::microseconds> m_ping_start{0us};
243
    /** Whether a ping has been requested by the user */
244
    std::atomic<bool> m_ping_queued{false};
245
246
    /** Whether this peer relays txs via wtxid */
247
    std::atomic<bool> m_wtxid_relay{false};
248
    /** The feerate in the most recent BIP133 `feefilter` message sent to the peer.
249
     *  It is *not* a p2p protocol violation for the peer to send us
250
     *  transactions with a lower fee rate than this. See BIP133. */
251
    CAmount m_fee_filter_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
252
    /** Timestamp after which we will send the next BIP133 `feefilter` message
253
      * to the peer. */
254
    std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
255
256
    struct TxRelay {
257
        mutable RecursiveMutex m_bloom_filter_mutex;
258
        /** Whether we relay transactions to this peer. */
259
        bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
260
        /** A bloom filter for which transactions to announce to the peer. See BIP37. */
261
        std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
262
263
        mutable RecursiveMutex m_tx_inventory_mutex;
264
        /** A filter of all the (w)txids that the peer has announced to
265
         *  us or we have announced to the peer. We use this to avoid announcing
266
         *  the same (w)txid to a peer that already has the transaction. */
267
        CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
268
        /** Set of transaction ids we still have to announce (txid for
269
         *  non-wtxid-relay peers, wtxid for wtxid-relay peers). We use the
270
         *  mempool to sort transactions in dependency order before relay, so
271
         *  this does not have to be sorted. */
272
        std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
273
        /** Whether the peer has requested us to send our complete mempool. Only
274
         *  permitted if the peer has NetPermissionFlags::Mempool or we advertise
275
         *  NODE_BLOOM. See BIP35. */
276
        bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
277
        /** The next time after which we will send an `inv` message containing
278
         *  transaction announcements to this peer. */
279
        std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
280
        /** The mempool sequence num at which we sent the last `inv` message to this peer.
281
         *  Can relay txs with lower sequence numbers than this (see CTxMempool::info_for_relay). */
282
        uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
283
284
        /** Minimum fee rate with which to filter transaction announcements to this node. See BIP133. */
285
        std::atomic<CAmount> m_fee_filter_received{0};
286
    };
287
288
    /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
289
    TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
290
0
    {
291
0
        LOCK(m_tx_relay_mutex);
292
0
        Assume(!m_tx_relay);
293
0
        m_tx_relay = std::make_unique<Peer::TxRelay>();
294
0
        return m_tx_relay.get();
295
0
    };
296
297
    TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
298
0
    {
299
0
        return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
300
0
    };
301
302
    /** A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */
303
    std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
304
    /** Probabilistic filter to track recent addr messages relayed with this
305
     *  peer. Used to avoid relaying redundant addresses to this peer.
306
     *
307
     *  We initialize this filter for outbound peers (other than
308
     *  block-relay-only connections) or when an inbound peer sends us an
309
     *  address related message (ADDR, ADDRV2, GETADDR).
310
     *
311
     *  Presence of this filter must correlate with m_addr_relay_enabled.
312
     **/
313
    std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
314
    /** Whether we are participating in address relay with this connection.
315
     *
316
     *  We set this bool to true for outbound peers (other than
317
     *  block-relay-only connections), or when an inbound peer sends us an
318
     *  address related message (ADDR, ADDRV2, GETADDR).
319
     *
320
     *  We use this bool to decide whether a peer is eligible for gossiping
321
     *  addr messages. This avoids relaying to peers that are unlikely to
322
     *  forward them, effectively blackholing self announcements. Reasons
323
     *  peers might support addr relay on the link include that they connected
324
     *  to us as a block-relay-only peer or they are a light client.
325
     *
326
     *  This field must correlate with whether m_addr_known has been
327
     *  initialized.*/
328
    std::atomic_bool m_addr_relay_enabled{false};
329
    /** Whether a getaddr request to this peer is outstanding. */
330
    bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
331
    /** Guards address sending timers. */
332
    mutable Mutex m_addr_send_times_mutex;
333
    /** Time point to send the next ADDR message to this peer. */
334
    std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
335
    /** Time point to possibly re-announce our local address to this peer. */
336
    std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
337
    /** Whether the peer has signaled support for receiving ADDRv2 (BIP155)
338
     *  messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */
339
    std::atomic_bool m_wants_addrv2{false};
340
    /** Whether this peer has already sent us a getaddr message. */
341
    bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
342
    /** Number of addresses that can be processed from this peer. Start at 1 to
343
     *  permit self-announcement. */
344
    double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
345
    /** When m_addr_token_bucket was last updated */
346
    std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
347
    /** Total number of addresses that were dropped due to rate limiting. */
348
    std::atomic<uint64_t> m_addr_rate_limited{0};
349
    /** Total number of addresses that were processed (excludes rate-limited ones). */
350
    std::atomic<uint64_t> m_addr_processed{0};
351
352
    /** Whether we've sent this peer a getheaders in response to an inv prior to initial-headers-sync completing */
353
    bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
354
355
    /** Protects m_getdata_requests **/
356
    Mutex m_getdata_requests_mutex;
357
    /** Work queue of items requested by this peer **/
358
    std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
359
360
    /** Time of the last getheaders message to this peer */
361
    NodeClock::time_point m_last_getheaders_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){};
362
363
    /** Protects m_headers_sync **/
364
    Mutex m_headers_sync_mutex;
365
    /** Headers-sync state for this peer (eg for initial sync, or syncing large
366
     * reorgs) **/
367
    std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
368
369
    /** Whether we've sent our peer a sendheaders message. **/
370
    std::atomic<bool> m_sent_sendheaders{false};
371
372
    /** When to potentially disconnect peer for stalling headers download */
373
    std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
374
375
    /** Whether this peer wants invs or headers (when possible) for block announcements */
376
    bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
377
378
    /** Time offset computed during the version handshake based on the
379
     * timestamp the peer sent in the version message. */
380
    std::atomic<std::chrono::seconds> m_time_offset{0s};
381
382
    explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
383
0
        : m_id{id}
384
0
        , m_our_services{our_services}
385
0
        , m_is_inbound{is_inbound}
386
0
    {}
387
388
private:
389
    mutable Mutex m_tx_relay_mutex;
390
391
    /** Transaction relay data. May be a nullptr. */
392
    std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
393
};
394
395
using PeerRef = std::shared_ptr<Peer>;
396
397
/**
398
 * Maintain validation-specific state about nodes, protected by cs_main, instead
399
 * by CNode's own locks. This simplifies asynchronous operation, where
400
 * processing of incoming data is done after the ProcessMessage call returns,
401
 * and we're no longer holding the node's locks.
402
 */
403
struct CNodeState {
404
    //! The best known block we know this peer has announced.
405
    const CBlockIndex* pindexBestKnownBlock{nullptr};
406
    //! The hash of the last unknown block this peer has announced.
407
    uint256 hashLastUnknownBlock{};
408
    //! The last full block we both have.
409
    const CBlockIndex* pindexLastCommonBlock{nullptr};
410
    //! The best header we have sent our peer.
411
    const CBlockIndex* pindexBestHeaderSent{nullptr};
412
    //! Whether we've started headers synchronization with this peer.
413
    bool fSyncStarted{false};
414
    //! Since when we're stalling block download progress (in microseconds), or 0.
415
    std::chrono::microseconds m_stalling_since{0us};
416
    std::list<QueuedBlock> vBlocksInFlight;
417
    //! When the first entry in vBlocksInFlight started downloading. Don't care when vBlocksInFlight is empty.
418
    std::chrono::microseconds m_downloading_since{0us};
419
    //! Whether we consider this a preferred download peer.
420
    bool fPreferredDownload{false};
421
    /** Whether this peer wants invs or cmpctblocks (when possible) for block announcements. */
422
    bool m_requested_hb_cmpctblocks{false};
423
    /** Whether this peer will send us cmpctblocks if we request them. */
424
    bool m_provides_cmpctblocks{false};
425
426
    /** State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL logic.
427
      *
428
      * Both are only in effect for outbound, non-manual, non-protected connections.
429
      * Any peer protected (m_protect = true) is not chosen for eviction. A peer is
430
      * marked as protected if all of these are true:
431
      *   - its connection type is IsBlockOnlyConn() == false
432
      *   - it gave us a valid connecting header
433
      *   - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet
434
      *   - its chain tip has at least as much work as ours
435
      *
436
      * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our tip,
437
      * set a timeout CHAIN_SYNC_TIMEOUT in the future:
438
      *   - If at timeout their best known block now has more work than our tip
439
      *     when the timeout was set, then either reset the timeout or clear it
440
      *     (after comparing against our current tip's work)
441
      *   - If at timeout their best known block still has less work than our
442
      *     tip did when the timeout was set, then send a getheaders message,
443
      *     and set a shorter timeout, HEADERS_RESPONSE_TIME seconds in future.
444
      *     If their best known block is still behind when that new timeout is
445
      *     reached, disconnect.
446
      *
447
      * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many outbound peers,
448
      * drop the outbound one that least recently announced us a new block.
449
      */
450
    struct ChainSyncTimeoutState {
451
        //! A timeout used for checking whether our peer has sufficiently synced
452
        std::chrono::seconds m_timeout{0s};
453
        //! A header with the work we require on our peer's chain
454
        const CBlockIndex* m_work_header{nullptr};
455
        //! After timeout is reached, set to true after sending getheaders
456
        bool m_sent_getheaders{false};
457
        //! Whether this peer is protected from disconnection due to a bad/slow chain
458
        bool m_protect{false};
459
    };
460
461
    ChainSyncTimeoutState m_chain_sync;
462
463
    //! Time of last new block announcement
464
    int64_t m_last_block_announcement{0};
465
};
466
467
class PeerManagerImpl final : public PeerManager
468
{
469
public:
470
    PeerManagerImpl(CConnman& connman, AddrMan& addrman,
471
                    BanMan* banman, ChainstateManager& chainman,
472
                    CTxMemPool& pool, node::Warnings& warnings, Options opts);
473
474
    /** Overridden from CValidationInterface. */
475
    void ActiveTipChange(const CBlockIndex& new_tip, bool) override
476
        EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
477
    void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
478
        EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
479
    void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
480
        EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
481
    void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
482
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
483
    void BlockChecked(const CBlock& block, const BlockValidationState& state) override
484
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
485
    void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
486
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
487
488
    /** Implement NetEventsInterface */
489
    void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
490
    void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
491
    bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
492
    bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
493
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
494
    bool SendMessages(CNode* pto) override
495
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
496
497
    /** Implement PeerManager */
498
    void StartScheduledTasks(CScheduler& scheduler) override;
499
    void CheckForStaleTipAndEvictPeers() override;
500
    std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
501
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
502
    bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
503
    std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
504
    PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
505
    void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
506
    void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
507
    void SetBestBlock(int height, std::chrono::seconds time) override
508
0
    {
509
0
        m_best_height = height;
510
0
        m_best_block_time = time;
511
0
    };
512
0
    void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
513
    void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
514
                        const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
515
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
516
    void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
517
    ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
518
519
private:
520
    /** Consider evicting an outbound peer based on the amount of time they've been behind our tip */
521
    void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
522
523
    /** If we have extra outbound peers, try to disconnect the one with the oldest block announcement */
524
    void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
525
526
    /** Retrieve unbroadcast transactions from the mempool and reattempt sending to peers */
527
    void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
528
529
    /** Get a shared pointer to the Peer object.
530
     *  May return an empty shared_ptr if the Peer object can't be found. */
531
    PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
532
533
    /** Get a shared pointer to the Peer object and remove it from m_peer_map.
534
     *  May return an empty shared_ptr if the Peer object can't be found. */
535
    PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536
537
    /** Mark a peer as misbehaving, which will cause it to be disconnected and its
538
     *  address discouraged. */
539
    void Misbehaving(Peer& peer, const std::string& message);
540
541
    /**
542
     * Potentially mark a node discouraged based on the contents of a BlockValidationState object
543
     *
544
     * @param[in] via_compact_block this bool is passed in because net_processing should
545
     * punish peers differently depending on whether the data was provided in a compact
546
     * block message or not. If the compact block had a valid header, but contained invalid
547
     * txs, the peer should not be punished. See BIP 152.
548
     */
549
    void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
550
                                 bool via_compact_block, const std::string& message = "")
551
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
552
553
    /**
554
     * Potentially disconnect and discourage a node based on the contents of a TxValidationState object
555
     */
556
    void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
557
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
558
559
    /** Maybe disconnect a peer and discourage future connections from its address.
560
     *
561
     * @param[in]   pnode     The node to check.
562
     * @param[in]   peer      The peer object to check.
563
     * @return                True if the peer was marked for disconnection in this function
564
     */
565
    bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
566
567
    /** Handle a transaction whose result was not MempoolAcceptResult::ResultType::VALID.
568
     * @param[in]   first_time_failure            Whether we should consider inserting into vExtraTxnForCompact, adding
569
     *                                            a new orphan to resolve, or looking for a package to submit.
570
     *                                            Set to true for transactions just received over p2p.
571
     *                                            Set to false if the tx has already been rejected before,
572
     *                                            e.g. is already in the orphanage, to avoid adding duplicate entries.
573
     * Updates m_txrequest, m_lazy_recent_rejects, m_lazy_recent_rejects_reconsiderable, m_orphanage, and vExtraTxnForCompact.
574
     *
575
     * @returns a PackageToValidate if this transaction has a reconsiderable failure and an eligible package was found,
576
     * or std::nullopt otherwise.
577
     */
578
    std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
579
                                                      bool first_time_failure)
580
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
581
582
    /** Handle a transaction whose result was MempoolAcceptResult::ResultType::VALID.
583
     * Updates m_txrequest, m_orphanage, and vExtraTxnForCompact. Also queues the tx for relay. */
584
    void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
585
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
586
587
    /** Handle the results of package validation: calls ProcessValidTx and ProcessInvalidTx for
588
     * individual transactions, and caches rejection for the package as a group.
589
     */
590
    void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
591
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
592
593
    /**
594
     * Reconsider orphan transactions after a parent has been accepted to the mempool.
595
     *
596
     * @peer[in]  peer     The peer whose orphan transactions we will reconsider. Generally only
597
     *                     one orphan will be reconsidered on each call of this function. If an
598
     *                     accepted orphan has orphaned children, those will need to be
599
     *                     reconsidered, creating more work, possibly for other peers.
600
     * @return             True if meaningful work was done (an orphan was accepted/rejected).
601
     *                     If no meaningful work was done, then the work set for this peer
602
     *                     will be empty.
603
     */
604
    bool ProcessOrphanTx(Peer& peer)
605
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
606
607
    /** Process a single headers message from a peer.
608
     *
609
     * @param[in]   pfrom     CNode of the peer
610
     * @param[in]   peer      The peer sending us the headers
611
     * @param[in]   headers   The headers received. Note that this may be modified within ProcessHeadersMessage.
612
     * @param[in]   via_compact_block   Whether this header came in via compact block handling.
613
    */
614
    void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
615
                               std::vector<CBlockHeader>&& headers,
616
                               bool via_compact_block)
617
        EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
618
    /** Various helpers for headers processing, invoked by ProcessHeadersMessage() */
619
    /** Return true if headers are continuous and have valid proof-of-work (DoS points assigned on failure) */
620
    bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
621
    /** Calculate an anti-DoS work threshold for headers chains */
622
    arith_uint256 GetAntiDoSWorkThreshold();
623
    /** Deal with state tracking and headers sync for peers that send
624
     * non-connecting headers (this can happen due to BIP 130 headers
625
     * announcements for blocks interacting with the 2hr (MAX_FUTURE_BLOCK_TIME) rule). */
626
    void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
627
    /** Return true if the headers connect to each other, false otherwise */
628
    bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
629
    /** Try to continue a low-work headers sync that has already begun.
630
     * Assumes the caller has already verified the headers connect, and has
631
     * checked that each header satisfies the proof-of-work target included in
632
     * the header.
633
     *  @param[in]  peer                            The peer we're syncing with.
634
     *  @param[in]  pfrom                           CNode of the peer
635
     *  @param[in,out] headers                      The headers to be processed.
636
     *  @return     True if the passed in headers were successfully processed
637
     *              as the continuation of a low-work headers sync in progress;
638
     *              false otherwise.
639
     *              If false, the passed in headers will be returned back to
640
     *              the caller.
641
     *              If true, the returned headers may be empty, indicating
642
     *              there is no more work for the caller to do; or the headers
643
     *              may be populated with entries that have passed anti-DoS
644
     *              checks (and therefore may be validated for block index
645
     *              acceptance by the caller).
646
     */
647
    bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
648
            std::vector<CBlockHeader>& headers)
649
        EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
650
    /** Check work on a headers chain to be processed, and if insufficient,
651
     * initiate our anti-DoS headers sync mechanism.
652
     *
653
     * @param[in]   peer                The peer whose headers we're processing.
654
     * @param[in]   pfrom               CNode of the peer
655
     * @param[in]   chain_start_header  Where these headers connect in our index.
656
     * @param[in,out]   headers             The headers to be processed.
657
     *
658
     * @return      True if chain was low work (headers will be empty after
659
     *              calling); false otherwise.
660
     */
661
    bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
662
                                  const CBlockIndex* chain_start_header,
663
                                  std::vector<CBlockHeader>& headers)
664
        EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
665
666
    /** Return true if the given header is an ancestor of
667
     *  m_chainman.m_best_header or our current tip */
668
    bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
669
670
    /** Request further headers from this peer with a given locator.
671
     * We don't issue a getheaders message if we have a recent one outstanding.
672
     * This returns true if a getheaders is actually sent, and false otherwise.
673
     */
674
    bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
675
    /** Potentially fetch blocks from this peer upon receipt of a new headers tip */
676
    void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
677
    /** Update peer state based on received headers message */
678
    void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
679
        EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
680
681
    void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
682
683
    /** Send a message to a peer */
684
0
    void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
685
    template <typename... Args>
686
    void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
687
0
    {
688
0
        m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
689
0
    }
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJbRKmEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRSt6vectorI4CInvSaIS3_EEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRKiRmRKlS4_13ParamsWrapperIN8CNetAddr9SerParamsE8CServiceES4_SB_S4_RNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEES3_RKbEEEvR5CNodeSH_DpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRKjRKmEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRKSt5arrayISt4byteLm168EEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRK13CBlockLocator7uint256EEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJ13ParamsWrapperI20TransactionSerParamsK12CTransactionEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJ4SpanIhEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJ13ParamsWrapperI20TransactionSerParamsK6CBlockEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJR12CMerkleBlockEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRK25CBlockHeaderAndShortTxIDsEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJR25CBlockHeaderAndShortTxIDsEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJR17BlockTransactionsEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJSt6vectorI12CBlockHeaderSaIS3_EEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJ13ParamsWrapperI20TransactionSerParamsSt6vectorI6CBlockSaIS5_EEEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJR24BlockTransactionsRequestEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRmEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRK11BlockFilterEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRh7uint256RS3_RSt6vectorIS3_SaIS3_EEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRh7uint256RSt6vectorIS3_SaIS3_EEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJ13ParamsWrapperIN8CAddress9SerParamsESt6vectorIS3_SaIS3_EEEEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
Unexecuted instantiation: net_processing.cpp:_ZNK12_GLOBAL__N_115PeerManagerImpl18MakeAndPushMessageIJRlEEEvR5CNodeNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEDpOT_
690
691
    /** Send a version message to a peer */
692
    void PushNodeVersion(CNode& pnode, const Peer& peer);
693
694
    /** Send a ping message every PING_INTERVAL or if requested via RPC. May
695
     *  mark the peer to be disconnected if a ping has timed out.
696
     *  We use mockable time for ping timeouts, so setmocktime may cause pings
697
     *  to time out. */
698
    void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
699
700
    /** Send `addr` messages on a regular schedule. */
701
    void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
702
703
    /** Send a single `sendheaders` message, after we have completed headers sync with a peer. */
704
    void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
705
706
    /** Relay (gossip) an address to a few randomly chosen nodes.
707
     *
708
     * @param[in] originator   The id of the peer that sent us the address. We don't want to relay it back.
709
     * @param[in] addr         Address to relay.
710
     * @param[in] fReachable   Whether the address' network is reachable. We relay unreachable
711
     *                         addresses less.
712
     */
713
    void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
714
715
    /** Send `feefilter` message. */
716
    void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
717
718
    FastRandomContext m_rng GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
719
720
    FeeFilterRounder m_fee_filter_rounder GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
721
722
    const CChainParams& m_chainparams;
723
    CConnman& m_connman;
724
    AddrMan& m_addrman;
725
    /** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
726
    BanMan* const m_banman;
727
    ChainstateManager& m_chainman;
728
    CTxMemPool& m_mempool;
729
730
    /** Synchronizes tx download including TxRequestTracker, rejection filters, and TxOrphanage.
731
     * Lock invariants:
732
     * - A txhash (txid or wtxid) in m_txrequest is not also in m_orphanage.
733
     * - A txhash (txid or wtxid) in m_txrequest is not also in m_lazy_recent_rejects.
734
     * - A txhash (txid or wtxid) in m_txrequest is not also in m_lazy_recent_rejects_reconsiderable.
735
     * - A txhash (txid or wtxid) in m_txrequest is not also in m_lazy_recent_confirmed_transactions.
736
     * - Each data structure's limits hold (m_orphanage max size, m_txrequest per-peer limits, etc).
737
     */
738
    Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
739
    node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
740
741
    std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
742
743
    /** The height of the best chain */
744
    std::atomic<int> m_best_height{-1};
745
    /** The time of the best chain tip block */
746
    std::atomic<std::chrono::seconds> m_best_block_time{0s};
747
748
    /** Next time to check for stale tip */
749
    std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
750
751
    node::Warnings& m_warnings;
752
    TimeOffsets m_outbound_time_offsets{m_warnings};
753
754
    const Options m_opts;
755
756
    bool RejectIncomingTxs(const CNode& peer) const;
757
758
    /** Whether we've completed initial sync yet, for determining when to turn
759
      * on extra block-relay-only peers. */
760
    bool m_initial_sync_finished GUARDED_BY(cs_main){false};
761
762
    /** Protects m_peer_map. This mutex must not be locked while holding a lock
763
     *  on any of the mutexes inside a Peer object. */
764
    mutable Mutex m_peer_mutex;
765
    /**
766
     * Map of all Peer objects, keyed by peer id. This map is protected
767
     * by the m_peer_mutex. Once a shared pointer reference is
768
     * taken, the lock may be released. Individual fields are protected by
769
     * their own locks.
770
     */
771
    std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
772
773
    /** Map maintaining per-node state. */
774
    std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
775
776
    /** Get a pointer to a const CNodeState, used when not mutating the CNodeState object. */
777
    const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
778
    /** Get a pointer to a mutable CNodeState. */
779
    CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
780
781
    uint32_t GetFetchFlags(const Peer& peer) const;
782
783
    std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
784
785
    /** Number of nodes with fSyncStarted. */
786
    int nSyncStarted GUARDED_BY(cs_main) = 0;
787
788
    /** Hash of the last block we received via INV */
789
    uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
790
791
    /**
792
     * Sources of received blocks, saved to be able punish them when processing
793
     * happens afterwards.
794
     * Set mapBlockSource[hash].second to false if the node should not be
795
     * punished if the block is invalid.
796
     */
797
    std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
798
799
    /** Number of peers with wtxid relay. */
800
    std::atomic<int> m_wtxid_relay_peers{0};
801
802
    /** Number of outbound peers with m_chain_sync.m_protect. */
803
    int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
804
805
    /** Number of preferable block download peers. */
806
    int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
807
808
    /** Stalling timeout for blocks in IBD */
809
    std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
810
811
    /**
812
     * For sending `inv`s to inbound peers, we use a single (exponentially
813
     * distributed) timer for all peers. If we used a separate timer for each
814
     * peer, a spy node could make multiple inbound connections to us to
815
     * accurately determine when we received the transaction (and potentially
816
     * determine the transaction's origin). */
817
    std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
818
                                                std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
819
820
821
    // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
822
    Mutex m_most_recent_block_mutex;
823
    std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
824
    std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
825
    uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
826
    std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
827
828
    // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
829
    /** Mutex guarding the other m_headers_presync_* variables. */
830
    Mutex m_headers_presync_mutex;
831
    /** A type to represent statistics about a peer's low-work headers sync.
832
     *
833
     * - The first field is the total verified amount of work in that synchronization.
834
     * - The second is:
835
     *   - nullopt: the sync is in REDOWNLOAD phase (phase 2).
836
     *   - {height, timestamp}: the sync has the specified tip height and block timestamp (phase 1).
837
     */
838
    using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
839
    /** Statistics for all peers in low-work headers sync. */
840
    std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
841
    /** The peer with the most-work entry in m_headers_presync_stats. */
842
    NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
843
    /** The m_headers_presync_stats improved, and needs signalling. */
844
    std::atomic_bool m_headers_presync_should_signal{false};
845
846
    /** Height of the highest block announced using BIP 152 high-bandwidth mode. */
847
    int m_highest_fast_announce GUARDED_BY(::cs_main){0};
848
849
    /** Have we requested this block from a peer */
850
    bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
851
852
    /** Have we requested this block from an outbound peer */
853
    bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
854
855
    /** Remove this block from our tracked requested blocks. Called if:
856
     *  - the block has been received from a peer
857
     *  - the request for the block has timed out
858
     * If "from_peer" is specified, then only remove the block if it is in
859
     * flight from that peer (to avoid one peer's network traffic from
860
     * affecting another's state).
861
     */
862
    void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
863
864
    /* Mark a block as in flight
865
     * Returns false, still setting pit, if the block was already in flight from the same peer
866
     * pit will only be valid as long as the same cs_main lock is being held
867
     */
868
    bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
869
870
    bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
871
872
    /** Update pindexLastCommonBlock and add not-in-flight missing successors to vBlocks, until it has
873
     *  at most count entries.
