Coverage Report

Created: 2025-09-19 18:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/bitcoin/src/secp256k1/src/field.h
Line
Count
Source
1
/***********************************************************************
2
 * Copyright (c) 2013, 2014 Pieter Wuille                              *
3
 * Distributed under the MIT software license, see the accompanying    *
4
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5
 ***********************************************************************/
6
7
#ifndef SECP256K1_FIELD_H
8
#define SECP256K1_FIELD_H
9
10
#include "util.h"
11
12
/* This file defines the generic interface for working with secp256k1_fe
13
 * objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
14
 *
15
 * The actual definition of the secp256k1_fe type depends on the chosen field
16
 * implementation; see the field_5x52.h and field_10x26.h files for details.
17
 *
18
 * All secp256k1_fe objects have implicit properties that determine what
19
 * operations are permitted on it. These are purely a function of what
20
 * secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at
21
 * compile time, and do not depend on the chosen field implementation. Despite
22
 * that, what these properties actually entail for the field representation
23
 * values depends on the chosen field implementation. These properties are:
24
 * - magnitude: an integer in [0,32]
25
 * - normalized: 0 or 1; normalized=1 implies magnitude <= 1.
26
 *
27
 * In VERIFY mode, they are materialized explicitly as fields in the struct,
28
 * allowing run-time verification of these properties. In that case, the field
29
 * implementation also provides a secp256k1_fe_verify routine to verify that
30
 * these fields match the run-time value and perform internal consistency
31
 * checks. */
32
#ifdef VERIFY
33
#  define SECP256K1_FE_VERIFY_FIELDS \
34
    int magnitude; \
35
    int normalized;
36
#else
37
#  define SECP256K1_FE_VERIFY_FIELDS
38
#endif
39
40
#if defined(SECP256K1_WIDEMUL_INT128)
41
#include "field_5x52.h"
42
#elif defined(SECP256K1_WIDEMUL_INT64)
43
#include "field_10x26.h"
44
#else
45
#error "Please select wide multiplication implementation"
46
#endif
47
48
#ifdef VERIFY
49
/* Magnitude and normalized value for constants. */
50
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
51
    /* Magnitude is 0 for constant 0; 1 otherwise. */ \
52
    , (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
53
    /* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
54
    , (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
55
#else
56
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
57
#endif
58
59
/** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
60
 *
61
 * It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0.
62
 * It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p.
63
 *
64
 * SECP256K1_FE_CONST_INNER is provided by the implementation.
65
 */
66
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) }
67
68
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
69
static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
70
    0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
71
    0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
72
);
73
74
#ifndef VERIFY
75
/* In non-VERIFY mode, we #define the fe operations to be identical to their
76
 * internal field implementation, to avoid the potential overhead of a
77
 * function call (even though presumably inlinable). */
78
0
#  define secp256k1_fe_normalize secp256k1_fe_impl_normalize
79
0
#  define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak
80
0
#  define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var
81
0
#  define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero
82
0
#  define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var
83
0
#  define secp256k1_fe_set_int secp256k1_fe_impl_set_int
84
0
#  define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
85
0
#  define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
86
0
#  define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
87
0
#  define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
88
0
#  define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
89
0
#  define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
90
#  define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked
91
#  define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked
92
0
#  define secp256k1_fe_add secp256k1_fe_impl_add
93
0
#  define secp256k1_fe_mul secp256k1_fe_impl_mul
94
0
#  define secp256k1_fe_sqr secp256k1_fe_impl_sqr
95
0
#  define secp256k1_fe_cmov secp256k1_fe_impl_cmov
96
0
#  define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage
97
0
#  define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage
98
0
#  define secp256k1_fe_inv secp256k1_fe_impl_inv
99
0
#  define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var
100
#  define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds
101
0
#  define secp256k1_fe_half secp256k1_fe_impl_half
102
0
#  define secp256k1_fe_add_int secp256k1_fe_impl_add_int
103
0
#  define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var
104
#endif /* !defined(VERIFY) */
105
106
/** Normalize a field element.
107
 *
108
 * On input, r must be a valid field element.
109
 * On output, r represents the same value but has normalized=1 and magnitude=1.
110
 */
111
static void secp256k1_fe_normalize(secp256k1_fe *r);
112
113
/** Give a field element magnitude 1.
114
 *
115
 * On input, r must be a valid field element.
116
 * On output, r represents the same value but has magnitude=1. Normalized is unchanged.
117
 */
118
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
119
120
/** Normalize a field element, without constant-time guarantee.
121
 *
122
 * Identical in behavior to secp256k1_fe_normalize, but not constant time in r.
123
 */
124
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
125
126
/** Determine whether r represents field element 0.
127
 *
128
 * On input, r must be a valid field element.
129
 * Returns whether r = 0 (mod p).
130
 */
131
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);
132
133
/** Determine whether r represents field element 0, without constant-time guarantee.
134
 *
135
 * Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r.
136
 */
137
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);
138
139
/** Set a field element to an integer in range [0,0x7FFF].
140
 *
141
 * On input, r does not need to be initialized, a must be in [0,0x7FFF].
142
 * On output, r represents value a, is normalized and has magnitude (a!=0).
143
 */
144
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
145
146
/** Clear a field element to prevent leaking sensitive information. */
147
static void secp256k1_fe_clear(secp256k1_fe *a);
148
149
/** Determine whether a represents field element 0.
150
 *
151
 * On input, a must be a valid normalized field element.
152
 * Returns whether a = 0 (mod p).
153
 *
154
 * This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires
155
 * normalized input (and is much faster).
156
 */
157
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
158
159
/** Determine whether a (mod p) is odd.
160
 *
161
 * On input, a must be a valid normalized field element.
162
 * Returns (int(a) mod p) & 1.