874
     */
875
    void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
876
877
    /** Request blocks for the background chainstate, if one is in use. */
878
    void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
879
880
    /**
881
    * \brief Find next blocks to download from a peer after a starting block.
882
    *
883
    * \param vBlocks      Vector of blocks to download which will be appended to.
884
    * \param peer         Peer which blocks will be downloaded from.
885
    * \param state        Pointer to the state of the peer.
886
    * \param pindexWalk   Pointer to the starting block to add to vBlocks.
887
    * \param count        Maximum number of blocks to allow in vBlocks. No more
888
    *                     blocks will be added if it reaches this size.
889
    * \param nWindowEnd   Maximum height of blocks to allow in vBlocks. No
890
    *                     blocks will be added above this height.
891
    * \param activeChain  Optional pointer to a chain to compare against. If
892
    *                     provided, any next blocks which are already contained
893
    *                     in this chain will not be appended to vBlocks, but
894
    *                     instead will be used to update the
895
    *                     state->pindexLastCommonBlock pointer.
896
    * \param nodeStaller  Optional pointer to a NodeId variable that will receive
897
    *                     the ID of another peer that might be causing this peer
898
    *                     to stall. This is set to the ID of the peer which
899
    *                     first requested the first in-flight block in the
900
    *                     download window. It is only set if vBlocks is empty at
901
    *                     the end of this function call and if increasing
902
    *                     nWindowEnd by 1 would cause it to be non-empty (which
903
    *                     indicates the download might be stalled because every
904
    *                     block in the window is in flight and no other peer is
905
    *                     trying to download the next block).
906
    */
907
    void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
908
909
    /* Multimap used to preserve insertion order */
910
    typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
911
    BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
912
913
    /** When our tip was last updated. */
914
    std::atomic<std::chrono::seconds> m_last_tip_update{0s};
915
916
    /** Determine whether or not a peer can request a transaction, and return it (or nullptr if not found or not allowed). */
917
    CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
918
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, NetEventsInterface::g_msgproc_mutex);
919
920
    void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
921
        EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
922
        LOCKS_EXCLUDED(::cs_main);
923
924
    /** Process a new block. Perform any post-processing housekeeping */
925
    void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
926
927
    /** Process compact block txns  */
928
    void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
929
        EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
930
931
    /**
932
     * When a peer sends us a valid block, instruct it to announce blocks to us
933
     * using CMPCTBLOCK if possible by adding its nodeid to the end of
934
     * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
935
     * removing the first element if necessary.
936
     */
937
    void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
938
939
    /** Stack of nodes which we have set to announce using compact blocks */
940
    std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
941
942
    /** Number of peers from which we're downloading blocks. */
943
    int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
944
945
    void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
946
947
    /** Orphan/conflicted/etc transactions that are kept for compact block reconstruction.
948
     *  The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of
949
     *  these are kept in a ring buffer */
950
    std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
951
    /** Offset into vExtraTxnForCompact to insert the next tx */
952
    size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
953
954
    /** Check whether the last unknown block a peer advertised is not yet known. */
955
    void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
956
    /** Update tracking information about which blocks a peer is assumed to have. */
957
    void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
958
    bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
959
960
    /**
961
     * Estimates the distance, in blocks, between the best-known block and the network chain tip.
962
     * Utilizes the best-block time and the chainparams blocks spacing to approximate it.
963
     */
964
    int64_t ApproximateBestBlockDepth() const;
965
966
    /**
967
     * To prevent fingerprinting attacks, only send blocks/headers outside of
968
     * the active chain if they are no more than a month older (both in time,
969
     * and in best equivalent proof of work) than the best header chain we know
970
     * about and we fully-validated them at some point.
971
     */
972
    bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
973
    bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
974
    void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
975
        EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
976
977
    /**
978
     * Validation logic for compact filters request handling.
979
     *
980
     * May disconnect from the peer in the case of a bad request.
981
     *
982
     * @param[in]   node            The node that we received the request from
983
     * @param[in]   peer            The peer that we received the request from
984
     * @param[in]   filter_type     The filter type the request is for. Must be basic filters.
985
     * @param[in]   start_height    The start height for the request
986
     * @param[in]   stop_hash       The stop_hash for the request
987
     * @param[in]   max_height_diff The maximum number of items permitted to request, as specified in BIP 157
988
     * @param[out]  stop_index      The CBlockIndex for the stop_hash block, if the request can be serviced.
989
     * @param[out]  filter_index    The filter index, if the request can be serviced.
990
     * @return                      True if the request can be serviced.
991
     */
992
    bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
993
                                   BlockFilterType filter_type, uint32_t start_height,
994
                                   const uint256& stop_hash, uint32_t max_height_diff,
995
                                   const CBlockIndex*& stop_index,
996
                                   BlockFilterIndex*& filter_index);
997
998
    /**
999
     * Handle a cfilters request.
1000
     *
1001
     * May disconnect from the peer in the case of a bad request.
1002
     *
1003
     * @param[in]   node            The node that we received the request from
1004
     * @param[in]   peer            The peer that we received the request from
1005
     * @param[in]   vRecv           The raw message received
1006
     */
1007
    void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1008
1009
    /**
1010
     * Handle a cfheaders request.
1011
     *
1012
     * May disconnect from the peer in the case of a bad request.
1013
     *
1014
     * @param[in]   node            The node that we received the request from
1015
     * @param[in]   peer            The peer that we received the request from
1016
     * @param[in]   vRecv           The raw message received
1017
     */
1018
    void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1019
1020
    /**
1021
     * Handle a getcfcheckpt request.
1022
     *
1023
     * May disconnect from the peer in the case of a bad request.
1024
     *
1025
     * @param[in]   node            The node that we received the request from
1026
     * @param[in]   peer            The peer that we received the request from
1027
     * @param[in]   vRecv           The raw message received
1028
     */
1029
    void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1030
1031
    /** Checks if address relay is permitted with peer. If needed, initializes
1032
     * the m_addr_known bloom filter and sets m_addr_relay_enabled to true.
1033
     *
1034
     *  @return   True if address relay is enabled with peer
1035
     *            False if address relay is disallowed
1036
     */
1037
    bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1038
1039
    void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1040
    void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1041
};
1042
1043
const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1044
0
{
1045
0
    std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1046
0
    if (it == m_node_states.end())
1047
0
        return nullptr;
1048
0
    return &it->second;
1049
0
}
1050
1051
CNodeState* PeerManagerImpl::State(NodeId pnode)
1052
0
{
1053
0
    return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1054
0
}
1055
1056
/**
1057
 * Whether the peer supports the address. For example, a peer that does not
1058
 * implement BIP155 cannot receive Tor v3 addresses because it requires
1059
 * ADDRv2 (BIP155) encoding.
1060
 */
1061
static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1062
0
{
1063
0
    return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1064
0
}
1065
1066
void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1067
0
{
1068
0
    assert(peer.m_addr_known);
1069
0
    peer.m_addr_known->insert(addr.GetKey());
1070
0
}
1071
1072
void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1073
0
{
1074
    // Known checking here is only to save space from duplicates.
1075
    // Before sending, we'll filter it again for known addresses that were
1076
    // added after addresses were pushed.
1077
0
    assert(peer.m_addr_known);
1078
0
    if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1079
0
        if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1080
0
            peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1081
0
        } else {
1082
0
            peer.m_addrs_to_send.push_back(addr);
1083
0
        }
1084
0
    }
1085
0
}
1086
1087
static void AddKnownTx(Peer& peer, const uint256& hash)
1088
0
{
1089
0
    auto tx_relay = peer.GetTxRelay();
1090
0
    if (!tx_relay) return;
1091
1092
0
    LOCK(tx_relay->m_tx_inventory_mutex);
1093
0
    tx_relay->m_tx_inventory_known_filter.insert(hash);
1094
0
}
1095
1096
/** Whether this peer can serve us blocks. */
1097
static bool CanServeBlocks(const Peer& peer)
1098
0
{
1099
0
    return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1100
0
}
1101
1102
/** Whether this peer can only serve limited recent blocks (e.g. because
1103
 *  it prunes old blocks) */
1104
static bool IsLimitedPeer(const Peer& peer)
1105
0
{
1106
0
    return (!(peer.m_their_services & NODE_NETWORK) &&
1107
0
             (peer.m_their_services & NODE_NETWORK_LIMITED));
1108
0
}
1109
1110
/** Whether this peer can serve us witness data */
1111
static bool CanServeWitnesses(const Peer& peer)
1112
0
{
1113
0
    return peer.m_their_services & NODE_WITNESS;
1114
0
}
1115
1116
std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1117
                                                             std::chrono::seconds average_interval)
1118
0
{
1119
0
    if (m_next_inv_to_inbounds.load() < now) {
1120
        // If this function were called from multiple threads simultaneously
1121
        // it would possible that both update the next send variable, and return a different result to their caller.
1122
        // This is not possible in practice as only the net processing thread invokes this function.
1123
0
        m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1124
0
    }
1125
0
    return m_next_inv_to_inbounds;
1126
0
}
1127
1128
bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1129
0
{
1130
0
    return mapBlocksInFlight.count(hash);
1131
0
}
1132
1133
bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1134
0
{
1135
0
    for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1136
0
        auto [nodeid, block_it] = range.first->second;
1137
0
        PeerRef peer{GetPeerRef(nodeid)};
1138
0
        if (peer && !peer->m_is_inbound) return true;
1139
0
    }
1140
1141
0
    return false;
1142
0
}
1143
1144
void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1145
0
{
1146
0
    auto range = mapBlocksInFlight.equal_range(hash);
1147
0
    if (range.first == range.second) {
1148
        // Block was not requested from any peer
1149
0
        return;
1150
0
    }
1151
1152
    // We should not have requested too many of this block
1153
0
    Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1154
1155
0
    while (range.first != range.second) {
1156
0
        auto [node_id, list_it] = range.first->second;
1157
1158
0
        if (from_peer && *from_peer != node_id) {
1159
0
            range.first++;
1160
0
            continue;
1161
0
        }
1162
1163
0
        CNodeState& state = *Assert(State(node_id));
1164
1165
0
        if (state.vBlocksInFlight.begin() == list_it) {
1166
            // First block on the queue was received, update the start download time for the next one
1167
0
            state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1168
0
        }
1169
0
        state.vBlocksInFlight.erase(list_it);
1170
1171
0
        if (state.vBlocksInFlight.empty()) {
1172
            // Last validated block on the queue for this peer was received.
1173
0
            m_peers_downloading_from--;
1174
0
        }
1175
0
        state.m_stalling_since = 0us;
1176
1177
0
        range.first = mapBlocksInFlight.erase(range.first);
1178
0
    }
1179
0
}
1180
1181
bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1182
0
{
1183
0
    const uint256& hash{block.GetBlockHash()};
1184
1185
0
    CNodeState *state = State(nodeid);
1186
0
    assert(state != nullptr);
1187
1188
0
    Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1189
1190
    // Short-circuit most stuff in case it is from the same node
1191
0
    for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1192
0
        if (range.first->second.first == nodeid) {
1193
0
            if (pit) {
1194
0
                *pit = &range.first->second.second;
1195
0
            }
1196
0
            return false;
1197
0
        }
1198
0
    }
1199
1200
    // Make sure it's not being fetched already from same peer.
1201
0
    RemoveBlockRequest(hash, nodeid);
1202
1203
0
    std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1204
0
            {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1205
0
    if (state->vBlocksInFlight.size() == 1) {
1206
        // We're starting a block download (batch) from this peer.
1207
0
        state->m_downloading_since = GetTime<std::chrono::microseconds>();
1208
0
        m_peers_downloading_from++;
1209
0
    }
1210
0
    auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1211
0
    if (pit) {
1212
0
        *pit = &itInFlight->second.second;
1213
0
    }
1214
0
    return true;
1215
0
}
1216
1217
void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1218
0
{
1219
0
    AssertLockHeld(cs_main);
1220
1221
    // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1222
    // mempool will not contain the transactions necessary to reconstruct the
1223
    // compact block.
1224
0
    if (m_opts.ignore_incoming_txs) return;
1225
1226
0
    CNodeState* nodestate = State(nodeid);
1227
0
    PeerRef peer{GetPeerRef(nodeid)};
1228
0
    if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1229
        // Don't request compact blocks if the peer has not signalled support
1230
0
        return;
1231
0
    }
1232
1233
0
    int num_outbound_hb_peers = 0;
1234
0
    for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1235
0
        if (*it == nodeid) {
1236
0
            lNodesAnnouncingHeaderAndIDs.erase(it);
1237
0
            lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1238
0
            return;
1239
0
        }
1240
0
        PeerRef peer_ref{GetPeerRef(*it)};
1241
0
        if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1242
0
    }
1243
0
    if (peer && peer->m_is_inbound) {
1244
        // If we're adding an inbound HB peer, make sure we're not removing
1245
        // our last outbound HB peer in the process.
1246
0
        if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1247
0
            PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1248
0
            if (remove_peer && !remove_peer->m_is_inbound) {
1249
                // Put the HB outbound peer in the second slot, so that it
1250
                // doesn't get removed.
1251
0
                std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1252
0
            }
1253
0
        }
1254
0
    }
1255
0
    m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1256
0
        AssertLockHeld(::cs_main);
1257
0
        if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1258
            // As per BIP152, we only get 3 of our peers to announce
1259
            // blocks using compact encodings.
1260
0
            m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1261
0
                MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1262
                // save BIP152 bandwidth state: we select peer to be low-bandwidth
1263
0
                pnodeStop->m_bip152_highbandwidth_to = false;
1264
0
                return true;
1265
0
            });
1266
0
            lNodesAnnouncingHeaderAndIDs.pop_front();
1267
0
        }
1268
0
        MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1269
        // save BIP152 bandwidth state: we select peer to be high-bandwidth
1270
0
        pfrom->m_bip152_highbandwidth_to = true;
1271
0
        lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1272
0
        return true;
1273
0
    });
1274
0
}
1275
1276
bool PeerManagerImpl::TipMayBeStale()
1277
0
{
1278
0
    AssertLockHeld(cs_main);
1279
0
    const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1280
0
    if (m_last_tip_update.load() == 0s) {
1281
0
        m_last_tip_update = GetTime<std::chrono::seconds>();
1282
0
    }
1283
0
    return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1284
0
}
1285
1286
int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1287
0
{
1288
0
    return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1289
0
}
1290
1291
bool PeerManagerImpl::CanDirectFetch()
1292
0
{
1293
0
    return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1294
0
}
1295
1296
static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1297
0
{
1298
0
    if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1299
0
        return true;
1300
0
    if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1301
0
        return true;
1302
0
    return false;
1303
0
}
1304
1305
0
void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1306
0
    CNodeState *state = State(nodeid);
1307
0
    assert(state != nullptr);
1308
1309
0
    if (!state->hashLastUnknownBlock.IsNull()) {
1310
0
        const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1311
0
        if (pindex && pindex->nChainWork > 0) {
1312
0
            if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1313
0
                state->pindexBestKnownBlock = pindex;
1314
0
            }
1315
0
            state->hashLastUnknownBlock.SetNull();
1316
0
        }
1317
0
    }
1318
0
}
1319
1320
0
void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1321
0
    CNodeState *state = State(nodeid);
1322
0
    assert(state != nullptr);
1323
1324
0
    ProcessBlockAvailability(nodeid);
1325
1326
0
    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1327
0
    if (pindex && pindex->nChainWork > 0) {
1328
        // An actually better block was announced.
1329
0
        if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1330
0
            state->pindexBestKnownBlock = pindex;
1331
0
        }
1332
0
    } else {
1333
        // An unknown block was announced; just assume that the latest one is the best one.
1334
0
        state->hashLastUnknownBlock = hash;
1335
0
    }
1336
0
}
1337
1338
// Logic for calculating which blocks to download from a given peer, given our current tip.
1339
void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1340
0
{
1341
0
    if (count == 0)
1342
0
        return;
1343
1344
0
    vBlocks.reserve(vBlocks.size() + count);
1345
0
    CNodeState *state = State(peer.m_id);
1346
0
    assert(state != nullptr);
1347
1348
    // Make sure pindexBestKnownBlock is up to date, we'll need it.
1349
0
    ProcessBlockAvailability(peer.m_id);
1350
1351
0
    if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1352
        // This peer has nothing interesting.
1353
0
        return;
1354
0
    }
1355
1356
    // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1357
    // We can't reorg to this chain due to missing undo data until the background sync has finished,
1358
    // so downloading blocks from it would be futile.
1359
0
    const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1360
0
    if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1361
0
        LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1362
0
        return;
1363
0
    }
1364
1365
    // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1366
    // Guessing wrong in either direction is not a problem.
1367
    // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1368
0
    if (state->pindexLastCommonBlock == nullptr ||
1369
0
        (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1370
0
        state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1371
0
    }
1372
1373
    // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1374
    // of its current tip anymore. Go back enough to fix that.
1375
0
    state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1376
0
    if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1377
0
        return;
1378
1379
0
    const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1380
    // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1381
    // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1382
    // download that next block if the window were 1 larger.
1383
0
    int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1384
1385
0
    FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1386
0
}
1387
1388
void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1389
0
{
1390
0
    Assert(from_tip);
1391
0
    Assert(target_block);
1392
1393
0
    if (vBlocks.size() >= count) {
1394
0
        return;
1395
0
    }
1396
1397
0
    vBlocks.reserve(count);
1398
0
    CNodeState *state = Assert(State(peer.m_id));
1399
1400
0
    if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1401
        // This peer can't provide us the complete series of blocks leading up to the
1402
        // assumeutxo snapshot base.
1403
        //
1404
        // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1405
        // will eventually crash when we try to reorg to it. Let other logic
1406
        // deal with whether we disconnect this peer.
1407
        //
1408
        // TODO at some point in the future, we might choose to request what blocks
1409
        // this peer does have from the historical chain, despite it not having a
1410
        // complete history beneath the snapshot base.
1411
0
        return;
1412
0
    }
1413
1414
0
    FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1415
0
}
1416
1417
void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1418
0
{
1419
0
    std::vector<const CBlockIndex*> vToFetch;
1420
0
    int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1421
0
    bool is_limited_peer = IsLimitedPeer(peer);
1422
0
    NodeId waitingfor = -1;
1423
0
    while (pindexWalk->nHeight < nMaxHeight) {
1424
        // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1425
        // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1426
        // as iterating over ~100 CBlockIndex* entries anyway.
1427
0
        int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1428
0
        vToFetch.resize(nToFetch);
1429
0
        pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1430
0
        vToFetch[nToFetch - 1] = pindexWalk;
1431
0
        for (unsigned int i = nToFetch - 1; i > 0; i--) {
1432
0
            vToFetch[i - 1] = vToFetch[i]->pprev;
1433
0
        }
1434
1435
        // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1436
        // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1437
        // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1438
        // already part of our chain (and therefore don't need it even if pruned).
1439
0
        for (const CBlockIndex* pindex : vToFetch) {
1440
0
            if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1441
                // We consider the chain that this peer is on invalid.
1442
0
                return;
1443
0
            }
1444
1445
0
            if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1446
                // We wouldn't download this block or its descendants from this peer.
1447
0
                return;
1448
0
            }
1449
1450
0
            if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1451
0
                if (activeChain && pindex->HaveNumChainTxs()) {
1452
0
                    state->pindexLastCommonBlock = pindex;
1453
0
                }
1454
0
                continue;
1455
0
            }
1456
1457
            // Is block in-flight?
1458
0
            if (IsBlockRequested(pindex->GetBlockHash())) {
1459
0
                if (waitingfor == -1) {
1460
                    // This is the first already-in-flight block.
1461
0
                    waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1462
0
                }
1463
0
                continue;
1464
0
            }
1465
1466
            // The block is not already downloaded, and not yet in flight.
1467
0
            if (pindex->nHeight > nWindowEnd) {
1468
                // We reached the end of the window.
1469
0
                if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1470
                    // We aren't able to fetch anything, but we would be if the download window was one larger.
1471
0
                    if (nodeStaller) *nodeStaller = waitingfor;
1472
0
                }
1473
0
                return;
1474
0
            }
1475
1476
            // Don't request blocks that go further than what limited peers can provide
1477
0
            if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1478
0
                continue;
1479
0
            }
1480
1481
0
            vBlocks.push_back(pindex);
1482
0
            if (vBlocks.size() == count) {
1483
0
                return;
1484
0
            }
1485
0
        }
1486
0
    }
1487
0
}
1488
1489
} // namespace
1490
1491
void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1492
0
{
1493
0
    uint64_t my_services{peer.m_our_services};
1494
0
    const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1495
0
    uint64_t nonce = pnode.GetLocalNonce();
1496
0
    const int nNodeStartingHeight{m_best_height};
1497
0
    NodeId nodeid = pnode.GetId();
1498
0
    CAddress addr = pnode.addr;
1499
1500
0
    CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1501
0
    uint64_t your_services{addr.nServices};
1502
1503
0
    const bool tx_relay{!RejectIncomingTxs(pnode)};
1504
0
    MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1505
0
            your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1506
0
            my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1507
0
            nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1508
1509
0
    if (fLogIPs) {
1510
0
        LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1511
0
    } else {
1512
0
        LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1513
0
    }
1514
0
}
1515
1516
void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1517
0
{
1518
0
    LOCK(cs_main);
1519
0
    CNodeState *state = State(node);
1520
0
    if (state) state->m_last_block_announcement = time_in_seconds;
1521
0
}
1522
1523
void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1524
0
{
1525
0
    NodeId nodeid = node.GetId();
1526
0
    {
1527
0
        LOCK(cs_main); // For m_node_states
1528
0
        m_node_states.try_emplace(m_node_states.end(), nodeid);
1529
0
    }
1530
0
    WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1531
1532
0
    if (NetPermissions::HasFlag(node.m_permission_flags, NetPermissionFlags::BloomFilter)) {
1533
0
        our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1534
0
    }
1535
1536
0
    PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1537
0
    {
1538
0
        LOCK(m_peer_mutex);
1539
0
        m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1540
0
    }
1541
0
}
1542
1543
void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1544
0
{
1545
0
    std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1546
1547
0
    for (const auto& txid : unbroadcast_txids) {
1548
0
        CTransactionRef tx = m_mempool.get(txid);
1549
1550
0
        if (tx != nullptr) {
1551
0
            RelayTransaction(txid, tx->GetWitnessHash());
1552
0
        } else {
1553
0
            m_mempool.RemoveUnbroadcastTx(txid, true);
1554
0
        }
1555
0
    }
1556
1557
    // Schedule next run for 10-15 minutes in the future.
1558
    // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1559
0
    const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1560
0
    scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1561
0
}
1562
1563
void PeerManagerImpl::FinalizeNode(const CNode& node)
1564
0
{
1565
0
    NodeId nodeid = node.GetId();
1566
0
    {
1567
0
    LOCK(cs_main);
1568
0
    {
1569
        // We remove the PeerRef from g_peer_map here, but we don't always
1570
        // destruct the Peer. Sometimes another thread is still holding a
1571
        // PeerRef, so the refcount is >= 1. Be careful not to do any
1572
        // processing here that assumes Peer won't be changed before it's
1573
        // destructed.
1574
0
        PeerRef peer = RemovePeer(nodeid);
1575
0
        assert(peer != nullptr);
1576
0
        m_wtxid_relay_peers -= peer->m_wtxid_relay;
1577
0
        assert(m_wtxid_relay_peers >= 0);
1578
0
    }
1579
0
    CNodeState *state = State(nodeid);
1580
0
    assert(state != nullptr);
1581
1582
0
    if (state->fSyncStarted)
1583
0
        nSyncStarted--;
1584
1585
0
    for (const QueuedBlock& entry : state->vBlocksInFlight) {
1586
0
        auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1587
0
        while (range.first != range.second) {
1588
0
            auto [node_id, list_it] = range.first->second;
1589
0
            if (node_id != nodeid) {
1590
0
                range.first++;
1591
0
            } else {
1592
0
                range.first = mapBlocksInFlight.erase(range.first);
1593
0
            }
1594
0
        }
1595
0
    }
1596
0
    {
1597
0
        LOCK(m_tx_download_mutex);
1598
0
        m_txdownloadman.DisconnectedPeer(nodeid);
1599
0
    }
1600
0
    if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1601
0
    m_num_preferred_download_peers -= state->fPreferredDownload;
1602
0
    m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1603
0
    assert(m_peers_downloading_from >= 0);
1604
0
    m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1605
0
    assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1606
1607
0
    m_node_states.erase(nodeid);
1608
1609
0
    if (m_node_states.empty()) {
1610
        // Do a consistency check after the last peer is removed.
1611
0
        assert(mapBlocksInFlight.empty());
1612
0
        assert(m_num_preferred_download_peers == 0);
1613
0
        assert(m_peers_downloading_from == 0);
1614
0
        assert(m_outbound_peers_with_protect_from_disconnect == 0);
1615
0
        assert(m_wtxid_relay_peers == 0);
1616
0
        WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1617
0
    }
1618
0
    } // cs_main
1619
0
    if (node.fSuccessfullyConnected &&
1620
0
        !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1621
        // Only change visible addrman state for full outbound peers.  We don't
1622
        // call Connected() for feeler connections since they don't have
1623
        // fSuccessfullyConnected set.
1624
0
        m_addrman.Connected(node.addr);
1625
0
    }
1626
0
    {
1627
0
        LOCK(m_headers_presync_mutex);
1628
0
        m_headers_presync_stats.erase(nodeid);
1629
0
    }
1630
0
    LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1631
0
}
1632
1633
bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1634
0
{
1635
    // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1636
0
    return !(GetDesirableServiceFlags(services) & (~services));
1637
0
}
1638
1639
ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1640
0
{
1641
0
    if (services & NODE_NETWORK_LIMITED) {
1642
        // Limited peers are desirable when we are close to the tip.
1643
0
        if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1644
0
            return ServiceFlags(NODE_NETWORK_LIMITED | NODE_WITNESS);
1645
0
        }
1646
0
    }
1647
0
    return ServiceFlags(NODE_NETWORK | NODE_WITNESS);
1648
0
}
1649
1650
PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1651
0
{
1652
0
    LOCK(m_peer_mutex);
1653
0
    auto it = m_peer_map.find(id);
1654
0
    return it != m_peer_map.end() ? it->second : nullptr;
1655
0
}
1656
1657
PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1658
0
{
1659
0
    PeerRef ret;
1660
0
    LOCK(m_peer_mutex);
1661
0
    auto it = m_peer_map.find(id);
1662
0
    if (it != m_peer_map.end()) {
1663
0
        ret = std::move(it->second);
1664
0
        m_peer_map.erase(it);
1665
0
    }
1666
0
    return ret;
1667
0
}
1668
1669
bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1670
0
{
1671
0
    {
1672
0
        LOCK(cs_main);
1673
0
        const CNodeState* state = State(nodeid);
1674
0
        if (state == nullptr)
1675
0
            return false;
1676
0
        stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1677
0
        stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1678
0
        for (const QueuedBlock& queue : state->vBlocksInFlight) {
1679
0
            if (queue.pindex)
1680
0
                stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1681
0
        }
1682
0
    }
1683
1684
0
    PeerRef peer = GetPeerRef(nodeid);
1685
0
    if (peer == nullptr) return false;
1686
0
    stats.their_services = peer->m_their_services;
1687
0
    stats.m_starting_height = peer->m_starting_height;
1688
    // It is common for nodes with good ping times to suddenly become lagged,
1689
    // due to a new block arriving or other large transfer.
1690
    // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1691
    // since pingtime does not update until the ping is complete, which might take a while.
1692
    // So, if a ping is taking an unusually long time in flight,
1693
    // the caller can immediately detect that this is happening.
1694
0
    auto ping_wait{0us};
1695
0
    if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1696
0
        ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1697
0
    }
1698
1699
0
    if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1700
0
        stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1701
0
        stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1702
0
    } else {
1703
0
        stats.m_relay_txs = false;
1704
0
        stats.m_fee_filter_received = 0;
1705
0
    }
1706
1707
0
    stats.m_ping_wait = ping_wait;
1708
0
    stats.m_addr_processed = peer->m_addr_processed.load();
1709
0
    stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1710
0
    stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1711
0
    {
1712
0
        LOCK(peer->m_headers_sync_mutex);
1713
0
        if (peer->m_headers_sync) {
1714
0
            stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1715
0
        }
1716
0
    }
1717
0
    stats.time_offset = peer->m_time_offset;
1718
1719
0
    return true;
1720
0
}
1721
1722
std::vector<TxOrphanage::OrphanTxBase> PeerManagerImpl::GetOrphanTransactions()
1723
0
{
1724
0
    LOCK(m_tx_download_mutex);
1725
0
    return m_txdownloadman.GetOrphanTransactions();
1726
0
}
1727
1728
PeerManagerInfo PeerManagerImpl::GetInfo() const
1729
0
{
1730
0
    return PeerManagerInfo{
1731
0
        .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1732
0
        .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1733
0
    };
1734
0
}
1735
1736
void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1737
0
{
1738
0
    if (m_opts.max_extra_txs <= 0)
1739
0
        return;
1740
0
    if (!vExtraTxnForCompact.size())
1741
0
        vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1742
0
    vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1743
0
    vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1744
0
}
1745
1746
void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1747
0
{
1748
0
    LOCK(peer.m_misbehavior_mutex);
1749
1750
0
    const std::string message_prefixed = message.empty() ? "" : (": " + message);
1751
0
    peer.m_should_discourage = true;
1752
0
    LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1753
0
}
1754
1755
void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1756
                                              bool via_compact_block, const std::string& message)
1757
0
{
1758
0
    PeerRef peer{GetPeerRef(nodeid)};
1759
0
    switch (state.GetResult()) {
1760
0
    case BlockValidationResult::BLOCK_RESULT_UNSET:
1761
0
        break;
1762
0
    case BlockValidationResult::BLOCK_HEADER_LOW_WORK:
1763
        // We didn't try to process the block because the header chain may have
1764
        // too little work.
1765
0
        break;
1766
    // The node is providing invalid data:
1767
0
    case BlockValidationResult::BLOCK_CONSENSUS:
1768
0
    case BlockValidationResult::BLOCK_MUTATED:
1769
0
        if (!via_compact_block) {
1770
0
            if (peer) Misbehaving(*peer, message);
1771
0
            return;
1772
0
        }
1773
0
        break;
1774
0
    case BlockValidationResult::BLOCK_CACHED_INVALID:
1775
0
        {
1776
            // Discourage outbound (but not inbound) peers if on an invalid chain.
1777
            // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1778
0
            if (peer && !via_compact_block && !peer->m_is_inbound) {
1779
0
                if (peer) Misbehaving(*peer, message);
1780
0
                return;
1781
0
            }
1782
0
            break;
1783
0
        }
1784
0
    case BlockValidationResult::BLOCK_INVALID_HEADER:
1785
0
    case BlockValidationResult::BLOCK_CHECKPOINT:
1786
0
    case BlockValidationResult::BLOCK_INVALID_PREV:
1787
0
        if (peer) Misbehaving(*peer, message);
1788
0
        return;
1789
    // Conflicting (but not necessarily invalid) data or different policy:
1790
0
    case BlockValidationResult::BLOCK_MISSING_PREV:
1791
0
        if (peer) Misbehaving(*peer, message);
1792
0
        return;
1793
0
    case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
1794
0
    case BlockValidationResult::BLOCK_TIME_FUTURE:
1795
0
        break;
1796
0
    }
1797
0
    if (message != "") {
1798
0
        LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1799
0
    }
1800
0
}
1801
1802
void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1803
0
{
1804
0
    PeerRef peer{GetPeerRef(nodeid)};
1805
0
    switch (state.GetResult()) {
1806
0
    case TxValidationResult::TX_RESULT_UNSET:
1807
0
        break;
1808
    // The node is providing invalid data:
1809
0
    case TxValidationResult::TX_CONSENSUS:
1810
0
        if (peer) Misbehaving(*peer, "");
1811
0
        return;
1812
    // Conflicting (but not necessarily invalid) data or different policy:
1813
0
    case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
1814
0
    case TxValidationResult::TX_INPUTS_NOT_STANDARD:
1815
0
    case TxValidationResult::TX_NOT_STANDARD:
1816
0
    case TxValidationResult::TX_MISSING_INPUTS:
1817
0
    case TxValidationResult::TX_PREMATURE_SPEND:
1818
0
    case TxValidationResult::TX_WITNESS_MUTATED:
1819
0
    case TxValidationResult::TX_WITNESS_STRIPPED:
1820
0
    case TxValidationResult::TX_CONFLICT:
1821
0
    case TxValidationResult::TX_MEMPOOL_POLICY:
1822
0
    case TxValidationResult::TX_NO_MEMPOOL:
1823
0
    case TxValidationResult::TX_RECONSIDERABLE:
1824
0
    case TxValidationResult::TX_UNKNOWN:
1825
0
        break;
1826
0
    }
1827
0
}
1828
1829
bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1830
0
{
1831
0
    AssertLockHeld(cs_main);
1832
0
    if (m_chainman.ActiveChain().Contains(pindex)) return true;
1833
0
    return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1834
0
           (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1835
0
           (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1836
0
}
1837
1838
std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1839
0
{
1840
0
    if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1841
1842
    // Ensure this peer exists and hasn't been disconnected
1843
0
    PeerRef peer = GetPeerRef(peer_id);
1844
0
    if (peer == nullptr) return "Peer does not exist";
1845
1846
    // Ignore pre-segwit peers
1847
0
    if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1848
1849
0
    LOCK(cs_main);
1850
1851
    // Forget about all prior requests
1852
0
    RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1853
1854
    // Mark block as in-flight
1855
0
    if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1856
1857
    // Construct message to request the block
1858
0
    const uint256& hash{block_index.GetBlockHash()};
1859
0
    std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1860
1861
    // Send block request message to the peer
1862
0
    bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1863
0
        this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1864
0
        return true;
1865
0
    });
1866
1867
0
    if (!success) return "Peer not fully connected";
1868
1869
0
    LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1870
0
                 hash.ToString(), peer_id);
1871
0
    return std::nullopt;
1872
0
}
1873
1874
std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1875
                                               BanMan* banman, ChainstateManager& chainman,
1876
                                               CTxMemPool& pool, node::Warnings& warnings, Options opts)
1877
0
{
1878
0
    return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1879
0
}
1880
1881
PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1882
                                 BanMan* banman, ChainstateManager& chainman,
1883
                                 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1884
0
    : m_rng{opts.deterministic_rng},
1885
0
      m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1886
0
      m_chainparams(chainman.GetParams()),
1887
0
      m_connman(connman),
1888
0
      m_addrman(addrman),
1889
0
      m_banman(banman),
1890
0
      m_chainman(chainman),
1891
0
      m_mempool(pool),
1892
0
      m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.max_orphan_txs, opts.deterministic_rng}),
1893
0
      m_warnings{warnings},
1894
0
      m_opts{opts}
1895
0
{
1896
    // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1897
    // This argument can go away after Erlay support is complete.
1898
0
    if (opts.reconcile_txs) {
1899
0
        m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1900
0
    }
1901
0
}
1902
1903
void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1904
0
{
1905
    // Stale tip checking and peer eviction are on two different timers, but we
1906
    // don't want them to get out of sync due to drift in the scheduler, so we
1907
    // combine them in one function and schedule at the quicker (peer-eviction)
1908
    // timer.
1909
0
    static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1910
0
    scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1911
1912
    // schedule next run for 10-15 minutes in the future
1913
0
    const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1914
0
    scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1915
0
}
1916
1917
void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1918
0
{
1919
    // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1920
    // m_tx_download_mutex waits on the mempool mutex.
1921
0
    AssertLockNotHeld(m_mempool.cs);
1922
0
    AssertLockNotHeld(m_tx_download_mutex);
1923
1924
0
    if (!is_ibd) {
1925
0
        LOCK(m_tx_download_mutex);
1926
        // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1927
        // to a timelock. Reset the rejection filters to give those transactions another chance if we
1928
        // see them again.
1929
0
        m_txdownloadman.ActiveTipChange();
1930
0
    }
1931
0
}
1932
1933
/**
1934
 * Evict orphan txn pool entries based on a newly connected
1935
 * block, remember the recently confirmed transactions, and delete tracked
1936
 * announcements for them. Also save the time of the last tip update and
1937
 * possibly reduce dynamic block stalling timeout.
1938
 */
1939
void PeerManagerImpl::BlockConnected(
1940
    ChainstateRole role,
1941
    const std::shared_ptr<const CBlock>& pblock,
1942
    const CBlockIndex* pindex)
1943
0
{
1944
    // Update this for all chainstate roles so that we don't mistakenly see peers
1945
    // helping us do background IBD as having a stale tip.
1946
0
    m_last_tip_update = GetTime<std::chrono::seconds>();
1947
1948
    // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1949
0
    auto stalling_timeout = m_block_stalling_timeout.load();
1950
0
    Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1951
0
    if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1952
0
        const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1953
0
        if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1954
0
            LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1955
0
        }
1956
0
    }
1957
1958
    // The following task can be skipped since we don't maintain a mempool for
1959
    // the ibd/background chainstate.
1960
0
    if (role == ChainstateRole::BACKGROUND) {
1961
0
        return;
1962
0
    }
1963
0
    LOCK(m_tx_download_mutex);
1964
0
    m_txdownloadman.BlockConnected(pblock);
1965
0
}
1966
1967
void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1968
0
{
1969
0
    LOCK(m_tx_download_mutex);
1970
0
    m_txdownloadman.BlockDisconnected();
1971
0
}
1972
1973
/**
1974
 * Maintain state about the best-seen block and fast-announce a compact block
1975
 * to compatible peers.
1976
 */
1977
void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1978
0
{
1979
0
    auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1980
1981
0
    LOCK(cs_main);
1982
1983
0
    if (pindex->nHeight <= m_highest_fast_announce)
1984
0
        return;
1985
0
    m_highest_fast_announce = pindex->nHeight;
1986
1987
0
    if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1988
1989
0
    uint256 hashBlock(pblock->GetHash());
1990
0
    const std::shared_future<CSerializedNetMsg> lazy_ser{
1991
0
        std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
1992
1993
0
    {
1994
0
        auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
1995
0
        for (const auto& tx : pblock->vtx) {
1996
0
            most_recent_block_txs->emplace(tx->GetHash(), tx);
1997
0
            most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
1998
0
        }
1999
2000
0
        LOCK(m_most_recent_block_mutex);
2001
0
        m_most_recent_block_hash = hashBlock;
2002
0
        m_most_recent_block = pblock;
2003
0
        m_most_recent_compact_block = pcmpctblock;
2004
0
        m_most_recent_block_txs = std::move(most_recent_block_txs);
2005
0
    }
2006
2007
0
    m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2008
0
        AssertLockHeld(::cs_main);
2009
2010
0
        if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect)
2011
0
            return;
2012
0
        ProcessBlockAvailability(pnode->GetId());
2013
0
        CNodeState &state = *State(pnode->GetId());
2014
        // If the peer has, or we announced to them the previous block already,
2015
        // but we don't think they have this one, go ahead and announce it
2016
0
        if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2017
2018
0
            LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2019
0
                    hashBlock.ToString(), pnode->GetId());
2020
2021
0
            const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2022
0
            PushMessage(*pnode, ser_cmpctblock.Copy());
2023
0
            state.pindexBestHeaderSent = pindex;
2024
0
        }
2025
0
    });
2026
0
}
2027
2028
/**
2029
 * Update our best height and announce any block hashes which weren't previously
2030
 * in m_chainman.ActiveChain() to our peers.
2031
 */
2032
void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2033
0
{
2034
0
    SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2035
2036
    // Don't relay inventory during initial block download.
2037
0
    if (fInitialDownload) return;
2038
2039
    // Find the hashes of all blocks that weren't previously in the best chain.
2040
0
    std::vector<uint256> vHashes;
2041
0
    const CBlockIndex *pindexToAnnounce = pindexNew;
2042
0
    while (pindexToAnnounce != pindexFork) {
2043
0
        vHashes.push_back(pindexToAnnounce->GetBlockHash());
2044
0
        pindexToAnnounce = pindexToAnnounce->pprev;
2045
0
        if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2046
            // Limit announcements in case of a huge reorganization.
2047
            // Rely on the peer's synchronization mechanism in that case.
2048
0
            break;
2049
0
        }
2050
0
    }
2051
2052
0
    {
2053
0
        LOCK(m_peer_mutex);
2054
0
        for (auto& it : m_peer_map) {
2055
0
            Peer& peer = *it.second;
2056
0
            LOCK(peer.m_block_inv_mutex);
2057
0
            for (const uint256& hash : vHashes | std::views::reverse) {
2058
0
                peer.m_blocks_for_headers_relay.push_back(hash);
2059
0
            }
2060
0
        }
2061
0
    }
2062
2063
0
    m_connman.WakeMessageHandler();
2064
0
}
2065
2066
/**
2067
 * Handle invalid block rejection and consequent peer discouragement, maintain which
2068
 * peers announce compact blocks.
2069
 */
2070
void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2071
0
{
2072
0
    LOCK(cs_main);
2073
2074
0
    const uint256 hash(block.GetHash());
2075
0
    std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2076
2077
    // If the block failed validation, we know where it came from and we're still connected
2078
    // to that peer, maybe punish.
2079
0
    if (state.IsInvalid() &&
2080
0
        it != mapBlockSource.end() &&
2081
0
        State(it->second.first)) {
2082
0
            MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2083
0
    }
2084
    // Check that:
2085
    // 1. The block is valid
2086
    // 2. We're not in initial block download
2087
    // 3. This is currently the best block we're aware of. We haven't updated
2088
    //    the tip yet so we have no way to check this directly here. Instead we
2089
    //    just check that there are currently no other blocks in flight.
2090
0
    else if (state.IsValid() &&
2091
0
             !m_chainman.IsInitialBlockDownload() &&
2092
0
             mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2093
0
        if (it != mapBlockSource.end()) {
2094
0
            MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2095
0
        }
2096
0
    }
2097
0
    if (it != mapBlockSource.end())
2098
0
        mapBlockSource.erase(it);
2099
0
}
2100
2101
//////////////////////////////////////////////////////////////////////////////
2102
//
2103
// Messages
2104
//
2105
2106
bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2107
0
{
2108
0
    return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2109
0
}
2110
2111
void PeerManagerImpl::SendPings()
2112
0
{
2113
0
    LOCK(m_peer_mutex);
2114
0
    for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2115
0
}
2116
2117
void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2118
0
{
2119
0
    LOCK(m_peer_mutex);
2120
0
    for(auto& it : m_peer_map) {
2121
0
        Peer& peer = *it.second;
2122
0
        auto tx_relay = peer.GetTxRelay();
2123
0
        if (!tx_relay) continue;
2124
2125
0
        LOCK(tx_relay->m_tx_inventory_mutex);
2126
        // Only queue transactions for announcement once the version handshake
2127
        // is completed. The time of arrival for these transactions is
2128
        // otherwise at risk of leaking to a spy, if the spy is able to
2129
        // distinguish transactions received during the handshake from the rest
2130
        // in the announcement.
2131
0
        if (tx_relay->m_next_inv_send_time == 0s) continue;
2132
2133
0
        const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2134
0
        if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2135
0
            tx_relay->m_tx_inventory_to_send.insert(hash);
2136
0
        }
2137
0
    };
2138
0
}
2139
2140
void PeerManagerImpl::RelayAddress(NodeId originator,
2141
                                   const CAddress& addr,
2142
                                   bool fReachable)
2143
0
{
2144
    // We choose the same nodes within a given 24h window (if the list of connected
2145
    // nodes does not change) and we don't relay to nodes that already know an
2146
    // address. So within 24h we will likely relay a given address once. This is to
2147
    // prevent a peer from unjustly giving their address better propagation by sending
2148
    // it to us repeatedly.
2149
2150
0
    if (!fReachable && !addr.IsRelayable()) return;
2151
2152
    // Relay to a limited number of other nodes
2153
    // Use deterministic randomness to send to the same nodes for 24 hours
2154
    // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2155
0
    const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2156
0
    const auto current_time{GetTime<std::chrono::seconds>()};
2157
    // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2158
0
    const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2159
0
    const CSipHasher hasher{m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
2160
0
                                .Write(hash_addr)
2161
0
                                .Write(time_addr)};
2162
2163
    // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2164
0
    unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2165
2166
0
    std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2167
0
    assert(nRelayNodes <= best.size());
2168
2169
0
    LOCK(m_peer_mutex);
2170
2171
0
    for (auto& [id, peer] : m_peer_map) {
2172
0
        if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2173
0
            uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2174
0
            for (unsigned int i = 0; i < nRelayNodes; i++) {
2175
0
                 if (hashKey > best[i].first) {
2176
0
                     std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2177
0
                     best[i] = std::make_pair(hashKey, peer.get());
2178
0
                     break;
2179
0
                 }
2180
0
            }
2181
0
        }
2182
0
    };
2183
2184
0
    for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2185
0
        PushAddress(*best[i].second, addr);
2186
0
    }
2187
0
}
2188
2189
void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2190
0
{
2191
0
    std::shared_ptr<const CBlock> a_recent_block;
2192
0
    std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2193
0
    {
2194
0
        LOCK(m_most_recent_block_mutex);
2195
0
        a_recent_block = m_most_recent_block;
2196
0
        a_recent_compact_block = m_most_recent_compact_block;
2197
0
    }
2198
2199
0
    bool need_activate_chain = false;
2200
0
    {
2201
0
        LOCK(cs_main);
2202
0
        const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2203
0
        if (pindex) {
2204
0
            if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2205
0
                    pindex->IsValid(BLOCK_VALID_TREE)) {
2206
                // If we have the block and all of its parents, but have not yet validated it,
2207
                // we might be in the middle of connecting it (ie in the unlock of cs_main
2208
                // before ActivateBestChain but after AcceptBlock).
2209
                // In this case, we need to run ActivateBestChain prior to checking the relay
2210
                // conditions below.
2211
0
                need_activate_chain = true;
2212
0
            }
2213
0
        }
2214
0
    } // release cs_main before calling ActivateBestChain
2215
0
    if (need_activate_chain) {
2216
0
        BlockValidationState state;
2217
0
        if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2218
0
            LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2219
0
        }
2220
0
    }
2221
2222
0
    const CBlockIndex* pindex{nullptr};
2223
0
    const CBlockIndex* tip{nullptr};
2224
0
    bool can_direct_fetch{false};
2225
0
    FlatFilePos block_pos{};
2226
0
    {
2227
0
        LOCK(cs_main);
2228
0
        pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2229
0
        if (!pindex) {
2230
0
            return;
2231
0
        }
2232
0
        if (!BlockRequestAllowed(pindex)) {
2233
0
            LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2234
0
            return;
2235
0
        }
2236
        // disconnect node in case we have reached the outbound limit for serving historical blocks
2237
0
        if (m_connman.OutboundTargetReached(true) &&
2238
0
            (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2239
0
            !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2240
0
        ) {
2241
0
            LogDebug(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
2242
0
            pfrom.fDisconnect = true;
2243
0
            return;
2244
0
        }
2245
0
        tip = m_chainman.ActiveChain().Tip();
2246
        // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2247
0
        if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && (
2248
0
                (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2249
0
           )) {
2250
0
            LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
2251
            //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2252
0
            pfrom.fDisconnect = true;
2253
0
            return;
2254
0
        }
2255
        // Pruned nodes may have deleted the block, so check whether
2256
        // it's available before trying to send.
2257
0
        if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2258
0
            return;
2259
0
        }
2260
0
        can_direct_fetch = CanDirectFetch();
2261
0
        block_pos = pindex->GetBlockPos();
2262
0
    }
2263
2264
0
    std::shared_ptr<const CBlock> pblock;
2265
0
    if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2266
0
        pblock = a_recent_block;
2267
0
    } else if (inv.IsMsgWitnessBlk()) {
2268
        // Fast-path: in this case it is possible to serve the block directly from disk,
2269
        // as the network format matches the format on disk
2270
0
        std::vector<uint8_t> block_data;
2271
0
        if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, block_pos)) {
2272
0
            if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2273
0
                LogDebug(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2274
0
            } else {
2275
0
                LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2276
0
            }
2277
0
            pfrom.fDisconnect = true;
2278
0
            return;
2279
0
        }
2280
0
        MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
2281
        // Don't set pblock as we've sent the block
2282
0
    } else {
2283
        // Send block from disk
2284
0
        std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2285
0
        if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, block_pos)) {
2286
0
            if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2287
0
                LogDebug(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2288
0
            } else {
2289
0
                LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2290
0
            }
2291
0
            pfrom.fDisconnect = true;
2292
0
            return;
2293
0
        }
2294
0
        pblock = pblockRead;
2295
0
    }
2296
0
    if (pblock) {
2297
0
        if (inv.IsMsgBlk()) {
2298
0
            MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2299
0
        } else if (inv.IsMsgWitnessBlk()) {
2300
0
            MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2301
0
        } else if (inv.IsMsgFilteredBlk()) {
2302
0
            bool sendMerkleBlock = false;
2303
0
            CMerkleBlock merkleBlock;
2304
0
            if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2305
0
                LOCK(tx_relay->m_bloom_filter_mutex);
2306
0
                if (tx_relay->m_bloom_filter) {
2307
0
                    sendMerkleBlock = true;
2308
0
                    merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2309
0
                }
2310
0
            }
2311
0
            if (sendMerkleBlock) {
2312
0
                MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2313
                // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2314
                // This avoids hurting performance by pointlessly requiring a round-trip
2315
                // Note that there is currently no way for a node to request any single transactions we didn't send here -
2316
                // they must either disconnect and retry or request the full block.
2317
                // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2318
                // however we MUST always provide at least what the remote peer needs
2319
0
                typedef std::pair<unsigned int, uint256> PairType;
2320
0
                for (PairType& pair : merkleBlock.vMatchedTxn)
2321
0
                    MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2322
0
            }
2323
            // else
2324
            // no response
2325
0
        } else if (inv.IsMsgCmpctBlk()) {
2326
            // If a peer is asking for old blocks, we're almost guaranteed
2327
            // they won't have a useful mempool to match against a compact block,
2328
            // and we don't feel like constructing the object for them, so
2329
            // instead we respond with the full, non-compact block.
2330
0
            if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2331
0
                if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2332
0
                    MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2333
0
                } else {
2334
0
                    CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2335
0
                    MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2336
0
                }
2337
0
            } else {
2338
0
                MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2339
0
            }
2340
0
        }
2341
0
    }
2342
2343
0
    {
2344
0
        LOCK(peer.m_block_inv_mutex);
2345
        // Trigger the peer node to send a getblocks request for the next batch of inventory
2346
0
        if (inv.hash == peer.m_continuation_block) {
2347
            // Send immediately. This must send even if redundant,
2348
            // and we want it right after the last block so they don't
2349
            // wait for other stuff first.