163
 */
164
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
165
166
/** Determine whether two field elements are equal.
167
 *
168
 * On input, a and b must be valid field elements with magnitudes not exceeding
169
 * 1 and 31, respectively.
170
 * Returns a = b (mod p).
171
 */
172
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
173
174
/** Compare the values represented by 2 field elements, without constant-time guarantee.
175
 *
176
 * On input, a and b must be valid normalized field elements.
177
 * Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers
178
 * in range 0..p-1).
179
 */
180
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
181
182
/** Set a field element equal to the element represented by a provided 32-byte big endian value
183
 * interpreted modulo p.
184
 *
185
 * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
186
 * On output, r = a (mod p). It will have magnitude 1, and not be normalized.
187
 */
188
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
189
190
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
191
 *
192
 * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array.
193
 * On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
194
 * If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
195
 */
196
static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
197
198
/** Convert a field element to 32-byte big endian byte array.
199
 * On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
200
 * On output, r = a (mod p).
201
 */
202
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
203
204
/** Negate a field element.
205
 *
206
 * On input, r does not need to be initialized. a must be a valid field element with
207
 * magnitude not exceeding m. m must be an integer constant expression in [0,31].
208
 * Performs {r = -a}.
209
 * On output, r will not be normalized, and will have magnitude m+1.
210
 */
211
0
#define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m))
212
213
/** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression.
214
 *
215
 * Should not be called directly outside of tests.
216
 */
217
static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
218
219
/** Add a small integer to a field element.
220
 *
221
 * Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
222
 * a must be in range [0,0x7FFF].
223
 */
224
static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
225
226
/** Multiply a field element with a small integer.
227
 *
228
 * On input, r must be a valid field element. a must be an integer constant expression in [0,32].
229
 * The magnitude of r times a must not exceed 32.
230
 * Performs {r *= a}.
231
 * On output, r's magnitude is multiplied by a, and r will not be normalized.
232
 */
233
0
#define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a))
234
235
/** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression.
236
 * 
237
 * Should not be called directly outside of tests.
238
 */
239
static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a);
240
241
/** Increment a field element by another.
242
 *
243
 * On input, r and a must be valid field elements, not necessarily normalized.
244
 * The sum of their magnitudes must not exceed 32.
245
 * Performs {r += a}.
246
 * On output, r will not be normalized, and will have magnitude incremented by a's.
247
 */
248
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
249
250
/** Multiply two field elements.
251
 *
252
 * On input, a and b must be valid field elements; r does not need to be initialized.
253
 * r and a may point to the same object, but neither may point to the object pointed
254
 * to by b. The magnitudes of a and b must not exceed 8.
255
 * Performs {r = a * b}
256
 * On output, r will have magnitude 1, but won't be normalized.
257
 */
258
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
259
260
/** Square a field element.
261
 *
262
 * On input, a must be a valid field element; r does not need to be initialized. The magnitude
263
 * of a must not exceed 8.
264
 * Performs {r = a**2}
265
 * On output, r will have magnitude 1, but won't be normalized.
266
 */
267
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
268
269
/** Compute a square root of a field element.
270
 *
271
 * On input, a must be a valid field element with magnitude<=8; r need not be initialized.
272
 * If sqrt(a) exists, performs {r = sqrt(a)} and returns 1.
273
 * Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0.
274
 * The resulting value represented by r will be a square itself.
275
 * Variables r and a must not point to the same object.
276
 * On output, r will have magnitude 1 but will not be normalized.
277
 */
278
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
279
280
/** Compute the modular inverse of a field element.
281
 *
282
 * On input, a must be a valid field element; r need not be initialized.
283
 * Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its
284
 * inverse).
285
 * On output, r will have magnitude (a.magnitude != 0) and be normalized.
286
 */
287
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
288
289
/** Compute the modular inverse of a field element, without constant-time guarantee.
290
 *
291
 * Behaves identically to secp256k1_fe_inv, but is not constant-time in a.
292
 */
293
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
294
295
/** Convert a field element to secp256k1_fe_storage.
296
 *
297
 * On input, a must be a valid normalized field element.
298
 * Performs {r = a}.
299
 */
300
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
301
302
/** Convert a field element back from secp256k1_fe_storage.
303
 *
304
 * On input, r need not be initialized.
305
 * Performs {r = a}.
306
 * On output, r will be normalized and will have magnitude 1.
307
 */
308
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
309
310
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/
311
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
312
313
/** Conditionally move a field element in constant time.
314
 *
315
 * On input, both r and a must be valid field elements. Flag must be 0 or 1.
316
 * Performs {r = flag ? a : r}.
317
 *
318
 * On output, r's magnitude will be the maximum of both input magnitudes.
319
 * It will be normalized if and only if both inputs were normalized.
320
 */
321
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
322
323
/** Halve the value of a field element modulo the field prime in constant-time.
324
 *
325
 * On input, r must be a valid field element.
326
 * On output, r will be normalized and have magnitude floor(m/2) + 1 where m is
327
 * the magnitude of r on input.
328
 */
329
static void secp256k1_fe_half(secp256k1_fe *r);
330
331
/** Sets r to a field element with magnitude m, normalized if (and only if) m==0.
332
 *  The value is chosen so that it is likely to trigger edge cases related to
333
 *  internal overflows. */
334
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
335
336
/** Determine whether a is a square (modulo p).
337
 *
338
 * On input, a must be a valid field element.
339
 */
340
static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
341
342
/** Check invariants on a field element (no-op unless VERIFY is enabled). */
343
static void secp256k1_fe_verify(const secp256k1_fe *a);
344
0
#define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a)
345
346
/** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */
347
static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m);
348
0
#define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m)
349
350
#endif /* SECP256K1_FIELD_H */