2350
0
            std::vector<CInv> vInv;
2351
0
            vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2352
0
            MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2353
0
            peer.m_continuation_block.SetNull();
2354
0
        }
2355
0
    }
2356
0
}
2357
2358
CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2359
0
{
2360
    // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2361
0
    auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2362
0
    if (txinfo.tx) {
2363
0
        return std::move(txinfo.tx);
2364
0
    }
2365
2366
    // Or it might be from the most recent block
2367
0
    {
2368
0
        LOCK(m_most_recent_block_mutex);
2369
0
        if (m_most_recent_block_txs != nullptr) {
2370
0
            auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2371
0
            if (it != m_most_recent_block_txs->end()) return it->second;
2372
0
        }
2373
0
    }
2374
2375
0
    return {};
2376
0
}
2377
2378
void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2379
0
{
2380
0
    AssertLockNotHeld(cs_main);
2381
2382
0
    auto tx_relay = peer.GetTxRelay();
2383
2384
0
    std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2385
0
    std::vector<CInv> vNotFound;
2386
2387
    // Process as many TX items from the front of the getdata queue as
2388
    // possible, since they're common and it's efficient to batch process
2389
    // them.
2390
0
    while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2391
0
        if (interruptMsgProc) return;
2392
        // The send buffer provides backpressure. If there's no space in
2393
        // the buffer, pause processing until the next call.
2394
0
        if (pfrom.fPauseSend) break;
2395
2396
0
        const CInv &inv = *it++;
2397
2398
0
        if (tx_relay == nullptr) {
2399
            // Ignore GETDATA requests for transactions from block-relay-only
2400
            // peers and peers that asked us not to announce transactions.
2401
0
            continue;
2402
0
        }
2403
2404
0
        CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2405
0
        if (tx) {
2406
            // WTX and WITNESS_TX imply we serialize with witness
2407
0
            const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2408
0
            MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2409
0
            m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2410
0
        } else {
2411
0
            vNotFound.push_back(inv);
2412
0
        }
2413
0
    }
2414
2415
    // Only process one BLOCK item per call, since they're uncommon and can be
2416
    // expensive to process.
2417
0
    if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2418
0
        const CInv &inv = *it++;
2419
0
        if (inv.IsGenBlkMsg()) {
2420
0
            ProcessGetBlockData(pfrom, peer, inv);
2421
0
        }
2422
        // else: If the first item on the queue is an unknown type, we erase it
2423
        // and continue processing the queue on the next call.
2424
0
    }
2425
2426
0
    peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2427
2428
0
    if (!vNotFound.empty()) {
2429
        // Let the peer know that we didn't find what it asked for, so it doesn't
2430
        // have to wait around forever.
2431
        // SPV clients care about this message: it's needed when they are
2432
        // recursively walking the dependencies of relevant unconfirmed
2433
        // transactions. SPV clients want to do that because they want to know
2434
        // about (and store and rebroadcast and risk analyze) the dependencies
2435
        // of transactions relevant to them, without having to download the
2436
        // entire memory pool.
2437
        // Also, other nodes can use these messages to automatically request a
2438
        // transaction from some other peer that announced it, and stop
2439
        // waiting for us to respond.
2440
        // In normal operation, we often send NOTFOUND messages for parents of
2441
        // transactions that we relay; if a peer is missing a parent, they may
2442
        // assume we have them and request the parents from us.
2443
0
        MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2444
0
    }
2445
0
}
2446
2447
uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2448
0
{
2449
0
    uint32_t nFetchFlags = 0;
2450
0
    if (CanServeWitnesses(peer)) {
2451
0
        nFetchFlags |= MSG_WITNESS_FLAG;
2452
0
    }
2453
0
    return nFetchFlags;
2454
0
}
2455
2456
void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2457
0
{
2458
0
    BlockTransactions resp(req);
2459
0
    for (size_t i = 0; i < req.indexes.size(); i++) {
2460
0
        if (req.indexes[i] >= block.vtx.size()) {
2461
0
            Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2462
0
            return;
2463
0
        }
2464
0
        resp.txn[i] = block.vtx[req.indexes[i]];
2465
0
    }
2466
2467
0
    MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2468
0
}
2469
2470
bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2471
0
{
2472
    // Do these headers have proof-of-work matching what's claimed?
2473
0
    if (!HasValidProofOfWork(headers, consensusParams)) {
2474
0
        Misbehaving(peer, "header with invalid proof of work");
2475
0
        return false;
2476
0
    }
2477
2478
    // Are these headers connected to each other?
2479
0
    if (!CheckHeadersAreContinuous(headers)) {
2480
0
        Misbehaving(peer, "non-continuous headers sequence");
2481
0
        return false;
2482
0
    }
2483
0
    return true;
2484
0
}
2485
2486
arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2487
0
{
2488
0
    arith_uint256 near_chaintip_work = 0;
2489
0
    LOCK(cs_main);
2490
0
    if (m_chainman.ActiveChain().Tip() != nullptr) {
2491
0
        const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2492
        // Use a 144 block buffer, so that we'll accept headers that fork from
2493
        // near our tip.
2494
0
        near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2495
0
    }
2496
0
    return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2497
0
}
2498
2499
/**
2500
 * Special handling for unconnecting headers that might be part of a block
2501
 * announcement.
2502
 *
2503
 * We'll send a getheaders message in response to try to connect the chain.
2504
 */
2505
void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2506
        const std::vector<CBlockHeader>& headers)
2507
0
{
2508
    // Try to fill in the missing headers.
2509
0
    const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2510
0
    if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2511
0
        LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2512
0
            headers[0].GetHash().ToString(),
2513
0
            headers[0].hashPrevBlock.ToString(),
2514
0
            best_header->nHeight,
2515
0
            pfrom.GetId());
2516
0
    }
2517
2518
    // Set hashLastUnknownBlock for this peer, so that if we
2519
    // eventually get the headers - even from a different peer -
2520
    // we can use this peer to download.
2521
0
    WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2522
0
}
2523
2524
bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2525
0
{
2526
0
    uint256 hashLastBlock;
2527
0
    for (const CBlockHeader& header : headers) {
2528
0
        if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2529
0
            return false;
2530
0
        }
2531
0
        hashLastBlock = header.GetHash();
2532
0
    }
2533
0
    return true;
2534
0
}
2535
2536
bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2537
0
{
2538
0
    if (peer.m_headers_sync) {
2539
0
        auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2540
        // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2541
0
        if (result.success) peer.m_last_getheaders_timestamp = {};
2542
0
        if (result.request_more) {
2543
0
            auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2544
            // If we were instructed to ask for a locator, it should not be empty.
2545
0
            Assume(!locator.vHave.empty());
2546
            // We can only be instructed to request more if processing was successful.
2547
0
            Assume(result.success);
2548
0
            if (!locator.vHave.empty()) {
2549
                // It should be impossible for the getheaders request to fail,
2550
                // because we just cleared the last getheaders timestamp.
2551
0
                bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2552
0
                Assume(sent_getheaders);
2553
0
                LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2554
0
                    locator.vHave.front().ToString(), pfrom.GetId());
2555
0
            }
2556
0
        }
2557
2558
0
        if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2559
0
            peer.m_headers_sync.reset(nullptr);
2560
2561
            // Delete this peer's entry in m_headers_presync_stats.
2562
            // If this is m_headers_presync_bestpeer, it will be replaced later
2563
            // by the next peer that triggers the else{} branch below.
2564
0
            LOCK(m_headers_presync_mutex);
2565
0
            m_headers_presync_stats.erase(pfrom.GetId());
2566
0
        } else {
2567
            // Build statistics for this peer's sync.
2568
0
            HeadersPresyncStats stats;
2569
0
            stats.first = peer.m_headers_sync->GetPresyncWork();
2570
0
            if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2571
0
                stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2572
0
                                peer.m_headers_sync->GetPresyncTime()};
2573
0
            }
2574
2575
            // Update statistics in stats.
2576
0
            LOCK(m_headers_presync_mutex);
2577
0
            m_headers_presync_stats[pfrom.GetId()] = stats;
2578
0
            auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2579
0
            bool best_updated = false;
2580
0
            if (best_it == m_headers_presync_stats.end()) {
2581
                // If the cached best peer is outdated, iterate over all remaining ones (including
2582
                // newly updated one) to find the best one.
2583
0
                NodeId peer_best{-1};
2584
0
                const HeadersPresyncStats* stat_best{nullptr};
2585
0
                for (const auto& [peer, stat] : m_headers_presync_stats) {
2586
0
                    if (!stat_best || stat > *stat_best) {
2587
0
                        peer_best = peer;
2588
0
                        stat_best = &stat;
2589
0
                    }
2590
0
                }
2591
0
                m_headers_presync_bestpeer = peer_best;
2592
0
                best_updated = (peer_best == pfrom.GetId());
2593
0
            } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2594
                // pfrom was and remains the best peer, or pfrom just became best.
2595
0
                m_headers_presync_bestpeer = pfrom.GetId();
2596
0
                best_updated = true;
2597
0
            }
2598
0
            if (best_updated && stats.second.has_value()) {
2599
                // If the best peer updated, and it is in its first phase, signal.
2600
0
                m_headers_presync_should_signal = true;
2601
0
            }
2602
0
        }
2603
2604
0
        if (result.success) {
2605
            // We only overwrite the headers passed in if processing was
2606
            // successful.
2607
0
            headers.swap(result.pow_validated_headers);
2608
0
        }
2609
2610
0
        return result.success;
2611
0
    }
2612
    // Either we didn't have a sync in progress, or something went wrong
2613
    // processing these headers, or we are returning headers to the caller to
2614
    // process.
2615
0
    return false;
2616
0
}
2617
2618
bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2619
0
{
2620
    // Calculate the claimed total work on this chain.
2621
0
    arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2622
2623
    // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2624
    // before we'll store it)
2625
0
    arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2626
2627
    // Avoid DoS via low-difficulty-headers by only processing if the headers
2628
    // are part of a chain with sufficient work.
2629
0
    if (total_work < minimum_chain_work) {
2630
        // Only try to sync with this peer if their headers message was full;
2631
        // otherwise they don't have more headers after this so no point in
2632
        // trying to sync their too-little-work chain.
2633
0
        if (headers.size() == m_opts.max_headers_result) {
2634
            // Note: we could advance to the last header in this set that is
2635
            // known to us, rather than starting at the first header (which we
2636
            // may already have); however this is unlikely to matter much since
2637
            // ProcessHeadersMessage() already handles the case where all
2638
            // headers in a received message are already known and are
2639
            // ancestors of m_best_header or chainActive.Tip(), by skipping
2640
            // this logic in that case. So even if the first header in this set
2641
            // of headers is known, some header in this set must be new, so
2642
            // advancing to the first unknown header would be a small effect.
2643
0
            LOCK(peer.m_headers_sync_mutex);
2644
0
            peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2645
0
                chain_start_header, minimum_chain_work));
2646
2647
            // Now a HeadersSyncState object for tracking this synchronization
2648
            // is created, process the headers using it as normal. Failures are
2649
            // handled inside of IsContinuationOfLowWorkHeadersSync.
2650
0
            (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2651
0
        } else {
2652
0
            LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2653
0
        }
2654
2655
        // The peer has not yet given us a chain that meets our work threshold,
2656
        // so we want to prevent further processing of the headers in any case.
2657
0
        headers = {};
2658
0
        return true;
2659
0
    }
2660
2661
0
    return false;
2662
0
}
2663
2664
bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2665
0
{
2666
0
    if (header == nullptr) {
2667
0
        return false;
2668
0
    } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2669
0
        return true;
2670
0
    } else if (m_chainman.ActiveChain().Contains(header)) {
2671
0
        return true;
2672
0
    }
2673
0
    return false;
2674
0
}
2675
2676
bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2677
0
{
2678
0
    const auto current_time = NodeClock::now();
2679
2680
    // Only allow a new getheaders message to go out if we don't have a recent
2681
    // one already in-flight
2682
0
    if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2683
0
        MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2684
0
        peer.m_last_getheaders_timestamp = current_time;
2685
0
        return true;
2686
0
    }
2687
0
    return false;
2688
0
}
2689
2690
/*
2691
 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2692
 * We require that the given tip have at least as much work as our tip, and for
2693
 * our current tip to be "close to synced" (see CanDirectFetch()).
2694
 */
2695
void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2696
0
{
2697
0
    LOCK(cs_main);
2698
0
    CNodeState *nodestate = State(pfrom.GetId());
2699
2700
0
    if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2701
0
        std::vector<const CBlockIndex*> vToFetch;
2702
0
        const CBlockIndex* pindexWalk{&last_header};
2703
        // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2704
0
        while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2705
0
            if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2706
0
                    !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2707
0
                    (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2708
                // We don't have this block, and it's not yet in flight.
2709
0
                vToFetch.push_back(pindexWalk);
2710
0
            }
2711
0
            pindexWalk = pindexWalk->pprev;
2712
0
        }
2713
        // If pindexWalk still isn't on our main chain, we're looking at a
2714
        // very large reorg at a time we think we're close to caught up to
2715
        // the main chain -- this shouldn't really happen.  Bail out on the
2716
        // direct fetch and rely on parallel download instead.
2717
0
        if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2718
0
            LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2719
0
                     last_header.GetBlockHash().ToString(),
2720
0
                     last_header.nHeight);
2721
0
        } else {
2722
0
            std::vector<CInv> vGetData;
2723
            // Download as much as possible, from earliest to latest.
2724
0
            for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2725
0
                if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2726
                    // Can't download any more from this peer
2727
0
                    break;
2728
0
                }
2729
0
                uint32_t nFetchFlags = GetFetchFlags(peer);
2730
0
                vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2731
0
                BlockRequested(pfrom.GetId(), *pindex);
2732
0
                LogDebug(BCLog::NET, "Requesting block %s from  peer=%d\n",
2733
0
                        pindex->GetBlockHash().ToString(), pfrom.GetId());
2734
0
            }
2735
0
            if (vGetData.size() > 1) {
2736
0
                LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2737
0
                         last_header.GetBlockHash().ToString(),
2738
0
                         last_header.nHeight);
2739
0
            }
2740
0
            if (vGetData.size() > 0) {
2741
0
                if (!m_opts.ignore_incoming_txs &&
2742
0
                        nodestate->m_provides_cmpctblocks &&
2743
0
                        vGetData.size() == 1 &&
2744
0
                        mapBlocksInFlight.size() == 1 &&
2745
0
                        last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2746
                    // In any case, we want to download using a compact block, not a regular one
2747
0
                    vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2748
0
                }
2749
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2750
0
            }
2751
0
        }
2752
0
    }
2753
0
}
2754
2755
/**
2756
 * Given receipt of headers from a peer ending in last_header, along with
2757
 * whether that header was new and whether the headers message was full,
2758
 * update the state we keep for the peer.
2759
 */
2760
void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2761
        const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2762
0
{
2763
0
    LOCK(cs_main);
2764
0
    CNodeState *nodestate = State(pfrom.GetId());
2765
2766
0
    UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2767
2768
    // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2769
    // because it is set in UpdateBlockAvailability. Some nullptr checks
2770
    // are still present, however, as belt-and-suspenders.
2771
2772
0
    if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2773
0
        nodestate->m_last_block_announcement = GetTime();
2774
0
    }
2775
2776
    // If we're in IBD, we want outbound peers that will serve us a useful
2777
    // chain. Disconnect peers that are on chains with insufficient work.
2778
0
    if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2779
        // If the peer has no more headers to give us, then we know we have
2780
        // their tip.
2781
0
        if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2782
            // This peer has too little work on their headers chain to help
2783
            // us sync -- disconnect if it is an outbound disconnection
2784
            // candidate.
2785
            // Note: We compare their tip to the minimum chain work (rather than
2786
            // m_chainman.ActiveChain().Tip()) because we won't start block download
2787
            // until we have a headers chain that has at least
2788
            // the minimum chain work, even if a peer has a chain past our tip,
2789
            // as an anti-DoS measure.
2790
0
            if (pfrom.IsOutboundOrBlockRelayConn()) {
2791
0
                LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
2792
0
                pfrom.fDisconnect = true;
2793
0
            }
2794
0
        }
2795
0
    }
2796
2797
    // If this is an outbound full-relay peer, check to see if we should protect
2798
    // it from the bad/lagging chain logic.
2799
    // Note that outbound block-relay peers are excluded from this protection, and
2800
    // thus always subject to eviction under the bad/lagging chain logic.
2801
    // See ChainSyncTimeoutState.
2802
0
    if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2803
0
        if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2804
0
            LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2805
0
            nodestate->m_chain_sync.m_protect = true;
2806
0
            ++m_outbound_peers_with_protect_from_disconnect;
2807
0
        }
2808
0
    }
2809
0
}
2810
2811
void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2812
                                            std::vector<CBlockHeader>&& headers,
2813
                                            bool via_compact_block)
2814
0
{
2815
0
    size_t nCount = headers.size();
2816
2817
0
    if (nCount == 0) {
2818
        // Nothing interesting. Stop asking this peers for more headers.
2819
        // If we were in the middle of headers sync, receiving an empty headers
2820
        // message suggests that the peer suddenly has nothing to give us
2821
        // (perhaps it reorged to our chain). Clear download state for this peer.
2822
0
        LOCK(peer.m_headers_sync_mutex);
2823
0
        if (peer.m_headers_sync) {
2824
0
            peer.m_headers_sync.reset(nullptr);
2825
0
            LOCK(m_headers_presync_mutex);
2826
0
            m_headers_presync_stats.erase(pfrom.GetId());
2827
0
        }
2828
        // A headers message with no headers cannot be an announcement, so assume
2829
        // it is a response to our last getheaders request, if there is one.
2830
0
        peer.m_last_getheaders_timestamp = {};
2831
0
        return;
2832
0
    }
2833
2834
    // Before we do any processing, make sure these pass basic sanity checks.
2835
    // We'll rely on headers having valid proof-of-work further down, as an
2836
    // anti-DoS criteria (note: this check is required before passing any
2837
    // headers into HeadersSyncState).
2838
0
    if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2839
        // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2840
        // just return. (Note that even if a header is announced via compact
2841
        // block, the header itself should be valid, so this type of error can
2842
        // always be punished.)
2843
0
        return;
2844
0
    }
2845
2846
0
    const CBlockIndex *pindexLast = nullptr;
2847
2848
    // We'll set already_validated_work to true if these headers are
2849
    // successfully processed as part of a low-work headers sync in progress
2850
    // (either in PRESYNC or REDOWNLOAD phase).
2851
    // If true, this will mean that any headers returned to us (ie during
2852
    // REDOWNLOAD) can be validated without further anti-DoS checks.
2853
0
    bool already_validated_work = false;
2854
2855
    // If we're in the middle of headers sync, let it do its magic.
2856
0
    bool have_headers_sync = false;
2857
0
    {
2858
0
        LOCK(peer.m_headers_sync_mutex);
2859
2860
0
        already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2861
2862
        // The headers we passed in may have been:
2863
        // - untouched, perhaps if no headers-sync was in progress, or some
2864
        //   failure occurred
2865
        // - erased, such as if the headers were successfully processed and no
2866
        //   additional headers processing needs to take place (such as if we
2867
        //   are still in PRESYNC)
2868
        // - replaced with headers that are now ready for validation, such as
2869
        //   during the REDOWNLOAD phase of a low-work headers sync.
2870
        // So just check whether we still have headers that we need to process,
2871
        // or not.
2872
0
        if (headers.empty()) {
2873
0
            return;
2874
0
        }
2875
2876
0
        have_headers_sync = !!peer.m_headers_sync;
2877
0
    }
2878
2879
    // Do these headers connect to something in our block index?
2880
0
    const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2881
0
    bool headers_connect_blockindex{chain_start_header != nullptr};
2882
2883
0
    if (!headers_connect_blockindex) {
2884
        // This could be a BIP 130 block announcement, use
2885
        // special logic for handling headers that don't connect, as this
2886
        // could be benign.
2887
0
        HandleUnconnectingHeaders(pfrom, peer, headers);
2888
0
        return;
2889
0
    }
2890
2891
    // If headers connect, assume that this is in response to any outstanding getheaders
2892
    // request we may have sent, and clear out the time of our last request. Non-connecting
2893
    // headers cannot be a response to a getheaders request.
2894
0
    peer.m_last_getheaders_timestamp = {};
2895
2896
    // If the headers we received are already in memory and an ancestor of
2897
    // m_best_header or our tip, skip anti-DoS checks. These headers will not
2898
    // use any more memory (and we are not leaking information that could be
2899
    // used to fingerprint us).
2900
0
    const CBlockIndex *last_received_header{nullptr};
2901
0
    {
2902
0
        LOCK(cs_main);
2903
0
        last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2904
0
        if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2905
0
            already_validated_work = true;
2906
0
        }
2907
0
    }
2908
2909
    // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2910
    // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2911
    // on startup).
2912
0
    if (pfrom.HasPermission(NetPermissionFlags::NoBan)) {
2913
0
        already_validated_work = true;
2914
0
    }
2915
2916
    // At this point, the headers connect to something in our block index.
2917
    // Do anti-DoS checks to determine if we should process or store for later
2918
    // processing.
2919
0
    if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2920
0
                chain_start_header, headers)) {
2921
        // If we successfully started a low-work headers sync, then there
2922
        // should be no headers to process any further.
2923
0
        Assume(headers.empty());
2924
0
        return;
2925
0
    }
2926
2927
    // At this point, we have a set of headers with sufficient work on them
2928
    // which can be processed.
2929
2930
    // If we don't have the last header, then this peer will have given us
2931
    // something new (if these headers are valid).
2932
0
    bool received_new_header{last_received_header == nullptr};
2933
2934
    // Now process all the headers.
2935
0
    BlockValidationState state;
2936
0
    if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2937
0
        if (state.IsInvalid()) {
2938
0
            MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2939
0
            return;
2940
0
        }
2941
0
    }
2942
0
    assert(pindexLast);
2943
2944
    // Consider fetching more headers if we are not using our headers-sync mechanism.
2945
0
    if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2946
        // Headers message had its maximum size; the peer may have more headers.
2947
0
        if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2948
0
            LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2949
0
                    pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2950
0
        }
2951
0
    }
2952
2953
0
    UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2954
2955
    // Consider immediately downloading blocks.
2956
0
    HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2957
2958
0
    return;
2959
0
}
2960
2961
std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2962
                                       bool first_time_failure)
2963
0
{
2964
0
    AssertLockNotHeld(m_peer_mutex);
2965
0
    AssertLockHeld(g_msgproc_mutex);
2966
0
    AssertLockHeld(m_tx_download_mutex);
2967
2968
0
    PeerRef peer{GetPeerRef(nodeid)};
2969
2970
0
    LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
2971
0
        ptx->GetHash().ToString(),
2972
0
        ptx->GetWitnessHash().ToString(),
2973
0
        nodeid,
2974
0
        state.ToString());
2975
2976
0
    const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
2977
2978
0
    if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
2979
0
        AddToCompactExtraTransactions(ptx);
2980
0
    }
2981
0
    for (const uint256& parent_txid : unique_parents) {
2982
0
        if (peer) AddKnownTx(*peer, parent_txid);
2983
0
    }
2984
2985
0
    MaybePunishNodeForTx(nodeid, state);
2986
2987
0
    return package_to_validate;
2988
0
}
2989
2990
void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
2991
0
{
2992
0
    AssertLockNotHeld(m_peer_mutex);
2993
0
    AssertLockHeld(g_msgproc_mutex);
2994
0
    AssertLockHeld(m_tx_download_mutex);
2995
2996
0
    m_txdownloadman.MempoolAcceptedTx(tx);
2997
2998
0
    LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
2999
0
             nodeid,
3000
0
             tx->GetHash().ToString(),
3001
0
             tx->GetWitnessHash().ToString(),
3002
0
             m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3003
3004
0
    RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3005
3006
0
    for (const CTransactionRef& removedTx : replaced_transactions) {
3007
0
        AddToCompactExtraTransactions(removedTx);
3008
0
    }
3009
0
}
3010
3011
void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3012
0
{
3013
0
    AssertLockNotHeld(m_peer_mutex);
3014
0
    AssertLockHeld(g_msgproc_mutex);
3015
0
    AssertLockHeld(m_tx_download_mutex);
3016
3017
0
    const auto& package = package_to_validate.m_txns;
3018
0
    const auto& senders = package_to_validate.m_senders;
3019
3020
0
    if (package_result.m_state.IsInvalid()) {
3021
0
        m_txdownloadman.MempoolRejectedPackage(package);
3022
0
    }
3023
    // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3024
0
    if (!Assume(package.size() == 2)) return;
3025
3026
    // Iterate backwards to erase in-package descendants from the orphanage before they become
3027
    // relevant in AddChildrenToWorkSet.
3028
0
    auto package_iter = package.rbegin();
3029
0
    auto senders_iter = senders.rbegin();
3030
0
    while (package_iter != package.rend()) {
3031
0
        const auto& tx = *package_iter;
3032
0
        const NodeId nodeid = *senders_iter;
3033
0
        const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3034
3035
        // It is not guaranteed that a result exists for every transaction.
3036
0
        if (it_result != package_result.m_tx_results.end()) {
3037
0
            const auto& tx_result = it_result->second;
3038
0
            switch (tx_result.m_result_type) {
3039
0
                case MempoolAcceptResult::ResultType::VALID:
3040
0
                {
3041
0
                    ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3042
0
                    break;
3043
0
                }
3044
0
                case MempoolAcceptResult::ResultType::INVALID:
3045
0
                case MempoolAcceptResult::ResultType::DIFFERENT_WITNESS:
3046
0
                {
3047
                    // Don't add to vExtraTxnForCompact, as these transactions should have already been
3048
                    // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3049
                    // This should be updated if package submission is ever used for transactions
3050
                    // that haven't already been validated before.
3051
0
                    ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3052
0
                    break;
3053
0
                }
3054
0
                case MempoolAcceptResult::ResultType::MEMPOOL_ENTRY:
3055
0
                {
3056
                    // AlreadyHaveTx() should be catching transactions that are already in mempool.
3057
0
                    Assume(false);
3058
0
                    break;
3059
0
                }
3060
0
            }
3061
0
        }
3062
0
        package_iter++;
3063
0
        senders_iter++;
3064
0
    }
3065
0
}
3066
3067
bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3068
0
{
3069
0
    AssertLockHeld(g_msgproc_mutex);
3070
0
    LOCK2(::cs_main, m_tx_download_mutex);
3071
3072
0
    CTransactionRef porphanTx = nullptr;
3073
3074
0
    while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3075
0
        const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3076
0
        const TxValidationState& state = result.m_state;
3077
0
        const Txid& orphanHash = porphanTx->GetHash();
3078
0
        const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3079
3080
0
        if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
3081
0
            LogDebug(BCLog::TXPACKAGES, "   accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3082
0
            ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3083
0
            return true;
3084
0
        } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3085
0
            LogDebug(BCLog::TXPACKAGES, "   invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3086
0
                orphanHash.ToString(),
3087
0
                orphan_wtxid.ToString(),
3088
0
                peer.m_id,
3089
0
                state.ToString());
3090
3091
0
            if (Assume(state.IsInvalid() &&
3092
0
                       state.GetResult() != TxValidationResult::TX_UNKNOWN &&
3093
0
                       state.GetResult() != TxValidationResult::TX_NO_MEMPOOL &&
3094
0
                       state.GetResult() != TxValidationResult::TX_RESULT_UNSET)) {
3095
0
                ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3096
0
            }
3097
0
            return true;
3098
0
        }
3099
0
    }
3100
3101
0
    return false;
3102
0
}
3103
3104
bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3105
                                                BlockFilterType filter_type, uint32_t start_height,
3106
                                                const uint256& stop_hash, uint32_t max_height_diff,
3107
                                                const CBlockIndex*& stop_index,
3108
                                                BlockFilterIndex*& filter_index)
3109
0
{
3110
0
    const bool supported_filter_type =
3111
0
        (filter_type == BlockFilterType::BASIC &&
3112
0
         (peer.m_our_services & NODE_COMPACT_FILTERS));
3113
0
    if (!supported_filter_type) {
3114
0
        LogDebug(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
3115
0
                 node.GetId(), static_cast<uint8_t>(filter_type));
3116
0
        node.fDisconnect = true;
3117
0
        return false;
3118
0
    }
3119
3120
0
    {
3121
0
        LOCK(cs_main);
3122
0
        stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3123
3124
        // Check that the stop block exists and the peer would be allowed to fetch it.
3125
0
        if (!stop_index || !BlockRequestAllowed(stop_index)) {
3126
0
            LogDebug(BCLog::NET, "peer %d requested invalid block hash: %s\n",
3127
0
                     node.GetId(), stop_hash.ToString());
3128
0
            node.fDisconnect = true;
3129
0
            return false;
3130
0
        }
3131
0
    }
3132
3133
0
    uint32_t stop_height = stop_index->nHeight;
3134
0
    if (start_height > stop_height) {
3135
0
        LogDebug(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
3136
0
                 "start height %d and stop height %d\n",
3137
0
                 node.GetId(), start_height, stop_height);
3138
0
        node.fDisconnect = true;
3139
0
        return false;
3140
0
    }
3141
0
    if (stop_height - start_height >= max_height_diff) {
3142
0
        LogDebug(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
3143
0
                 node.GetId(), stop_height - start_height + 1, max_height_diff);
3144
0
        node.fDisconnect = true;
3145
0
        return false;
3146
0
    }
3147
3148
0
    filter_index = GetBlockFilterIndex(filter_type);
3149
0
    if (!filter_index) {
3150
0
        LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3151
0
        return false;
3152
0
    }
3153
3154
0
    return true;
3155
0
}
3156
3157
void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3158
0
{
3159
0
    uint8_t filter_type_ser;
3160
0
    uint32_t start_height;
3161
0
    uint256 stop_hash;
3162
3163
0
    vRecv >> filter_type_ser >> start_height >> stop_hash;
3164
3165
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3166
3167
0
    const CBlockIndex* stop_index;
3168
0
    BlockFilterIndex* filter_index;
3169
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3170
0
                                   MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3171
0
        return;
3172
0
    }
3173
3174
0
    std::vector<BlockFilter> filters;
3175
0
    if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3176
0
        LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3177
0
                     BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3178
0
        return;
3179
0
    }
3180
3181
0
    for (const auto& filter : filters) {
3182
0
        MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3183
0
    }
3184
0
}
3185
3186
void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3187
0
{
3188
0
    uint8_t filter_type_ser;
3189
0
    uint32_t start_height;
3190
0
    uint256 stop_hash;
3191
3192
0
    vRecv >> filter_type_ser >> start_height >> stop_hash;
3193
3194
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3195
3196
0
    const CBlockIndex* stop_index;
3197
0
    BlockFilterIndex* filter_index;
3198
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3199
0
                                   MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3200
0
        return;
3201
0
    }
3202
3203
0
    uint256 prev_header;
3204
0
    if (start_height > 0) {
3205
0
        const CBlockIndex* const prev_block =
3206
0
            stop_index->GetAncestor(static_cast<int>(start_height - 1));
3207
0
        if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3208
0
            LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3209
0
                         BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3210
0
            return;
3211
0
        }
3212
0
    }
3213
3214
0
    std::vector<uint256> filter_hashes;
3215
0
    if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3216
0
        LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3217
0
                     BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3218
0
        return;
3219
0
    }
3220
3221
0
    MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3222
0
              filter_type_ser,
3223
0
              stop_index->GetBlockHash(),
3224
0
              prev_header,
3225
0
              filter_hashes);
3226
0
}
3227
3228
void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3229
0
{
3230
0
    uint8_t filter_type_ser;
3231
0
    uint256 stop_hash;
3232
3233
0
    vRecv >> filter_type_ser >> stop_hash;
3234
3235
0
    const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3236
3237
0
    const CBlockIndex* stop_index;
3238
0
    BlockFilterIndex* filter_index;
3239
0
    if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3240
0
                                   /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3241
0
                                   stop_index, filter_index)) {
3242
0
        return;
3243
0
    }
3244
3245
0
    std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3246
3247
    // Populate headers.
3248
0
    const CBlockIndex* block_index = stop_index;
3249
0
    for (int i = headers.size() - 1; i >= 0; i--) {
3250
0
        int height = (i + 1) * CFCHECKPT_INTERVAL;
3251
0
        block_index = block_index->GetAncestor(height);
3252
3253
0
        if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3254
0
            LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3255
0
                         BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3256
0
            return;
3257
0
        }
3258
0
    }
3259
3260
0
    MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3261
0
              filter_type_ser,
3262
0
              stop_index->GetBlockHash(),
3263
0
              headers);
3264
0
}
3265
3266
void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3267
0
{
3268
0
    bool new_block{false};
3269
0
    m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3270
0
    if (new_block) {
3271
0
        node.m_last_block_time = GetTime<std::chrono::seconds>();
3272
        // In case this block came from a different peer than we requested
3273
        // from, we can erase the block request now anyway (as we just stored
3274
        // this block to disk).
3275
0
        LOCK(cs_main);
3276
0
        RemoveBlockRequest(block->GetHash(), std::nullopt);
3277
0
    } else {
3278
0
        LOCK(cs_main);
3279
0
        mapBlockSource.erase(block->GetHash());
3280
0
    }
3281
0
}
3282
3283
void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3284
0
{
3285
0
    std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3286
0
    bool fBlockRead{false};
3287
0
    {
3288
0
        LOCK(cs_main);
3289
3290
0
        auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3291
0
        size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3292
0
        bool requested_block_from_this_peer{false};
3293
3294
        // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3295
0
        bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3296
3297
0
        while (range_flight.first != range_flight.second) {
3298
0
            auto [node_id, block_it] = range_flight.first->second;
3299
0
            if (node_id == pfrom.GetId() && block_it->partialBlock) {
3300
0
                requested_block_from_this_peer = true;
3301
0
                break;
3302
0
            }
3303
0
            range_flight.first++;
3304
0
        }
3305
3306
0
        if (!requested_block_from_this_peer) {
3307
0
            LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3308
0
            return;
3309
0
        }
3310
3311
0
        PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3312
0
        ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3313
0
        if (status == READ_STATUS_INVALID) {
3314
0
            RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3315
0
            Misbehaving(peer, "invalid compact block/non-matching block transactions");
3316
0
            return;
3317
0
        } else if (status == READ_STATUS_FAILED) {
3318
0
            if (first_in_flight) {
3319
                // Might have collided, fall back to getdata now :(
3320
0
                std::vector<CInv> invs;
3321
0
                invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3322
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3323
0
            } else {
3324
0
                RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3325
0
                LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3326
0
                return;
3327
0
            }
3328
0
        } else {
3329
            // Block is either okay, or possibly we received
3330
            // READ_STATUS_CHECKBLOCK_FAILED.
3331
            // Note that CheckBlock can only fail for one of a few reasons:
3332
            // 1. bad-proof-of-work (impossible here, because we've already
3333
            //    accepted the header)
3334
            // 2. merkleroot doesn't match the transactions given (already
3335
            //    caught in FillBlock with READ_STATUS_FAILED, so
3336
            //    impossible here)
3337
            // 3. the block is otherwise invalid (eg invalid coinbase,
3338
            //    block is too big, too many legacy sigops, etc).
3339
            // So if CheckBlock failed, #3 is the only possibility.
3340
            // Under BIP 152, we don't discourage the peer unless proof of work is
3341
            // invalid (we don't require all the stateless checks to have
3342
            // been run).  This is handled below, so just treat this as
3343
            // though the block was successfully read, and rely on the
3344
            // handling in ProcessNewBlock to ensure the block index is
3345
            // updated, etc.
3346
0
            RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3347
0
            fBlockRead = true;
3348
            // mapBlockSource is used for potentially punishing peers and
3349
            // updating which peers send us compact blocks, so the race
3350
            // between here and cs_main in ProcessNewBlock is fine.
3351
            // BIP 152 permits peers to relay compact blocks after validating
3352
            // the header only; we should not punish peers if the block turns
3353
            // out to be invalid.
3354
0
            mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3355
0
        }
3356
0
    } // Don't hold cs_main when we call into ProcessNewBlock
3357
0
    if (fBlockRead) {
3358
        // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3359
        // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3360
        // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3361
        // disk-space attacks), but this should be safe due to the
3362
        // protections in the compact block handler -- see related comment
3363
        // in compact block optimistic reconstruction handling.
3364
0
        ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3365
0
    }
3366
0
    return;
3367
0
}
3368
3369
void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3370
                                     const std::chrono::microseconds time_received,
3371
                                     const std::atomic<bool>& interruptMsgProc)
3372
0
{
3373
0
    AssertLockHeld(g_msgproc_mutex);
3374
3375
0
    LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3376
3377
0
    PeerRef peer = GetPeerRef(pfrom.GetId());
3378
0
    if (peer == nullptr) return;
3379
3380
0
    if (msg_type == NetMsgType::VERSION) {
3381
0
        if (pfrom.nVersion != 0) {
3382
0
            LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3383
0
            return;
3384
0
        }
3385
3386
0
        int64_t nTime;
3387
0
        CService addrMe;
3388
0
        uint64_t nNonce = 1;
3389
0
        ServiceFlags nServices;
3390
0
        int nVersion;
3391
0
        std::string cleanSubVer;
3392
0
        int starting_height = -1;
3393
0
        bool fRelay = true;
3394
3395
0
        vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3396
0
        if (nTime < 0) {
3397
0
            nTime = 0;
3398
0
        }
3399
0
        vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3400
0
        vRecv >> CNetAddr::V1(addrMe);
3401
0
        if (!pfrom.IsInboundConn())
3402
0
        {
3403
            // Overwrites potentially existing services. In contrast to this,
3404
            // unvalidated services received via gossip relay in ADDR/ADDRV2
3405
            // messages are only ever added but cannot replace existing ones.
3406
0
            m_addrman.SetServices(pfrom.addr, nServices);
3407
0
        }
3408
0
        if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3409
0
        {
3410
0
            LogDebug(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
3411
0
            pfrom.fDisconnect = true;
3412
0
            return;
3413
0
        }
3414
3415
0
        if (nVersion < MIN_PEER_PROTO_VERSION) {
3416
            // disconnect from peers older than this proto version
3417
0
            LogDebug(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
3418
0
            pfrom.fDisconnect = true;
3419
0
            return;
3420
0
        }
3421
3422
0
        if (!vRecv.empty()) {
3423
            // The version message includes information about the sending node which we don't use:
3424
            //   - 8 bytes (service bits)
3425
            //   - 16 bytes (ipv6 address)
3426
            //   - 2 bytes (port)
3427
0
            vRecv.ignore(26);
3428
0
            vRecv >> nNonce;
3429
0
        }
3430
0
        if (!vRecv.empty()) {
3431
0
            std::string strSubVer;
3432
0
            vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3433
0
            cleanSubVer = SanitizeString(strSubVer);
3434
0
        }
3435
0
        if (!vRecv.empty()) {
3436
0
            vRecv >> starting_height;
3437
0
        }
3438
0
        if (!vRecv.empty())
3439
0
            vRecv >> fRelay;
3440
        // Disconnect if we connected to ourself
3441
0
        if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3442
0
        {
3443
0
            LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3444
0
            pfrom.fDisconnect = true;
3445
0
            return;
3446
0
        }
3447
3448
0
        if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3449
0
        {
3450
0
            SeenLocal(addrMe);
3451
0
        }
3452
3453
        // Inbound peers send us their version message when they connect.
3454
        // We send our version message in response.
3455
0
        if (pfrom.IsInboundConn()) {
3456
0
            PushNodeVersion(pfrom, *peer);
3457
0
        }
3458
3459
        // Change version
3460
0
        const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3461
0
        pfrom.SetCommonVersion(greatest_common_version);
3462
0
        pfrom.nVersion = nVersion;
3463
3464
0
        if (greatest_common_version >= WTXID_RELAY_VERSION) {
3465
0
            MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3466
0
        }
3467
3468
        // Signal ADDRv2 support (BIP155).
3469
0
        if (greatest_common_version >= 70016) {
3470
            // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3471
            // implementations reject messages they don't know. As a courtesy, don't send
3472
            // it to nodes with a version before 70016, as no software is known to support
3473
            // BIP155 that doesn't announce at least that protocol version number.
3474
0
            MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3475
0
        }
3476
3477
0
        pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3478
0
        peer->m_their_services = nServices;
3479
0
        pfrom.SetAddrLocal(addrMe);
3480
0
        {
3481
0
            LOCK(pfrom.m_subver_mutex);
3482
0
            pfrom.cleanSubVer = cleanSubVer;
3483
0
        }
3484
0
        peer->m_starting_height = starting_height;
3485
3486
        // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3487
        // - this isn't an outbound block-relay-only connection, and
3488
        // - this isn't an outbound feeler connection, and
3489
        // - fRelay=true (the peer wishes to receive transaction announcements)
3490
        //   or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3491
        //   the peer may turn on transaction relay later.
3492
0
        if (!pfrom.IsBlockOnlyConn() &&
3493
0
            !pfrom.IsFeelerConn() &&
3494
0
            (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3495
0
            auto* const tx_relay = peer->SetTxRelay();
3496
0
            {
3497
0
                LOCK(tx_relay->m_bloom_filter_mutex);
3498
0
                tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3499
0
            }
3500
0
            if (fRelay) pfrom.m_relays_txs = true;
3501
0
        }
3502
3503
0
        if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3504
            // Per BIP-330, we announce txreconciliation support if:
3505
            // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3506
            // - transaction relay is supported per the peer's VERSION message
3507
            // - this is not a block-relay-only connection and not a feeler
3508
            // - this is not an addr fetch connection;
3509
            // - we are not in -blocksonly mode.
3510
0
            const auto* tx_relay = peer->GetTxRelay();
3511
0
            if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3512
0
                !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3513
0
                const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3514
0
                MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3515
0
                                   TXRECONCILIATION_VERSION, recon_salt);
3516
0
            }
3517
0
        }
3518
3519
0
        MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3520
3521
        // Potentially mark this peer as a preferred download peer.
3522
0
        {
3523
0
            LOCK(cs_main);
3524
0
            CNodeState* state = State(pfrom.GetId());
3525
0
            state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3526
0
            m_num_preferred_download_peers += state->fPreferredDownload;
3527
0
        }
3528
3529
        // Attempt to initialize address relay for outbound peers and use result
3530
        // to decide whether to send GETADDR, so that we don't send it to
3531
        // inbound or outbound block-relay-only peers.
3532
0
        bool send_getaddr{false};
3533
0
        if (!pfrom.IsInboundConn()) {
3534
0
            send_getaddr = SetupAddressRelay(pfrom, *peer);
3535
0
        }
3536
0
        if (send_getaddr) {
3537
            // Do a one-time address fetch to help populate/update our addrman.
3538
            // If we're starting up for the first time, our addrman may be pretty
3539
            // empty, so this mechanism is important to help us connect to the network.
3540
            // We skip this for block-relay-only peers. We want to avoid
3541
            // potentially leaking addr information and we do not want to
3542
            // indicate to the peer that we will participate in addr relay.
3543
0
            MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3544
0
            peer->m_getaddr_sent = true;
3545
            // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3546
            // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3547
0
            peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3548
0
        }
3549
3550
0
        if (!pfrom.IsInboundConn()) {
3551
            // For non-inbound connections, we update the addrman to record
3552
            // connection success so that addrman will have an up-to-date
3553
            // notion of which peers are online and available.
3554
            //
3555
            // While we strive to not leak information about block-relay-only
3556
            // connections via the addrman, not moving an address to the tried
3557
            // table is also potentially detrimental because new-table entries
3558
            // are subject to eviction in the event of addrman collisions.  We
3559
            // mitigate the information-leak by never calling
3560
            // AddrMan::Connected() on block-relay-only peers; see
3561
            // FinalizeNode().
3562
            //
3563
            // This moves an address from New to Tried table in Addrman,
3564
            // resolves tried-table collisions, etc.
3565
0
            m_addrman.Good(pfrom.addr);
3566
0
        }
3567
3568
0
        std::string remoteAddr;
3569
0
        if (fLogIPs)
3570
0
            remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3571
3572
0
        const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3573
0
        LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3574
0
                  cleanSubVer, pfrom.nVersion,
3575
0
                  peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3576
0
                  remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3577
3578
0
        peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3579
0
        if (!pfrom.IsInboundConn()) {
3580
            // Don't use timedata samples from inbound peers to make it
3581
            // harder for others to create false warnings about our clock being out of sync.
3582
0
            m_outbound_time_offsets.Add(peer->m_time_offset);
3583
0
            m_outbound_time_offsets.WarnIfOutOfSync();
3584
0
        }
3585
3586
        // If the peer is old enough to have the old alert system, send it the final alert.
3587
0
        if (greatest_common_version <= 70012) {
3588
0
            constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3589
0
            MakeAndPushMessage(pfrom, "alert", finalAlert);
3590
0
        }
3591
3592
        // Feeler connections exist only to verify if address is online.
3593
0
        if (pfrom.IsFeelerConn()) {
3594
0
            LogDebug(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
3595
0
            pfrom.fDisconnect = true;
3596
0
        }
3597
0
        return;
3598
0
    }
3599
3600
0
    if (pfrom.nVersion == 0) {
3601
        // Must have a version message before anything else
3602
0
        LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3603
0
        return;
3604
0
    }
3605
3606
0
    if (msg_type == NetMsgType::VERACK) {
3607
0
        if (pfrom.fSuccessfullyConnected) {
3608
0
            LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3609
0
            return;
3610
0
        }
3611
3612
        // Log successful connections unconditionally for outbound, but not for inbound as those
3613
        // can be triggered by an attacker at high rate.
3614
0
        if (!pfrom.IsInboundConn() || LogAcceptCategory(BCLog::NET, BCLog::Level::Debug)) {
3615
0
            const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3616
0
            LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3617
0
                      pfrom.ConnectionTypeAsString(),
3618
0
                      TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3619
0
                      pfrom.nVersion.load(), peer->m_starting_height,
3620
0
                      pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3621
0
                      (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3622
0
        }
3623
3624
0
        if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
3625
            // Tell our peer we are willing to provide version 2 cmpctblocks.
3626
            // However, we do not request new block announcements using
3627
            // cmpctblock messages.
3628
            // We send this to non-NODE NETWORK peers as well, because
3629
            // they may wish to request compact blocks from us
3630
0
            MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3631
0
        }
3632
3633
0
        if (m_txreconciliation) {
3634
0
            if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3635
                // We could have optimistically pre-registered/registered the peer. In that case,
3636
                // we should forget about the reconciliation state here if this wasn't followed
3637
                // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3638
0
                m_txreconciliation->ForgetPeer(pfrom.GetId());
3639
0
            }
3640
0
        }
3641
3642
0
        if (auto tx_relay = peer->GetTxRelay()) {
3643
            // `TxRelay::m_tx_inventory_to_send` must be empty before the
3644
            // version handshake is completed as
3645
            // `TxRelay::m_next_inv_send_time` is first initialised in
3646
            // `SendMessages` after the verack is received. Any transactions
3647
            // received during the version handshake would otherwise
3648
            // immediately be advertised without random delay, potentially
3649
            // leaking the time of arrival to a spy.
3650
0
            Assume(WITH_LOCK(
3651
0
                tx_relay->m_tx_inventory_mutex,
3652
0
                return tx_relay->m_tx_inventory_to_send.empty() &&
3653
0
                       tx_relay->m_next_inv_send_time == 0s));
3654
0
        }
3655
3656
0
        {
3657
0
            LOCK2(::cs_main, m_tx_download_mutex);
3658
0
            const CNodeState* state = State(pfrom.GetId());
3659
0
            m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3660
0
                .m_preferred = state->fPreferredDownload,
3661
0
                .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3662
0
                .m_wtxid_relay = peer->m_wtxid_relay,
3663
0
            });
3664
0
        }
3665
3666
0
        pfrom.fSuccessfullyConnected = true;
3667
0
        return;
3668
0
    }
3669
3670
0
    if (msg_type == NetMsgType::SENDHEADERS) {
3671
0
        peer->m_prefers_headers = true;
3672
0
        return;
3673
0
    }
3674
3675
0
    if (msg_type == NetMsgType::SENDCMPCT) {
3676
0
        bool sendcmpct_hb{false};
3677
0
        uint64_t sendcmpct_version{0};
3678
0
        vRecv >> sendcmpct_hb >> sendcmpct_version;
3679
3680
        // Only support compact block relay with witnesses
3681
0
        if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3682
3683
0
        LOCK(cs_main);
3684
0
        CNodeState* nodestate = State(pfrom.GetId());
3685
0
        nodestate->m_provides_cmpctblocks = true;
3686
0
        nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3687
        // save whether peer selects us as BIP152 high-bandwidth peer
3688
        // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3689
0
        pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3690
0
        return;
3691
0
    }
3692
3693
    // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3694
    // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3695
0
    if (msg_type == NetMsgType::WTXIDRELAY) {
3696
0
        if (pfrom.fSuccessfullyConnected) {
3697
            // Disconnect peers that send a wtxidrelay message after VERACK.
3698
0
            LogDebug(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3699
0
            pfrom.fDisconnect = true;
3700
0
            return;
3701
0
        }
3702
0
        if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3703
0
            if (!peer->m_wtxid_relay) {
3704
0
                peer->m_wtxid_relay = true;
3705
0
                m_wtxid_relay_peers++;
3706
0
            } else {
3707
0
                LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3708
0
            }
3709
0
        } else {
3710
0
            LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3711
0
        }
3712
0
        return;
3713
0
    }
3714
3715
    // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3716
    // between VERSION and VERACK.
3717
0
    if (msg_type == NetMsgType::SENDADDRV2) {
3718
0
        if (pfrom.fSuccessfullyConnected) {
3719
            // Disconnect peers that send a SENDADDRV2 message after VERACK.
3720
0
            LogDebug(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3721
0
            pfrom.fDisconnect = true;
3722
0
            return;
3723
0
        }
3724
0
        peer->m_wants_addrv2 = true;
3725
0
        return;
3726
0
    }
3727
3728
    // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3729
    // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3730
    // from switching announcement protocols after the connection is up.
3731
0
    if (msg_type == NetMsgType::SENDTXRCNCL) {
3732
0
        if (!m_txreconciliation) {
3733
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3734
0
            return;
3735
0
        }
3736
3737
0
        if (pfrom.fSuccessfullyConnected) {
3738
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3739
0
            pfrom.fDisconnect = true;
3740
0
            return;
3741
0
        }
3742
3743
        // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3744
0
        if (RejectIncomingTxs(pfrom)) {
3745
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
3746
0
            pfrom.fDisconnect = true;
3747
0
            return;
3748
0
        }
3749
3750
        // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3751
        // This flag might also be false in other cases, but the RejectIncomingTxs check above
3752
        // eliminates them, so that this flag fully represents what we are looking for.
3753
0
        const auto* tx_relay = peer->GetTxRelay();
3754
0
        if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3755
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
3756
0
            pfrom.fDisconnect = true;
3757
0
            return;
3758
0
        }
3759
3760
0
        uint32_t peer_txreconcl_version;
3761
0
        uint64_t remote_salt;
3762
0
        vRecv >> peer_txreconcl_version >> remote_salt;
3763
3764
0
        const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3765
0
                                                                                     peer_txreconcl_version, remote_salt);
3766
0
        switch (result) {
3767
0
        case ReconciliationRegisterResult::NOT_FOUND:
3768
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3769
0
            break;
3770
0
        case ReconciliationRegisterResult::SUCCESS:
3771
0
            break;
3772
0
        case ReconciliationRegisterResult::ALREADY_REGISTERED:
3773
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
3774
0
            pfrom.fDisconnect = true;
3775
0
            return;
3776
0
        case ReconciliationRegisterResult::PROTOCOL_VIOLATION:
3777
0
            LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
3778
0
            pfrom.fDisconnect = true;
3779
0
            return;
3780
0
        }
3781
0
        return;
3782
0
    }
3783
3784
0
    if (!pfrom.fSuccessfullyConnected) {
3785
0
        LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3786
0
        return;
3787
0
    }
3788
3789
0
    if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3790
0
        const auto ser_params{
3791
0
            msg_type == NetMsgType::ADDRV2 ?
3792
            // Set V2 param so that the CNetAddr and CAddress
3793
            // unserialize methods know that an address in v2 format is coming.
3794
0
            CAddress::V2_NETWORK :
3795
0
            CAddress::V1_NETWORK,
3796
0
        };
3797
3798
0
        std::vector<CAddress> vAddr;
3799
3800
0
        vRecv >> ser_params(vAddr);
3801
3802
0
        if (!SetupAddressRelay(pfrom, *peer)) {
3803
0
            LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3804
0
            return;
3805
0
        }
3806
3807
0
        if (vAddr.size() > MAX_ADDR_TO_SEND)
3808
0
        {
3809
0
            Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3810
0
            return;
3811
0
        }
3812
3813
        // Store the new addresses
3814
0
        std::vector<CAddress> vAddrOk;
3815
0
        const auto current_a_time{Now<NodeSeconds>()};
3816
3817
        // Update/increment addr rate limiting bucket.
3818
0
        const auto current_time{GetTime<std::chrono::microseconds>()};
3819
0
        if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3820
            // Don't increment bucket if it's already full
3821
0
            const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3822
0
            const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3823
0
            peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3824
0
        }
3825
0
        peer->m_addr_token_timestamp = current_time;
3826
3827
0
        const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3828
0
        uint64_t num_proc = 0;
3829
0
        uint64_t num_rate_limit = 0;
3830
0
        std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3831
0
        for (CAddress& addr : vAddr)
3832
0
        {
3833
0
            if (interruptMsgProc)
3834
0
                return;
3835
3836
            // Apply rate limiting.
3837
0
            if (peer->m_addr_token_bucket < 1.0) {
3838
0
                if (rate_limited) {
3839
0
                    ++num_rate_limit;
3840
0
                    continue;
3841
0
                }
3842
0
            } else {
3843
0
                peer->m_addr_token_bucket -= 1.0;
3844
0
            }
3845
            // We only bother storing full nodes, though this may include
3846
            // things which we would not make an outbound connection to, in
3847
            // part because we may make feeler connections to them.
3848
0
            if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3849
0
                continue;
3850
3851
0
            if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3852
0
                addr.nTime = current_a_time - 5 * 24h;
3853
0
            }
3854
0
            AddAddressKnown(*peer, addr);
3855
0
            if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3856
                // Do not process banned/discouraged addresses beyond remembering we received them
3857
0
                continue;
3858
0
            }
3859
0
            ++num_proc;
3860
0
            const bool reachable{g_reachable_nets.Contains(addr)};
3861
0
            if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3862
                // Relay to a limited number of other nodes
3863
0
                RelayAddress(pfrom.GetId(), addr, reachable);
3864
0
            }
3865
            // Do not store addresses outside our network
3866
0
            if (reachable) {
3867
0
                vAddrOk.push_back(addr);
3868
0
            }
3869
0
        }
3870
0
        peer->m_addr_processed += num_proc;
3871
0
        peer->m_addr_rate_limited += num_rate_limit;
3872
0
        LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3873
0
                 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3874
3875
0
        m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3876
0
        if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3877
3878
        // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3879
0
        if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3880
0
            LogDebug(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
3881
0
            pfrom.fDisconnect = true;
3882
0
        }
3883
0
        return;
3884
0
    }
3885
3886
0
    if (msg_type == NetMsgType::INV) {
3887
0
        std::vector<CInv> vInv;
3888
0
        vRecv >> vInv;
3889
0
        if (vInv.size() > MAX_INV_SZ)
3890
0
        {
3891
0
            Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3892
0
            return;
3893
0
        }
3894
3895
0
        const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3896
3897
0
        LOCK2(cs_main, m_tx_download_mutex);
3898
3899
0
        const auto current_time{GetTime<std::chrono::microseconds>()};
3900
0
        uint256* best_block{nullptr};
3901
3902
0
        for (CInv& inv : vInv) {
3903
0
            if (interruptMsgProc) return;
3904
3905
            // Ignore INVs that don't match wtxidrelay setting.
3906
            // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3907
            // This is fine as no INV messages are involved in that process.
3908
0
            if (peer->m_wtxid_relay) {
3909
0
                if (inv.IsMsgTx()) continue;
3910
0
            } else {
3911
0
                if (inv.IsMsgWtx()) continue;
3912
0
            }
3913
3914
0
            if (inv.IsMsgBlk()) {
3915
0
                const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3916
0
                LogDebug(BCLog::NET, "got inv: %s  %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3917
3918
0
                UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3919
0
                if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3920
                    // Headers-first is the primary method of announcement on
3921
                    // the network. If a node fell back to sending blocks by
3922
                    // inv, it may be for a re-org, or because we haven't
3923
                    // completed initial headers sync. The final block hash
3924
                    // provided should be the highest, so send a getheaders and
3925
                    // then fetch the blocks we need to catch up.
3926
0
                    best_block = &inv.hash;
3927
0
                }
3928
0
            } else if (inv.IsGenTxMsg()) {
3929
0
                if (reject_tx_invs) {
3930
0
                    LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
3931
0
                    pfrom.fDisconnect = true;
3932
0
                    return;
3933
0
                }
3934
0
                const GenTxid gtxid = ToGenTxid(inv);
3935
0
                AddKnownTx(*peer, inv.hash);
3936
3937
0
                if (!m_chainman.IsInitialBlockDownload()) {
3938
0
                    const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time, /*p2p_inv=*/true)};
3939
0
                    LogDebug(BCLog::NET, "got inv: %s  %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3940
0
                }
3941
0
            } else {
3942
0
                LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3943
0
            }
3944
0
        }
3945
3946
0
        if (best_block != nullptr) {
3947
            // If we haven't started initial headers-sync with this peer, then
3948
            // consider sending a getheaders now. On initial startup, there's a
3949
            // reliability vs bandwidth tradeoff, where we are only trying to do
3950
            // initial headers sync with one peer at a time, with a long
3951
            // timeout (at which point, if the sync hasn't completed, we will
3952
            // disconnect the peer and then choose another). In the meantime,
3953
            // as new blocks are found, we are willing to add one new peer per
3954
            // block to sync with as well, to sync quicker in the case where
3955
            // our initial peer is unresponsive (but less bandwidth than we'd
3956
            // use if we turned on sync with all peers).
3957
0
            CNodeState& state{*Assert(State(pfrom.GetId()))};
3958
0
            if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3959
0
                if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3960
0
                    LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3961
0
                            m_chainman.m_best_header->nHeight, best_block->ToString(),
3962
0
                            pfrom.GetId());
3963
0
                }
3964
0
                if (!state.fSyncStarted) {
3965
0
                    peer->m_inv_triggered_getheaders_before_sync = true;
3966
                    // Update the last block hash that triggered a new headers
3967
                    // sync, so that we don't turn on headers sync with more
3968
                    // than 1 new peer every new block.
3969
0
                    m_last_block_inv_triggering_headers_sync = *best_block;
3970
0
                }
3971
0
            }
3972
0
        }
3973
3974
0
        return;
3975
0
    }
3976
3977
0
    if (msg_type == NetMsgType::GETDATA) {
3978
0
        std::vector<CInv> vInv;
3979
0
        vRecv >> vInv;
3980
0
        if (vInv.size() > MAX_INV_SZ)
3981
0
        {
3982
0
            Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
3983
0
            return;
3984
0
        }
3985
3986
0
        LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
3987
3988
0
        if (vInv.size() > 0) {
3989
0
            LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
3990
0
        }
3991
3992
0
        {
3993
0
            LOCK(peer->m_getdata_requests_mutex);
3994
0
            peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3995
0
            ProcessGetData(pfrom, *peer, interruptMsgProc);
3996
0
        }
3997
3998
0
        return;
3999
0
    }
4000
4001
0
    if (msg_type == NetMsgType::GETBLOCKS) {
4002
0
        CBlockLocator locator;
4003
0
        uint256 hashStop;
4004
0
        vRecv >> locator >> hashStop;
4005
4006
0
        if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4007
0
            LogDebug(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4008
0
            pfrom.fDisconnect = true;
4009
0
            return;
4010
0
        }
4011
4012
        // We might have announced the currently-being-connected tip using a
4013
        // compact block, which resulted in the peer sending a getblocks
4014
        // request, which we would otherwise respond to without the new block.
4015
        // To avoid this situation we simply verify that we are on our best
4016
        // known chain now. This is super overkill, but we handle it better
4017
        // for getheaders requests, and there are no known nodes which support
4018
        // compact blocks but still use getblocks to request blocks.
4019
0
        {
4020
0
            std::shared_ptr<const CBlock> a_recent_block;
4021
0
            {
4022
0
                LOCK(m_most_recent_block_mutex);
4023
0
                a_recent_block = m_most_recent_block;
4024
0
            }
4025
0
            BlockValidationState state;
4026
0
            if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4027
0
                LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4028
0
            }
4029
0
        }
4030
4031
0
        LOCK(cs_main);
4032
4033
        // Find the last block the caller has in the main chain
4034
0
        const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4035
4036
        // Send the rest of the chain
4037
0
        if (pindex)
4038
0
            pindex = m_chainman.ActiveChain().Next(pindex);
4039
0
        int nLimit = 500;
4040
0
        LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4041
0
        for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4042
0
        {
4043
0
            if (pindex->GetBlockHash() == hashStop)
4044
0
            {
4045
0
                LogDebug(BCLog::NET, "  getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4046
0
                break;
4047
0
            }
4048
            // If pruning, don't inv blocks unless we have on disk and are likely to still have
4049
            // for some reasonable time window (1 hour) that block relay might require.
4050
0
            const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4051
0
            if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4052
0
                LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4053
0
                break;
4054
0
            }
4055
0
            WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4056
0
            if (--nLimit <= 0) {
4057
                // When this block is requested, we'll send an inv that'll
4058
                // trigger the peer to getblocks the next batch of inventory.
4059
0
                LogDebug(BCLog::NET, "  getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4060
0
                WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4061
0
                break;
4062
0
            }
4063
0
        }
4064
0
        return;
4065
0
    }
4066
4067
0
    if (msg_type == NetMsgType::GETBLOCKTXN) {
4068
0
        BlockTransactionsRequest req;
4069
0
        vRecv >> req;
4070
4071
0
        std::shared_ptr<const CBlock> recent_block;
4072
0
        {
4073
0
            LOCK(m_most_recent_block_mutex);
4074
0
            if (m_most_recent_block_hash == req.blockhash)
4075
0
                recent_block = m_most_recent_block;
4076
            // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4077
0
        }
4078
0
        if (recent_block) {
4079
0
            SendBlockTransactions(pfrom, *peer, *recent_block, req);
4080
0
            return;
4081
0
        }
4082
4083
0
        FlatFilePos block_pos{};
4084
0
        {
4085
0
            LOCK(cs_main);
4086
4087
0
            const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4088
0
            if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4089
0
                LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4090
0
                return;
4091
0
            }
4092
4093
0
            if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4094
0
                block_pos = pindex->GetBlockPos();
4095
0
            }
4096
0
        }
4097
4098
0
        if (!block_pos.IsNull()) {
4099
0
            CBlock block;
4100
0
            const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, block_pos)};
4101
            // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4102
            // pruned after we release cs_main above, so this read should never fail.
4103
0
            assert(ret);
4104
4105
0
            SendBlockTransactions(pfrom, *peer, block, req);
4106
0
            return;
4107
0
        }
4108
4109
        // If an older block is requested (should never happen in practice,
4110
        // but can happen in tests) send a block response instead of a
4111
        // blocktxn response. Sending a full block response instead of a
4112
        // small blocktxn response is preferable in the case where a peer
4113
        // might maliciously send lots of getblocktxn requests to trigger
4114
        // expensive disk reads, because it will require the peer to
4115
        // actually receive all the data read from disk over the network.
4116
0
        LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4117
0
        CInv inv{MSG_WITNESS_BLOCK, req.blockhash};
4118
0
        WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4119
        // The message processing loop will go around again (without pausing) and we'll respond then
4120
0
        return;
4121
0
    }
4122
4123
0
    if (msg_type == NetMsgType::GETHEADERS) {
4124
0
        CBlockLocator locator;
4125
0
        uint256 hashStop;
4126
0
        vRecv >> locator >> hashStop;
4127
4128
0
        if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4129
0
            LogDebug(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4130
0
            pfrom.fDisconnect = true;
4131
0
            return;
4132
0
        }
4133
4134
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
4135
0
            LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4136
0
            return;
4137
0
        }
4138
4139
0
        LOCK(cs_main);
4140
4141
        // Note that if we were to be on a chain that forks from the checkpointed
4142
        // chain, then serving those headers to a peer that has seen the
4143
        // checkpointed chain would cause that peer to disconnect us. Requiring
4144
        // that our chainwork exceed the minimum chain work is a protection against
4145
        // being fed a bogus chain when we started up for the first time and
4146
        // getting partitioned off the honest network for serving that chain to
4147
        // others.
4148
0
        if (m_chainman.ActiveTip() == nullptr ||
4149
0
                (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4150
0
            LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4151
            // Just respond with an empty headers message, to tell the peer to
4152
            // go away but not treat us as unresponsive.
4153
0
            MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4154
0
            return;
4155
0
        }
4156
4157
0
        CNodeState *nodestate = State(pfrom.GetId());
4158
0
        const CBlockIndex* pindex = nullptr;
4159
0
        if (locator.IsNull())
4160
0
        {
4161
            // If locator is null, return the hashStop block
4162
0
            pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4163
0
            if (!pindex) {
4164
0
                return;
4165
0
            }
4166
4167
0
            if (!BlockRequestAllowed(pindex)) {
4168
0
                LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4169
0
                return;
4170
0
            }
4171
0
        }
4172
0
        else
4173
0
        {
4174
            // Find the last block the caller has in the main chain
4175
0
            pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4176
0
            if (pindex)
4177
0
                pindex = m_chainman.ActiveChain().Next(pindex);
4178
0
        }
4179
4180
        // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4181
0
        std::vector<CBlock> vHeaders;
4182
0
        int nLimit = m_opts.max_headers_result;
4183
0
        LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4184
0
        for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4185
0
        {
4186
0
            vHeaders.emplace_back(pindex->GetBlockHeader());
4187
0
            if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4188
0
                break;
4189
0
        }
4190
        // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4191
        // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4192
        // headers message). In both cases it's safe to update
4193
        // pindexBestHeaderSent to be our tip.
4194
        //
4195
        // It is important that we simply reset the BestHeaderSent value here,
4196
        // and not max(BestHeaderSent, newHeaderSent). We might have announced
4197
        // the currently-being-connected tip using a compact block, which
4198
        // resulted in the peer sending a headers request, which we respond to
4199
        // without the new block. By resetting the BestHeaderSent, we ensure we
4200
        // will re-announce the new block via headers (or compact blocks again)
4201
        // in the SendMessages logic.
4202
0
        nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4203
0
        MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4204
0
        return;
4205
0
    }
4206
4207
0
    if (msg_type == NetMsgType::TX) {
4208
0
        if (RejectIncomingTxs(pfrom)) {
4209
0
            LogDebug(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
4210
0
            pfrom.fDisconnect = true;
4211
0
            return;
4212
0
        }
4213
4214
        // Stop processing the transaction early if we are still in IBD since we don't
4215
        // have enough information to validate it yet. Sending unsolicited transactions
4216
        // is not considered a protocol violation, so don't punish the peer.
4217
0
        if (m_chainman.IsInitialBlockDownload()) return;
4218
4219
0
        CTransactionRef ptx;
4220
0
        vRecv >> TX_WITH_WITNESS(ptx);
4221
0
        const CTransaction& tx = *ptx;
4222
4223
0
        const uint256& txid = ptx->GetHash();
4224
0
        const uint256& wtxid = ptx->GetWitnessHash();
4225
4226
0
        const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4227
0
        AddKnownTx(*peer, hash);
4228
4229
0
        LOCK2(cs_main, m_tx_download_mutex);
4230
4231
0
        const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4232
0
        if (!should_validate) {
4233
0
            if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
4234
                // Always relay transactions received from peers with forcerelay
4235
                // permission, even if they were already in the mempool, allowing
4236
                // the node to function as a gateway for nodes hidden behind it.
4237
0
                if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4238
0
                    LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4239
0
                              tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4240
0
                } else {
4241
0
                    LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4242
0
                              tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4243
0
                    RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4244
0
                }
4245
0
            }
4246
4247
0
            if (package_to_validate) {
4248
0
                const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4249
0
                LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4250
0
                         package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4251
0
                ProcessPackageResult(package_to_validate.value(), package_result);
4252
0
            }
4253
0
            return;
4254
0
        }
4255
4256
        // ReceivedTx should not be telling us to validate the tx and a package.
4257
0
        Assume(!package_to_validate.has_value());
4258
4259
0
        const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4260
0
        const TxValidationState& state = result.m_state;
4261
4262
0
        if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
4263
0
            ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4264
0
            pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4265
0
        }
4266
0
        if (state.IsInvalid()) {
4267
0
            if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4268
0
                const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4269
0
                LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4270
0
                         package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4271
0
                ProcessPackageResult(package_to_validate.value(), package_result);
4272
0
            }
4273
0
        }
4274
4275
0
        return;
4276
0
    }
4277
4278
0
    if (msg_type == NetMsgType::CMPCTBLOCK)
4279
0
    {
4280
        // Ignore cmpctblock received while importing
4281
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
4282
0
            LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4283
0
            return;
4284
0
        }
4285
4286
0
        CBlockHeaderAndShortTxIDs cmpctblock;
4287
0
        vRecv >> cmpctblock;
4288
4289
0
        bool received_new_header = false;
4290
0
        const auto blockhash = cmpctblock.header.GetHash();
4291
4292
0
        {
4293
0
        LOCK(cs_main);
4294
4295
0
        const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4296
0
        if (!prev_block) {
4297
            // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4298
0
            if (!m_chainman.IsInitialBlockDownload()) {
4299
0
                MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4300
0
            }
4301
0
            return;
4302
0
        } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4303
            // If we get a low-work header in a compact block, we can ignore it.
4304
0
            LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4305
0
            return;
4306
0
        }
4307
4308
0
        if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4309
0
            received_new_header = true;
4310
0
        }
4311
0
        }
4312
4313
0
        const CBlockIndex *pindex = nullptr;
4314
0
        BlockValidationState state;
4315
0
        if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4316
0
            if (state.IsInvalid()) {
4317
0
                MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4318
0
                return;
4319
0
            }
4320
0
        }
4321
4322
0
        if (received_new_header) {
4323
0
            LogInfo("Saw new cmpctblock header hash=%s peer=%d\n",
4324
0
                blockhash.ToString(), pfrom.GetId());
4325
0
        }
4326
4327
0
        bool fProcessBLOCKTXN = false;
4328
4329
        // If we end up treating this as a plain headers message, call that as well
4330
        // without cs_main.
4331
0
        bool fRevertToHeaderProcessing = false;
4332
4333
        // Keep a CBlock for "optimistic" compactblock reconstructions (see
4334
        // below)
4335
0
        std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4336
0
        bool fBlockReconstructed = false;
4337
4338
0
        {
4339
0
        LOCK(cs_main);
4340
        // If AcceptBlockHeader returned true, it set pindex
4341
0
        assert(pindex);
4342
0
        UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4343
4344
0
        CNodeState *nodestate = State(pfrom.GetId());
4345
4346
        // If this was a new header with more work than our tip, update the
4347
        // peer's last block announcement time
4348
0
        if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4349
0
            nodestate->m_last_block_announcement = GetTime();
4350
0
        }
4351
4352
0
        if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4353
0
            return;
4354
4355
0
        auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4356
0
        size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4357
0
        bool requested_block_from_this_peer{false};
4358
4359
        // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4360
0
        bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4361
4362
0
        while (range_flight.first != range_flight.second) {
4363
0
            if (range_flight.first->second.first == pfrom.GetId()) {
4364
0
                requested_block_from_this_peer = true;
4365
0
                break;
4366
0
            }
4367
0
            range_flight.first++;
4368
0
        }
4369
4370
0
        if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4371
0
                pindex->nTx != 0) { // We had this block at some point, but pruned it
4372
0
            if (requested_block_from_this_peer) {
4373
                // We requested this block for some reason, but our mempool will probably be useless
4374
                // so we just grab the block via normal getdata
4375
0
                std::vector<CInv> vInv(1);
4376
0
                vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4377
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4378
0
            }
4379
0
            return;
4380
0
        }
4381
4382
        // If we're not close to tip yet, give up and let parallel block fetch work its magic
4383
0
        if (!already_in_flight && !CanDirectFetch()) {
4384
0
            return;
4385
0
        }
4386
4387
        // We want to be a bit conservative just to be extra careful about DoS
4388
        // possibilities in compact block processing...
4389
0
        if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4390
0
            if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4391
0
                 requested_block_from_this_peer) {
4392
0
                std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4393
0
                if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4394
0
                    if (!(*queuedBlockIt)->partialBlock)
4395
0
                        (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4396
0
                    else {
4397
                        // The block was already in flight using compact blocks from the same peer
4398
0
                        LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4399
0
                        return;
4400
0
                    }
4401
0
                }
4402
4403
0
                PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4404
0
                ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4405
0
                if (status == READ_STATUS_INVALID) {
4406
0
                    RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4407
0
                    Misbehaving(*peer, "invalid compact block");
4408
0
                    return;
4409
0
                } else if (status == READ_STATUS_FAILED) {
4410
0
                    if (first_in_flight)  {
4411
                        // Duplicate txindexes, the block is now in-flight, so just request it
4412
0
                        std::vector<CInv> vInv(1);
4413
0
                        vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4414
0
                        MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4415
0
                    } else {
4416
                        // Give up for this peer and wait for other peer(s)
4417
0
                        RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4418
0
                    }
4419
0
                    return;
4420
0
                }
4421
4422
0
                BlockTransactionsRequest req;
4423
0
                for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4424
0
                    if (!partialBlock.IsTxAvailable(i))
4425
0
                        req.indexes.push_back(i);
4426
0
                }
4427
0
                if (req.indexes.empty()) {
4428
0
                    fProcessBLOCKTXN = true;
4429
0
                } else if (first_in_flight) {
4430
                    // We will try to round-trip any compact blocks we get on failure,
4431
                    // as long as it's first...
4432
0
                    req.blockhash = pindex->GetBlockHash();
4433
0
                    MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4434
0
                } else if (pfrom.m_bip152_highbandwidth_to &&
4435
0
                    (!pfrom.IsInboundConn() ||
4436
0
                    IsBlockRequestedFromOutbound(blockhash) ||
4437
0
                    already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4438
                    // ... or it's a hb relay peer and:
4439
                    // - peer is outbound, or
4440
                    // - we already have an outbound attempt in flight(so we'll take what we can get), or
4441
                    // - it's not the final parallel download slot (which we may reserve for first outbound)
4442
0
                    req.blockhash = pindex->GetBlockHash();
4443
0
                    MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4444
0
                } else {
4445
                    // Give up for this peer and wait for other peer(s)
4446
0
                    RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4447
0
                }
4448
0
            } else {
4449
                // This block is either already in flight from a different
4450
                // peer, or this peer has too many blocks outstanding to
4451
                // download from.
4452
                // Optimistically try to reconstruct anyway since we might be
4453
                // able to without any round trips.
4454
0
                PartiallyDownloadedBlock tempBlock(&m_mempool);
4455
0
                ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4456
0
                if (status != READ_STATUS_OK) {
4457
                    // TODO: don't ignore failures
4458
0
                    return;
4459
0
                }
4460
0
                std::vector<CTransactionRef> dummy;
4461
0
                status = tempBlock.FillBlock(*pblock, dummy);
4462
0
                if (status == READ_STATUS_OK) {
4463
0
                    fBlockReconstructed = true;
4464
0
                }
4465
0
            }
4466
0
        } else {
4467
0
            if (requested_block_from_this_peer) {
4468
                // We requested this block, but its far into the future, so our
4469
                // mempool will probably be useless - request the block normally
4470
0
                std::vector<CInv> vInv(1);
4471
0
                vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4472
0
                MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4473
0
                return;
4474
0
            } else {
4475
                // If this was an announce-cmpctblock, we want the same treatment as a header message
4476
0
                fRevertToHeaderProcessing = true;
4477
0
            }
4478
0
        }
4479
0
        } // cs_main
4480
4481
0
        if (fProcessBLOCKTXN) {
4482
0
            BlockTransactions txn;
4483
0
            txn.blockhash = blockhash;
4484
0
            return ProcessCompactBlockTxns(pfrom, *peer, txn);
4485
0
        }
4486
4487
0
        if (fRevertToHeaderProcessing) {
4488
            // Headers received from HB compact block peers are permitted to be
4489
            // relayed before full validation (see BIP 152), so we don't want to disconnect
4490
            // the peer if the header turns out to be for an invalid block.
4491
            // Note that if a peer tries to build on an invalid chain, that
4492
            // will be detected and the peer will be disconnected/discouraged.
4493
0
            return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4494
0
        }
4495
4496
0
        if (fBlockReconstructed) {
4497
            // If we got here, we were able to optimistically reconstruct a
4498
            // block that is in flight from some other peer.
4499
0
            {
4500
0
                LOCK(cs_main);
4501
0
                mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4502
0
            }
4503
            // Setting force_processing to true means that we bypass some of
4504
            // our anti-DoS protections in AcceptBlock, which filters
4505
            // unrequested blocks that might be trying to waste our resources
4506
            // (eg disk space). Because we only try to reconstruct blocks when
4507
            // we're close to caught up (via the CanDirectFetch() requirement
4508
            // above, combined with the behavior of not requesting blocks until
4509
            // we have a chain with at least the minimum chain work), and we ignore
4510
            // compact blocks with less work than our tip, it is safe to treat
4511
            // reconstructed compact blocks as having been requested.
4512
0
            ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4513
0
            LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4514
0
            if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4515
                // Clear download state for this block, which is in
4516
                // process from some other peer.  We do this after calling
4517
                // ProcessNewBlock so that a malleated cmpctblock announcement
4518
                // can't be used to interfere with block relay.
4519
0
                RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4520
0
            }
4521
0
        }
4522
0
        return;
4523
0
    }
4524
4525
0
    if (msg_type == NetMsgType::BLOCKTXN)
4526
0
    {
4527
        // Ignore blocktxn received while importing
4528
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
4529
0
            LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4530
0
            return;
4531
0
        }
4532
4533
0
        BlockTransactions resp;
4534
0
        vRecv >> resp;
4535
4536
0
        return ProcessCompactBlockTxns(pfrom, *peer, resp);
4537
0
    }
4538
4539
0
    if (msg_type == NetMsgType::HEADERS)
4540
0
    {
4541
        // Ignore headers received while importing
4542
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
4543
0
            LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4544
0
            return;
4545
0
        }
4546
4547
0
        std::vector<CBlockHeader> headers;
4548
4549
        // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4550
0
        unsigned int nCount = ReadCompactSize(vRecv);
4551
0
        if (nCount > m_opts.max_headers_result) {
4552
0
            Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4553
0
            return;
4554
0
        }
4555
0
        headers.resize(nCount);
4556
0
        for (unsigned int n = 0; n < nCount; n++) {
4557
0
            vRecv >> headers[n];
4558
0
            ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4559
0
        }
4560
4561
0
        ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4562
4563
        // Check if the headers presync progress needs to be reported to validation.
4564
        // This needs to be done without holding the m_headers_presync_mutex lock.
4565
0
        if (m_headers_presync_should_signal.exchange(false)) {
4566
0
            HeadersPresyncStats stats;
4567
0
            {
4568
0
                LOCK(m_headers_presync_mutex);
4569
0
                auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4570
0
                if (it != m_headers_presync_stats.end()) stats = it->second;
4571
0
            }
4572
0
            if (stats.second) {
4573
0
                m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4574
0
            }
4575
0
        }
4576
4577
0
        return;
4578
0
    }
4579
4580
0
    if (msg_type == NetMsgType::BLOCK)
4581
0
    {
4582
        // Ignore block received while importing
4583
0
        if (m_chainman.m_blockman.LoadingBlocks()) {
4584
0
            LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4585
0
            return;
4586
0
        }
4587
4588
0
        std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4589
0
        vRecv >> TX_WITH_WITNESS(*pblock);
4590
4591
0
        LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4592
4593
0
        const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4594
4595
        // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4596
0
        if (prev_block && IsBlockMutated(/*block=*/*pblock,
4597
0
                           /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4598
0
            LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4599
0
            Misbehaving(*peer, "mutated block");
4600
0
            WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4601
0
            return;
4602
0
        }
4603
4604
0
        bool forceProcessing = false;
4605
0
        const uint256 hash(pblock->GetHash());
4606
0
        bool min_pow_checked = false;
4607
0
        {
4608
0
            LOCK(cs_main);
4609
            // Always process the block if we requested it, since we may
4610
            // need it even when it's not a candidate for a new best tip.
4611
0
            forceProcessing = IsBlockRequested(hash);
4612
0
            RemoveBlockRequest(hash, pfrom.GetId());
4613
            // mapBlockSource is only used for punishing peers and setting
4614
            // which peers send us compact blocks, so the race between here and
4615
            // cs_main in ProcessNewBlock is fine.
4616
0
            mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4617
4618
            // Check claimed work on this block against our anti-dos thresholds.
4619
0
            if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4620
0
                min_pow_checked = true;
4621
0
            }
4622
0
        }
4623
0
        ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4624
0
        return;
4625
0
    }
4626
4627
0
    if (msg_type == NetMsgType::GETADDR) {
4628
        // This asymmetric behavior for inbound and outbound connections was introduced
4629
        // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4630
        // to users' AddrMan and later request them by sending getaddr messages.
4631
        // Making nodes which are behind NAT and can only make outgoing connections ignore
4632
        // the getaddr message mitigates the attack.
4633
0
        if (!pfrom.IsInboundConn()) {
4634
0
            LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4635
0
            return;
4636
0
        }
4637
4638
        // Since this must be an inbound connection, SetupAddressRelay will
4639
        // never fail.
4640
0
        Assume(SetupAddressRelay(pfrom, *peer));
4641
4642
        // Only send one GetAddr response per connection to reduce resource waste
4643
        // and discourage addr stamping of INV announcements.
4644
0
        if (peer->m_getaddr_recvd) {
4645
0
            LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4646
0
            return;
4647
0
        }
4648
0
        peer->m_getaddr_recvd = true;
4649
4650
0
        peer->m_addrs_to_send.clear();
4651
0
        std::vector<CAddress> vAddr;
4652
0
        if (pfrom.HasPermission(NetPermissionFlags::Addr)) {
4653
0
            vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4654
0
        } else {
4655
0
            vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4656
0
        }
4657
0
        for (const CAddress &addr : vAddr) {
4658
0
            PushAddress(*peer, addr);
4659
0
        }
4660
0
        return;
4661
0
    }
4662
4663
0
    if (msg_type == NetMsgType::MEMPOOL) {
4664
        // Only process received mempool messages if we advertise NODE_BLOOM
4665
        // or if the peer has mempool permissions.
4666
0
        if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4667
0
        {
4668
0
            if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4669
0
            {
4670
0
                LogDebug(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
4671
0
                pfrom.fDisconnect = true;
4672
0
            }
4673
0
            return;
4674
0
        }
4675
4676
0
        if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4677
0
        {
4678
0
            if (!pfrom.HasPermission(NetPermissionFlags::NoBan))
4679
0
            {
4680
0
                LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
4681
0
                pfrom.fDisconnect = true;
4682
0
            }
4683
0
            return;
4684
0
        }
4685
4686
0
        if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4687
0
            LOCK(tx_relay->m_tx_inventory_mutex);
4688
0
            tx_relay->m_send_mempool = true;
4689
0
        }
4690
0
        return;
4691
0
    }
4692
4693
0
    if (msg_type == NetMsgType::PING) {
4694
0
        if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4695
0
            uint64_t nonce = 0;
4696
0
            vRecv >> nonce;
4697
            // Echo the message back with the nonce. This allows for two useful features:
4698
            //
4699
            // 1) A remote node can quickly check if the connection is operational
4700
            // 2) Remote nodes can measure the latency of the network thread. If this node
4701
            //    is overloaded it won't respond to pings quickly and the remote node can
4702
            //    avoid sending us more work, like chain download requests.
4703
            //
4704
            // The nonce stops the remote getting confused between different pings: without
4705
            // it, if the remote node sends a ping once per second and this node takes 5
4706
            // seconds to respond to each, the 5th ping the remote sends would appear to
4707
            // return very quickly.
4708
0
            MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4709
0
        }
4710
0
        return;
4711
0
    }
4712
4713
0
    if (msg_type == NetMsgType::PONG) {
4714
0
        const auto ping_end = time_received;
4715
0
        uint64_t nonce = 0;
4716
0
        size_t nAvail = vRecv.in_avail();
4717
0
        bool bPingFinished = false;
4718
0
        std::string sProblem;
4719
4720
0
        if (nAvail >= sizeof(nonce)) {
4721
0
            vRecv >> nonce;
4722
4723
            // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4724
0
            if (peer->m_ping_nonce_sent != 0) {
4725
0
                if (nonce == peer->m_ping_nonce_sent) {
4726
                    // Matching pong received, this ping is no longer outstanding
4727
0
                    bPingFinished = true;
4728
0
                    const auto ping_time = ping_end - peer->m_ping_start.load();
4729
0
                    if (ping_time.count() >= 0) {
4730
                        // Let connman know about this successful ping-pong
4731
0
                        pfrom.PongReceived(ping_time);
4732
0
                    } else {
4733
                        // This should never happen
4734
0
                        sProblem = "Timing mishap";
4735
0
                    }
4736
0
                } else {
4737
                    // Nonce mismatches are normal when pings are overlapping
4738
0
                    sProblem = "Nonce mismatch";
4739
0
                    if (nonce == 0) {
4740
                        // This is most likely a bug in another implementation somewhere; cancel this ping
4741
0
                        bPingFinished = true;
4742
0
                        sProblem = "Nonce zero";
4743
0
                    }
4744
0
                }
4745
0
            } else {
4746
0
                sProblem = "Unsolicited pong without ping";
4747
0
            }
4748
0
        } else {
4749
            // This is most likely a bug in another implementation somewhere; cancel this ping
4750
0
            bPingFinished = true;
4751
0
            sProblem = "Short payload";
4752
0
        }
4753
4754
0
        if (!(sProblem.empty())) {
4755
0
            LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4756
0
                pfrom.GetId(),
4757
0
                sProblem,
4758
0
                peer->m_ping_nonce_sent,
4759
0
                nonce,
4760
0
                nAvail);
4761
0
        }
4762
0
        if (bPingFinished) {
4763
0
            peer->m_ping_nonce_sent = 0;
4764
0
        }
4765
0
        return;
4766
0
    }
4767
4768
0
    if (msg_type == NetMsgType::FILTERLOAD) {
4769
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
4770
0
            LogDebug(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4771
0
            pfrom.fDisconnect = true;
4772
0
            return;
4773
0
        }
4774
0
        CBloomFilter filter;
4775
0
        vRecv >> filter;
4776
4777
0
        if (!filter.IsWithinSizeConstraints())
4778
0
        {
4779
            // There is no excuse for sending a too-large filter
4780
0
            Misbehaving(*peer, "too-large bloom filter");
4781
0
        } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4782
0
            {
4783
0
                LOCK(tx_relay->m_bloom_filter_mutex);
4784
0
                tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4785
0
                tx_relay->m_relay_txs = true;
4786
0
            }
4787
0
            pfrom.m_bloom_filter_loaded = true;
4788
0
            pfrom.m_relays_txs = true;
4789
0
        }
4790
0
        return;
4791
0
    }
4792
4793
0
    if (msg_type == NetMsgType::FILTERADD) {
4794
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
4795
0
            LogDebug(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4796
0
            pfrom.fDisconnect = true;
4797
0
            return;
4798
0
        }
4799
0
        std::vector<unsigned char> vData;
4800
0
        vRecv >> vData;
4801
4802
        // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4803
        // and thus, the maximum size any matched object can have) in a filteradd message
4804
0
        bool bad = false;
4805
0
        if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4806
0
            bad = true;
4807
0
        } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4808
0
            LOCK(tx_relay->m_bloom_filter_mutex);
4809
0
            if (tx_relay->m_bloom_filter) {
4810
0
                tx_relay->m_bloom_filter->insert(vData);
4811
0
            } else {
4812
0
                bad = true;
4813
0
            }
4814
0
        }
4815
0
        if (bad) {
4816
0
            Misbehaving(*peer, "bad filteradd message");
4817
0
        }
4818
0
        return;
4819
0
    }
4820
4821
0
    if (msg_type == NetMsgType::FILTERCLEAR) {
4822
0
        if (!(peer->m_our_services & NODE_BLOOM)) {
4823
0
            LogDebug(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4824
0
            pfrom.fDisconnect = true;
4825
0
            return;
4826
0
        }
4827
0
        auto tx_relay = peer->GetTxRelay();
4828
0
        if (!tx_relay) return;
4829
4830
0
        {
4831
0
            LOCK(tx_relay->m_bloom_filter_mutex);
4832
0
            tx_relay->m_bloom_filter = nullptr;
4833
0
            tx_relay->m_relay_txs = true;
4834
0
        }
4835
0
        pfrom.m_bloom_filter_loaded = false;
4836
0
        pfrom.m_relays_txs = true;
4837
0
        return;
4838
0
    }
4839
4840
0
    if (msg_type == NetMsgType::FEEFILTER) {
4841
0
        CAmount newFeeFilter = 0;
4842
0
        vRecv >> newFeeFilter;
4843
0
        if (MoneyRange(newFeeFilter)) {
4844
0
            if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4845
0
                tx_relay->m_fee_filter_received = newFeeFilter;
4846
0
            }
4847
0
            LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4848
0
        }
4849
0
        return;
4850
0
    }
4851
4852
0
    if (msg_type == NetMsgType::GETCFILTERS) {
4853
0
        ProcessGetCFilters(pfrom, *peer, vRecv);
4854
0
        return;
4855
0
    }
4856
4857
0
    if (msg_type == NetMsgType::GETCFHEADERS) {
4858
0
        ProcessGetCFHeaders(pfrom, *peer, vRecv);
4859
0
        return;
4860
0
    }
4861
4862
0
    if (msg_type == NetMsgType::GETCFCHECKPT) {
4863
0
        ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4864
0
        return;
4865
0
    }
4866
4867
0
    if (msg_type == NetMsgType::NOTFOUND) {
4868
0
        std::vector<CInv> vInv;
4869
0
        vRecv >> vInv;
4870
0
        std::vector<uint256> tx_invs;
4871
0
        if (vInv.size() <= node::MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
4872
0
            for (CInv &inv : vInv) {
4873
0
                if (inv.IsGenTxMsg()) {
4874
0
                    tx_invs.emplace_back(inv.hash);
4875
0
                }
4876
0
            }
4877
0
        }
4878
0
        LOCK(m_tx_download_mutex);
4879
0
        m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4880
0
        return;
4881
0
    }
4882
4883
    // Ignore unknown commands for extensibility
4884
0
    LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4885
0
    return;
4886
0
}
4887
4888
bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4889
0
{
4890
0
    {
4891
0
        LOCK(peer.m_misbehavior_mutex);
4892
4893
        // There's nothing to do if the m_should_discourage flag isn't set
4894
0
        if (!peer.m_should_discourage) return false;
4895
4896
0
        peer.m_should_discourage = false;
4897
0
    } // peer.m_misbehavior_mutex
4898
4899
0
    if (pnode.HasPermission(NetPermissionFlags::NoBan)) {
4900
        // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4901
0
        LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4902
0
        return false;
4903
0
    }
4904
4905
0
    if (pnode.IsManualConn()) {
4906
        // We never disconnect or discourage manual peers for bad behavior
4907
0
        LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4908
0
        return false;
4909
0
    }
4910
4911
0
    if (pnode.addr.IsLocal()) {
4912
        // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4913
        // all peers on the same local address)
4914
0
        LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4915
0
                 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4916
0
        pnode.fDisconnect = true;
4917
0
        return true;
4918
0
    }
4919
4920
    // Normal case: Disconnect the peer and discourage all nodes sharing the address
4921
0
    LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4922
0
    if (m_banman) m_banman->Discourage(pnode.addr);
4923
0
    m_connman.DisconnectNode(pnode.addr);
4924
0
    return true;
4925
0
}
4926
4927
bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4928
0
{
4929
0
    AssertLockNotHeld(m_tx_download_mutex);
4930
0
    AssertLockHeld(g_msgproc_mutex);
4931
4932
0
    PeerRef peer = GetPeerRef(pfrom->GetId());
4933
0
    if (peer == nullptr) return false;
4934
4935
    // For outbound connections, ensure that the initial VERSION message
4936
    // has been sent first before processing any incoming messages
4937
0
    if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4938
4939
0
    {
4940
0
        LOCK(peer->m_getdata_requests_mutex);
4941
0
        if (!peer->m_getdata_requests.empty()) {
4942
0
            ProcessGetData(*pfrom, *peer, interruptMsgProc);
4943
0
        }
4944
0
    }
4945
4946
0
    const bool processed_orphan = ProcessOrphanTx(*peer);
4947
4948
0
    if (pfrom->fDisconnect)
4949
0
        return false;
4950
4951
0
    if (processed_orphan) return true;
4952
4953
    // this maintains the order of responses
4954
    // and prevents m_getdata_requests to grow unbounded
4955
0
    {
4956
0
        LOCK(peer->m_getdata_requests_mutex);
4957
0
        if (!peer->m_getdata_requests.empty()) return true;
4958
0
    }
4959
4960
    // Don't bother if send buffer is too full to respond anyway
4961
0
    if (pfrom->fPauseSend) return false;
4962
4963
0
    auto poll_result{pfrom->PollMessage()};
4964
0
    if (!poll_result) {
4965
        // No message to process
4966
0
        return false;
4967
0
    }
4968
4969
0
    CNetMessage& msg{poll_result->first};
4970
0
    bool fMoreWork = poll_result->second;
4971
4972
0
    TRACE6(net, inbound_message,
4973
0
        pfrom->GetId(),
4974
0
        pfrom->m_addr_name.c_str(),
4975
0
        pfrom->ConnectionTypeAsString().c_str(),
4976
0
        msg.m_type.c_str(),
4977
0
        msg.m_recv.size(),
4978
0
        msg.m_recv.data()
4979
0
    );
4980
4981
0
    if (m_opts.capture_messages) {
4982
0
        CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
4983
0
    }
4984
4985
0
    try {
4986
0
        ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
4987
0
        if (interruptMsgProc) return false;
4988
0
        {
4989
0
            LOCK(peer->m_getdata_requests_mutex);
4990
0
            if (!peer->m_getdata_requests.empty()) fMoreWork = true;
4991
0
        }
4992
        // Does this peer has an orphan ready to reconsider?
4993
        // (Note: we may have provided a parent for an orphan provided
4994
        //  by another peer that was already processed; in that case,
4995
        //  the extra work may not be noticed, possibly resulting in an
4996
        //  unnecessary 100ms delay)
4997
0
        LOCK(m_tx_download_mutex);
4998
0
        if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
4999
0
    } catch (const std::exception& e) {
5000
0
        LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5001
0
    } catch (...) {
5002
0
        LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5003
0
    }
5004
5005
0
    return fMoreWork;
5006
0
}
5007
5008
void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5009
0
{
5010
0
    AssertLockHeld(cs_main);
5011
5012
0
    CNodeState &state = *State(pto.GetId());
5013
5014
0
    if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5015
        // This is an outbound peer subject to disconnection if they don't
5016
        // announce a block with as much work as the current tip within
5017
        // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5018
        // their chain has more work than ours, we should sync to it,
5019
        // unless it's invalid, in which case we should find that out and
5020
        // disconnect from them elsewhere).
5021
0
        if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5022
            // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5023
0
            if (state.m_chain_sync.m_timeout != 0s) {
5024
0
                state.m_chain_sync.m_timeout = 0s;
5025
0
                state.m_chain_sync.m_work_header = nullptr;
5026
0
                state.m_chain_sync.m_sent_getheaders = false;
5027
0
            }
5028
0
        } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5029
            // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5030
            // AND
5031
            // we are noticing this for the first time (m_timeout is 0)
5032
            // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5033
            // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5034
            // Either way, set a new timeout based on our current tip.
5035
0
            state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5036
0
            state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5037
0
            state.m_chain_sync.m_sent_getheaders = false;
5038
0
        } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5039
            // No evidence yet that our peer has synced to a chain with work equal to that
5040
            // of our tip, when we first detected it was behind. Send a single getheaders
5041
            // message to give the peer a chance to update us.
5042
0
            if (state.m_chain_sync.m_sent_getheaders) {
5043
                // They've run out of time to catch up!
5044
0
                LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
5045
0
                pto.fDisconnect = true;
5046
0
            } else {
5047
0
                assert(state.m_chain_sync.m_work_header);
5048
                // Here, we assume that the getheaders message goes out,
5049
                // because it'll either go out or be skipped because of a
5050
                // getheaders in-flight already, in which case the peer should
5051
                // still respond to us with a sufficiently high work chain tip.
5052
0
                MaybeSendGetHeaders(pto,
5053
0
                        GetLocator(state.m_chain_sync.m_work_header->pprev),
5054
0
                        peer);
5055
0
                LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5056
0
                state.m_chain_sync.m_sent_getheaders = true;
5057
                // Bump the timeout to allow a response, which could clear the timeout
5058
                // (if the response shows the peer has synced), reset the timeout (if
5059
                // the peer syncs to the required work but not to our tip), or result
5060
                // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5061
                // has not sufficiently progressed)
5062
0
                state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5063
0
            }
5064
0
        }
5065
0
    }
5066
0
}
5067
5068
void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5069
0
{
5070
    // If we have any extra block-relay-only peers, disconnect the youngest unless
5071
    // it's given us a block -- in which case, compare with the second-youngest, and
5072
    // out of those two, disconnect the peer who least recently gave us a block.
5073
    // The youngest block-relay-only peer would be the extra peer we connected
5074
    // to temporarily in order to sync our tip; see net.cpp.
5075
    // Note that we use higher nodeid as a measure for most recent connection.
5076
0
    if (m_connman.GetExtraBlockRelayCount() > 0) {
5077
0
        std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5078
5079
0
        m_connman.ForEachNode([&](CNode* pnode) {
5080
0
            if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5081
0
            if (pnode->GetId() > youngest_peer.first) {
5082
0
                next_youngest_peer = youngest_peer;
5083
0
                youngest_peer.first = pnode->GetId();
5084
0
                youngest_peer.second = pnode->m_last_block_time;
5085
0
            }
5086
0
        });
5087
0
        NodeId to_disconnect = youngest_peer.first;
5088
0
        if (youngest_peer.second > next_youngest_peer.second) {
5089
            // Our newest block-relay-only peer gave us a block more recently;
5090
            // disconnect our second youngest.
5091
0
            to_disconnect = next_youngest_peer.first;
5092
0
        }
5093
0
        m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5094
0
            AssertLockHeld(::cs_main);
5095
            // Make sure we're not getting a block right now, and that
5096
            // we've been connected long enough for this eviction to happen
5097
            // at all.
5098
            // Note that we only request blocks from a peer if we learn of a
5099
            // valid headers chain with at least as much work as our tip.
5100
0
            CNodeState *node_state = State(pnode->GetId());
5101
0
            if (node_state == nullptr ||
5102
0
                (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5103
0
                pnode->fDisconnect = true;
5104
0
                LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5105
0
                         pnode->GetId(), count_seconds(pnode->m_last_block_time));
5106
0
                return true;
5107
0
            } else {
5108
0
                LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5109
0
                         pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5110
0
            }
5111
0
            return false;
5112
0
        });
5113
0
    }
5114
5115
    // Check whether we have too many outbound-full-relay peers
5116
0
    if (m_connman.GetExtraFullOutboundCount() > 0) {
5117
        // If we have more outbound-full-relay peers than we target, disconnect one.
5118
        // Pick the outbound-full-relay peer that least recently announced
5119
        // us a new block, with ties broken by choosing the more recent
5120
        // connection (higher node id)
5121
        // Protect peers from eviction if we don't have another connection
5122
        // to their network, counting both outbound-full-relay and manual peers.
5123
0
        NodeId worst_peer = -1;
5124
0
        int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5125
5126
0
        m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5127
0
            AssertLockHeld(::cs_main);
5128
5129
            // Only consider outbound-full-relay peers that are not already
5130
            // marked for disconnection
5131
0
            if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5132
0
            CNodeState *state = State(pnode->GetId());
5133
0
            if (state == nullptr) return; // shouldn't be possible, but just in case
5134
            // Don't evict our protected peers
5135
0
            if (state->m_chain_sync.m_protect) return;
5136
            // If this is the only connection on a particular network that is
5137
            // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5138
0
            if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5139
0
            if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5140
0
                worst_peer = pnode->GetId();
5141
0
                oldest_block_announcement = state->m_last_block_announcement;
5142
0
            }
5143
0
        });
5144
0
        if (worst_peer != -1) {
5145
0
            bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5146
0
                AssertLockHeld(::cs_main);
5147
5148
                // Only disconnect a peer that has been connected to us for
5149
                // some reasonable fraction of our check-frequency, to give
5150
                // it time for new information to have arrived.
5151
                // Also don't disconnect any peer we're trying to download a
5152
                // block from.
5153
0
                CNodeState &state = *State(pnode->GetId());
5154
0
                if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5155
0
                    LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5156
0
                    pnode->fDisconnect = true;
5157
0
                    return true;
5158
0
                } else {
5159
0
                    LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5160
0
                             pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5161
0
                    return false;
5162
0
                }
5163
0
            });
5164
0
            if (disconnected) {
5165
                // If we disconnected an extra peer, that means we successfully
5166
                // connected to at least one peer after the last time we
5167
                // detected a stale tip. Don't try any more extra peers until
5168
                // we next detect a stale tip, to limit the load we put on the
5169
                // network from these extra connections.
5170
0
                m_connman.SetTryNewOutboundPeer(false);
5171
0
            }
5172
0
        }
5173
0
    }
5174
0
}
5175
5176
void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5177
0
{
5178
0
    LOCK(cs_main);
5179
5180
0
    auto now{GetTime<std::chrono::seconds>()};
5181
5182
0
    EvictExtraOutboundPeers(now);
5183
5184
0
    if (now > m_stale_tip_check_time) {
5185
        // Check whether our tip is stale, and if so, allow using an extra
5186
        // outbound peer
5187
0
        if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5188
0
            LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5189
0
                      count_seconds(now - m_last_tip_update.load()));
5190
0
            m_connman.SetTryNewOutboundPeer(true);
5191
0
        } else if (m_connman.GetTryNewOutboundPeer()) {
5192
0
            m_connman.SetTryNewOutboundPeer(false);
5193
0
        }
5194
0
        m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5195
0
    }
5196
5197
0
    if (!m_initial_sync_finished && CanDirectFetch()) {
5198
0
        m_connman.StartExtraBlockRelayPeers();
5199
0
        m_initial_sync_finished = true;
5200
0
    }
5201
0
}
5202
5203
void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5204
0
{
5205
0
    if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5206
0
        peer.m_ping_nonce_sent &&
5207
0
        now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5208
0
    {
5209
        // The ping timeout is using mocktime. To disable the check during
5210
        // testing, increase -peertimeout.
5211
0
        LogDebug(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
5212
0
        node_to.fDisconnect = true;
5213
0
        return;
5214
0
    }
5215
5216
0
    bool pingSend = false;
5217
5218
0
    if (peer.m_ping_queued) {
5219
        // RPC ping request by user
5220
0
        pingSend = true;
5221
0
    }
5222
5223
0
    if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5224
        // Ping automatically sent as a latency probe & keepalive.
5225
0
        pingSend = true;
5226
0
    }
5227
5228
0
    if (pingSend) {
5229
0
        uint64_t nonce;
5230
0
        do {
5231
0
            nonce = FastRandomContext().rand64();
5232
0
        } while (nonce == 0);
5233
0
        peer.m_ping_queued = false;
5234
0
        peer.m_ping_start = now;
5235
0
        if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5236
0
            peer.m_ping_nonce_sent = nonce;
5237
0
            MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5238
0
        } else {
5239
            // Peer is too old to support ping command with nonce, pong will never arrive.
5240
0
            peer.m_ping_nonce_sent = 0;
5241
0
            MakeAndPushMessage(node_to, NetMsgType::PING);
5242
0
        }
5243
0
    }
5244
0
}
5245
5246
void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5247
0
{
5248
    // Nothing to do for non-address-relay peers
5249
0
    if (!peer.m_addr_relay_enabled) return;
5250
5251
0
    LOCK(peer.m_addr_send_times_mutex);
5252
    // Periodically advertise our local address to the peer.
5253
0
    if (fListen && !m_chainman.IsInitialBlockDownload() &&
5254
0
        peer.m_next_local_addr_send < current_time) {
5255
        // If we've sent before, clear the bloom filter for the peer, so that our
5256
        // self-announcement will actually go out.
5257
        // This might be unnecessary if the bloom filter has already rolled
5258
        // over since our last self-announcement, but there is only a small
5259
        // bandwidth cost that we can incur by doing this (which happens
5260
        // once a day on average).
5261
0
        if (peer.m_next_local_addr_send != 0us) {
5262
0
            peer.m_addr_known->reset();
5263
0
        }
5264
0
        if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5265
0
            CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5266
0
            PushAddress(peer, local_addr);
5267
0
        }
5268
0
        peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5269
0
    }
5270
5271
    // We sent an `addr` message to this peer recently. Nothing more to do.
5272
0
    if (current_time <= peer.m_next_addr_send) return;
5273
5274
0
    peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5275
5276
0
    if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5277
        // Should be impossible since we always check size before adding to
5278
        // m_addrs_to_send. Recover by trimming the vector.
5279
0
        peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5280
0
    }
5281
5282
    // Remove addr records that the peer already knows about, and add new
5283
    // addrs to the m_addr_known filter on the same pass.
5284
0
    auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5285
0
        bool ret = peer.m_addr_known->contains(addr.GetKey());
5286
0
        if (!ret) peer.m_addr_known->insert(addr.GetKey());
5287
0
        return ret;
5288
0
    };
5289
0
    peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5290
0
                           peer.m_addrs_to_send.end());
5291
5292
    // No addr messages to send
5293
0
    if (peer.m_addrs_to_send.empty()) return;
5294
5295
0
    if (peer.m_wants_addrv2) {
5296
0
        MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5297
0
    } else {
5298
0
        MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5299
0
    }
5300
0
    peer.m_addrs_to_send.clear();
5301
5302
    // we only send the big addr message once
5303
0
    if (peer.m_addrs_to_send.capacity() > 40) {
5304
0
        peer.m_addrs_to_send.shrink_to_fit();
5305
0
    }
5306
0
}
5307
5308
void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5309
0
{
5310
    // Delay sending SENDHEADERS (BIP 130) until we're done with an
5311
    // initial-headers-sync with this peer. Receiving headers announcements for
5312
    // new blocks while trying to sync their headers chain is problematic,
5313
    // because of the state tracking done.
5314
0
    if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5315
0
        LOCK(cs_main);
5316
0
        CNodeState &state = *State(node.GetId());
5317
0
        if (state.pindexBestKnownBlock != nullptr &&
5318
0
                state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5319
            // Tell our peer we prefer to receive headers rather than inv's
5320
            // We send this to non-NODE NETWORK peers as well, because even
5321
            // non-NODE NETWORK peers can announce blocks (such as pruning
5322
            // nodes)
5323
0
            MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5324
0
            peer.m_sent_sendheaders = true;
5325
0
        }
5326
0
    }
5327
0
}
5328
5329
void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5330
0
{
5331
0
    if (m_opts.ignore_incoming_txs) return;
5332
0
    if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5333
    // peers with the forcerelay permission should not filter txs to us
5334
0
    if (pto.HasPermission(NetPermissionFlags::ForceRelay)) return;
5335
    // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5336
    // transactions to us, regardless of feefilter state.
5337
0
    if (pto.IsBlockOnlyConn()) return;
5338
5339
0
    CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5340
5341
0
    if (m_chainman.IsInitialBlockDownload()) {
5342
        // Received tx-inv messages are discarded when the active
5343
        // chainstate is in IBD, so tell the peer to not send them.
5344
0
        currentFilter = MAX_MONEY;
5345
0
    } else {
5346
0
        static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5347
0
        if (peer.m_fee_filter_sent == MAX_FILTER) {
5348
            // Send the current filter if we sent MAX_FILTER previously
5349
            // and made it out of IBD.
5350
0
            peer.m_next_send_feefilter = 0us;
5351
0
        }
5352
0
    }
5353
0
    if (current_time > peer.m_next_send_feefilter) {
5354
0
        CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5355
        // We always have a fee filter of at least the min relay fee
5356
0
        filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5357
0
        if (filterToSend != peer.m_fee_filter_sent) {
5358
0
            MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5359
0
            peer.m_fee_filter_sent = filterToSend;
5360
0
        }
5361
0
        peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5362
0
    }
5363
    // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5364
    // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5365
0
    else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5366
0
                (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5367
0
        peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5368
0
    }
5369
0
}
5370
5371
namespace {
5372
class CompareInvMempoolOrder
5373
{
5374
    CTxMemPool* mp;
5375
    bool m_wtxid_relay;
5376
public:
5377
    explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5378
0
    {
5379
0
        mp = _mempool;
5380
0
        m_wtxid_relay = use_wtxid;
5381
0
    }
5382
5383
    bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5384
0
    {
5385
        /* As std::make_heap produces a max-heap, we want the entries with the
5386
         * fewest ancestors/highest fee to sort later. */
5387
0
        return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5388
0
    }
5389
};
5390
} // namespace
5391
5392
bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5393
0
{
5394
    // block-relay-only peers may never send txs to us
5395
0
    if (peer.IsBlockOnlyConn()) return true;
5396
0
    if (peer.IsFeelerConn()) return true;
5397
    // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5398
0
    if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5399
0
    return false;
5400
0
}
5401
5402
bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5403
0
{
5404
    // We don't participate in addr relay with outbound block-relay-only
5405
    // connections to prevent providing adversaries with the additional
5406
    // information of addr traffic to infer the link.
5407
0
    if (node.IsBlockOnlyConn()) return false;
5408
5409
0
    if (!peer.m_addr_relay_enabled.exchange(true)) {
5410
        // During version message processing (non-block-relay-only outbound peers)
5411
        // or on first addr-related message we have received (inbound peers), initialize
5412
        // m_addr_known.
5413
0
        peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5414
0
    }
5415
5416
0
    return true;
5417
0
}
5418
5419
bool PeerManagerImpl::SendMessages(CNode* pto)
5420
0
{
5421
0
    AssertLockNotHeld(m_tx_download_mutex);
5422
0
    AssertLockHeld(g_msgproc_mutex);
5423
5424
0
    PeerRef peer = GetPeerRef(pto->GetId());
5425
0
    if (!peer) return false;
5426
0
    const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5427
5428
    // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5429
    // disconnect misbehaving peers even before the version handshake is complete.
5430
0
    if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5431
5432
    // Initiate version handshake for outbound connections
5433
0
    if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5434
0
        PushNodeVersion(*pto, *peer);
5435
0
        peer->m_outbound_version_message_sent = true;
5436
0
    }
5437
5438
    // Don't send anything until the version handshake is complete
5439
0
    if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5440
0
        return true;
5441
5442
0
    const auto current_time{GetTime<std::chrono::microseconds>()};
5443
5444
0
    if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5445
0
        LogDebug(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
5446
0
        pto->fDisconnect = true;
5447
0
        return true;
5448
0
    }
5449
5450
0
    MaybeSendPing(*pto, *peer, current_time);
5451
5452
    // MaybeSendPing may have marked peer for disconnection
5453
0
    if (pto->fDisconnect) return true;
5454
5455
0
    MaybeSendAddr(*pto, *peer, current_time);
5456
5457
0
    MaybeSendSendHeaders(*pto, *peer);
5458
5459
0
    {
5460
0
        LOCK(cs_main);
5461
5462
0
        CNodeState &state = *State(pto->GetId());
5463
5464
        // Start block sync
5465
0
        if (m_chainman.m_best_header == nullptr) {
5466
0
            m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5467
0
        }
5468
5469
        // Determine whether we might try initial headers sync or parallel
5470
        // block download from this peer -- this mostly affects behavior while
5471
        // in IBD (once out of IBD, we sync from all peers).
5472
0
        bool sync_blocks_and_headers_from_peer = false;
5473
0
        if (state.fPreferredDownload) {
5474
0
            sync_blocks_and_headers_from_peer = true;
5475
0
        } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5476
            // Typically this is an inbound peer. If we don't have any outbound
5477
            // peers, or if we aren't downloading any blocks from such peers,
5478
            // then allow block downloads from this peer, too.
5479
            // We prefer downloading blocks from outbound peers to avoid
5480
            // putting undue load on (say) some home user who is just making
5481
            // outbound connections to the network, but if our only source of
5482
            // the latest blocks is from an inbound peer, we have to be sure to
5483
            // eventually download it (and not just wait indefinitely for an
5484
            // outbound peer to have it).
5485
0
            if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5486
0
                sync_blocks_and_headers_from_peer = true;
5487
0
            }
5488
0
        }
5489
5490
0
        if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5491
            // Only actively request headers from a single peer, unless we're close to today.
5492
0
            if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5493
0
                const CBlockIndex* pindexStart = m_chainman.m_best_header;
5494
                /* If possible, start at the block preceding the currently
5495
                   best known header.  This ensures that we always get a
5496
                   non-empty list of headers back as long as the peer
5497
                   is up-to-date.  With a non-empty response, we can initialise
5498
                   the peer's known best block.  This wouldn't be possible
5499
                   if we requested starting at m_chainman.m_best_header and
5500
                   got back an empty response.  */
5501
0
                if (pindexStart->pprev)
5502
0
                    pindexStart = pindexStart->pprev;
5503
0
                if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5504
0
                    LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5505
5506
0
                    state.fSyncStarted = true;
5507
0
                    peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5508
0
                        (
5509
                         // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5510
                         // to maintain precision
5511
0
                         std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5512
0
                         Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5513
0
                        );
5514
0
                    nSyncStarted++;
5515
0
                }
5516
0
            }
5517
0
        }
5518
5519
        //
5520
        // Try sending block announcements via headers
5521
        //
5522
0
        {
5523
            // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5524
            // list of block hashes we're relaying, and our peer wants
5525
            // headers announcements, then find the first header
5526
            // not yet known to our peer but would connect, and send.
5527
            // If no header would connect, or if we have too many
5528
            // blocks, or if the peer doesn't want headers, just
5529
            // add all to the inv queue.
5530
0
            LOCK(peer->m_block_inv_mutex);
5531
0
            std::vector<CBlock> vHeaders;
5532
0
            bool fRevertToInv = ((!peer->m_prefers_headers &&
5533
0
                                 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5534
0
                                 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5535
0
            const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5536
0
            ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5537
5538
0
            if (!fRevertToInv) {
5539
0
                bool fFoundStartingHeader = false;
5540
                // Try to find first header that our peer doesn't have, and
5541
                // then send all headers past that one.  If we come across any
5542
                // headers that aren't on m_chainman.ActiveChain(), give up.
5543
0
                for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5544
0
                    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5545
0
                    assert(pindex);
5546
0
                    if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5547
                        // Bail out if we reorged away from this block
5548
0
                        fRevertToInv = true;
5549
0
                        break;
5550
0
                    }
5551
0
                    if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5552
                        // This means that the list of blocks to announce don't
5553
                        // connect to each other.
5554
                        // This shouldn't really be possible to hit during
5555
                        // regular operation (because reorgs should take us to
5556
                        // a chain that has some block not on the prior chain,
5557
                        // which should be caught by the prior check), but one
5558
                        // way this could happen is by using invalidateblock /
5559
                        // reconsiderblock repeatedly on the tip, causing it to
5560
                        // be added multiple times to m_blocks_for_headers_relay.
5561
                        // Robustly deal with this rare situation by reverting
5562
                        // to an inv.
5563
0
                        fRevertToInv = true;
5564
0
                        break;
5565
0
                    }
5566
0
                    pBestIndex = pindex;
5567
0
                    if (fFoundStartingHeader) {
5568
                        // add this to the headers message
5569
0
                        vHeaders.emplace_back(pindex->GetBlockHeader());
5570
0
                    } else if (PeerHasHeader(&state, pindex)) {
5571
0
                        continue; // keep looking for the first new block
5572
0
                    } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5573
                        // Peer doesn't have this header but they do have the prior one.
5574
                        // Start sending headers.
5575
0
                        fFoundStartingHeader = true;
5576
0
                        vHeaders.emplace_back(pindex->GetBlockHeader());
5577
0
                    } else {
5578
                        // Peer doesn't have this header or the prior one -- nothing will
5579
                        // connect, so bail out.
5580
0
                        fRevertToInv = true;
5581
0
                        break;
5582
0
                    }
5583
0
                }
5584
0
            }
5585
0
            if (!fRevertToInv && !vHeaders.empty()) {
5586
0
                if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5587
                    // We only send up to 1 block as header-and-ids, as otherwise
5588
                    // probably means we're doing an initial-ish-sync or they're slow
5589
0
                    LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5590
0
                            vHeaders.front().GetHash().ToString(), pto->GetId());
5591
5592
0
                    std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5593
0
                    {
5594
0
                        LOCK(m_most_recent_block_mutex);
5595
0
                        if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5596
0
                            cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5597
0
                        }
5598
0
                    }
5599
0
                    if (cached_cmpctblock_msg.has_value()) {
5600
0
                        PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5601
0
                    } else {
5602
0
                        CBlock block;
5603
0
                        const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
5604
0
                        assert(ret);
5605
0
                        CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5606
0
                        MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5607
0
                    }
5608
0
                    state.pindexBestHeaderSent = pBestIndex;
5609
0
                } else if (peer->m_prefers_headers) {
5610
0
                    if (vHeaders.size() > 1) {
5611
0
                        LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5612
0
                                vHeaders.size(),
5613
0
                                vHeaders.front().GetHash().ToString(),
5614
0
                                vHeaders.back().GetHash().ToString(), pto->GetId());
5615
0
                    } else {
5616
0
                        LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5617
0
                                vHeaders.front().GetHash().ToString(), pto->GetId());
5618
0
                    }
5619
0
                    MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5620
0
                    state.pindexBestHeaderSent = pBestIndex;
5621
0
                } else
5622
0
                    fRevertToInv = true;
5623
0
            }
5624
0
            if (fRevertToInv) {
5625
                // If falling back to using an inv, just try to inv the tip.
5626
                // The last entry in m_blocks_for_headers_relay was our tip at some point
5627
                // in the past.
5628
0
                if (!peer->m_blocks_for_headers_relay.empty()) {
5629
0
                    const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5630
0
                    const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5631
0
                    assert(pindex);
5632
5633
                    // Warn if we're announcing a block that is not on the main chain.
5634
                    // This should be very rare and could be optimized out.
5635
                    // Just log for now.
5636
0
                    if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5637
0
                        LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5638
0
                            hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5639
0
                    }
5640
5641
                    // If the peer's chain has this block, don't inv it back.
5642
0
                    if (!PeerHasHeader(&state, pindex)) {
5643
0
                        peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5644
0
                        LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5645
0
                            pto->GetId(), hashToAnnounce.ToString());
5646
0
                    }
5647
0
                }
5648
0
            }
5649
0
            peer->m_blocks_for_headers_relay.clear();
5650
0
        }
5651
5652
        //
5653
        // Message: inventory
5654
        //
5655
0
        std::vector<CInv> vInv;
5656
0
        {
5657
0
            LOCK(peer->m_block_inv_mutex);
5658
0
            vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5659
5660
            // Add blocks
5661
0
            for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5662
0
                vInv.emplace_back(MSG_BLOCK, hash);
5663
0
                if (vInv.size() == MAX_INV_SZ) {
5664
0
                    MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5665
0
                    vInv.clear();
5666
0
                }
5667
0
            }
5668
0
            peer->m_blocks_for_inv_relay.clear();
5669
0
        }
5670
5671
0
        if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5672
0
                LOCK(tx_relay->m_tx_inventory_mutex);
5673
                // Check whether periodic sends should happen
5674
0
                bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5675
0
                if (tx_relay->m_next_inv_send_time < current_time) {
5676
0
                    fSendTrickle = true;
5677
0
                    if (pto->IsInboundConn()) {
5678
0
                        tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5679
0
                    } else {
5680
0
                        tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5681
0
                    }
5682
0
                }
5683
5684
                // Time to send but the peer has requested we not relay transactions.
5685
0
                if (fSendTrickle) {
5686
0
                    LOCK(tx_relay->m_bloom_filter_mutex);
5687
0
                    if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5688
0
                }
5689
5690
                // Respond to BIP35 mempool requests
5691
0
                if (fSendTrickle && tx_relay->m_send_mempool) {
5692
0
                    auto vtxinfo = m_mempool.infoAll();
5693
0
                    tx_relay->m_send_mempool = false;
5694
0
                    const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5695
5696
0
                    LOCK(tx_relay->m_bloom_filter_mutex);
5697
5698
0
                    for (const auto& txinfo : vtxinfo) {
5699
0
                        CInv inv{
5700
0
                            peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5701
0
                            peer->m_wtxid_relay ?
5702
0
                                txinfo.tx->GetWitnessHash().ToUint256() :
5703
0
                                txinfo.tx->GetHash().ToUint256(),
5704
0
                        };
5705
0
                        tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5706
5707
                        // Don't send transactions that peers will not put into their mempool
5708
0
                        if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5709
0
                            continue;
5710
0
                        }
5711
0
                        if (tx_relay->m_bloom_filter) {
5712
0
                            if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5713
0
                        }
5714
0
                        tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5715
0
                        vInv.push_back(inv);
5716
0
                        if (vInv.size() == MAX_INV_SZ) {
5717
0
                            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5718
0
                            vInv.clear();
5719
0
                        }
5720
0
                    }
5721
0
                }
5722
5723
                // Determine transactions to relay
5724
0
                if (fSendTrickle) {
5725
                    // Produce a vector with all candidates for sending
5726
0
                    std::vector<std::set<uint256>::iterator> vInvTx;
5727
0
                    vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5728
0
                    for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5729
0
                        vInvTx.push_back(it);
5730
0
                    }
5731
0
                    const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5732
                    // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5733
                    // A heap is used so that not all items need sorting if only a few are being sent.
5734
0
                    CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5735
0
                    std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5736
                    // No reason to drain out at many times the network's capacity,
5737
                    // especially since we have many peers and some will draw much shorter delays.
5738
0
                    unsigned int nRelayedTransactions = 0;
5739
0
                    LOCK(tx_relay->m_bloom_filter_mutex);
5740
0
                    size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5741
0
                    broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5742
0
                    while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5743
                        // Fetch the top element from the heap
5744
0
                        std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5745
0
                        std::set<uint256>::iterator it = vInvTx.back();
5746
0
                        vInvTx.pop_back();
5747
0
                        uint256 hash = *it;
5748
0
                        CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5749
                        // Remove it from the to-be-sent set
5750
0
                        tx_relay->m_tx_inventory_to_send.erase(it);
5751
                        // Check if not in the filter already
5752
0
                        if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5753
0
                            continue;
5754
0
                        }
5755
                        // Not in the mempool anymore? don't bother sending it.
5756
0
                        auto txinfo = m_mempool.info(ToGenTxid(inv));
5757
0
                        if (!txinfo.tx) {
5758
0
                            continue;
5759
0
                        }
5760
                        // Peer told you to not send transactions at that feerate? Don't bother sending it.
5761
0
                        if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5762
0
                            continue;
5763
0
                        }
5764
0
                        if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5765
                        // Send
5766
0
                        vInv.push_back(inv);
5767
0
                        nRelayedTransactions++;
5768
0
                        if (vInv.size() == MAX_INV_SZ) {
5769
0
                            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5770
0
                            vInv.clear();
5771
0
                        }
5772
0
                        tx_relay->m_tx_inventory_known_filter.insert(hash);
5773
0
                    }
5774
5775
                    // Ensure we'll respond to GETDATA requests for anything we've just announced
5776
0
                    LOCK(m_mempool.cs);
5777
0
                    tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5778
0
                }
5779
0
        }
5780
0
        if (!vInv.empty())
5781
0
            MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5782
5783
        // Detect whether we're stalling
5784
0
        auto stalling_timeout = m_block_stalling_timeout.load();
5785
0
        if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5786
            // Stalling only triggers when the block download window cannot move. During normal steady state,
5787
            // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5788
            // should only happen during initial block download.
5789
0
            LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5790
0
            pto->fDisconnect = true;
5791
            // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5792
            // bandwidth is insufficient.
5793
0
            const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5794
0
            if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5795
0
                LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5796
0
            }
5797
0
            return true;
5798
0
        }
5799
        // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5800
        // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5801
        // We compensate for other peers to prevent killing off peers due to our own downstream link
5802
        // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5803
        // to unreasonably increase our timeout.
5804
0
        if (state.vBlocksInFlight.size() > 0) {
5805
0
            QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5806
0
            int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5807
0
            if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5808
0
                LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5809
0
                pto->fDisconnect = true;
5810
0
                return true;
5811
0
            }
5812
0
        }
5813
        // Check for headers sync timeouts
5814
0
        if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5815
            // Detect whether this is a stalling initial-headers-sync peer
5816
0
            if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5817
0
                if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5818
                    // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5819
                    // and we have others we could be using instead.
5820
                    // Note: If all our peers are inbound, then we won't
5821
                    // disconnect our sync peer for stalling; we have bigger
5822
                    // problems if we can't get any outbound peers.
5823
0
                    if (!pto->HasPermission(NetPermissionFlags::NoBan)) {
5824
0
                        LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5825
0
                        pto->fDisconnect = true;
5826
0
                        return true;
5827
0
                    } else {
5828
0
                        LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5829
                        // Reset the headers sync state so that we have a
5830
                        // chance to try downloading from a different peer.
5831
                        // Note: this will also result in at least one more
5832
                        // getheaders message to be sent to
5833
                        // this peer (eventually).
5834
0
                        state.fSyncStarted = false;
5835
0
                        nSyncStarted--;
5836
0
                        peer->m_headers_sync_timeout = 0us;
5837
0
                    }
5838
0
                }
5839
0
            } else {
5840
                // After we've caught up once, reset the timeout so we can't trigger
5841
                // disconnect later.
5842
0
                peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5843
0
            }
5844
0
        }
5845
5846
        // Check that outbound peers have reasonable chains
5847
        // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5848
0
        ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5849
5850
        //
5851
        // Message: getdata (blocks)
5852
        //
5853
0
        std::vector<CInv> vGetData;
5854
0
        if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5855
0
            std::vector<const CBlockIndex*> vToDownload;
5856
0
            NodeId staller = -1;
5857
0
            auto get_inflight_budget = [&state]() {
5858
0
                return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5859
0
            };
5860
5861
            // If a snapshot chainstate is in use, we want to find its next blocks
5862
            // before the background chainstate to prioritize getting to network tip.
5863
0
            FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5864
0
            if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5865
                // If the background tip is not an ancestor of the snapshot block,
5866
                // we need to start requesting blocks from their last common ancestor.
5867
0
                const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5868
0
                TryDownloadingHistoricalBlocks(
5869
0
                    *peer,
5870
0
                    get_inflight_budget(),
5871
0
                    vToDownload, from_tip,
5872
0
                    Assert(m_chainman.GetSnapshotBaseBlock()));
5873
0
            }
5874
0
            for (const CBlockIndex *pindex : vToDownload) {
5875
0
                uint32_t nFetchFlags = GetFetchFlags(*peer);
5876
0
                vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5877
0
                BlockRequested(pto->GetId(), *pindex);
5878
0
                LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5879
0
                    pindex->nHeight, pto->GetId());
5880
0
            }
5881
0
            if (state.vBlocksInFlight.empty() && staller != -1) {
5882
0
                if (State(staller)->m_stalling_since == 0us) {
5883
0
                    State(staller)->m_stalling_since = current_time;
5884
0
                    LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5885
0
                }
5886
0
            }
5887
0
        }
5888
5889
        //
5890
        // Message: getdata (transactions)
5891
        //
5892
0
        {
5893
0
            LOCK(m_tx_download_mutex);
5894
0
            for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5895
0
                vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5896
0
                if (vGetData.size() >= MAX_GETDATA_SZ) {
5897
0
                    MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5898
0
                    vGetData.clear();
5899
0
                }
5900
0
            }
5901
0
        }
5902
5903
0
        if (!vGetData.empty())
5904
0
            MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5905
0
    } // release cs_main
5906
0
    MaybeSendFeefilter(*pto, *peer, current_time);
5907
0
    return true;
5908
0
}