/root/bitcoin/src/secp256k1/src/field.h
| Line | Count | Source | 
| 1 |  | /*********************************************************************** | 
| 2 |  |  * Copyright (c) 2013, 2014 Pieter Wuille                              * | 
| 3 |  |  * Distributed under the MIT software license, see the accompanying    * | 
| 4 |  |  * file COPYING or https://www.opensource.org/licenses/mit-license.php.* | 
| 5 |  |  ***********************************************************************/ | 
| 6 |  |  | 
| 7 |  | #ifndef SECP256K1_FIELD_H | 
| 8 |  | #define SECP256K1_FIELD_H | 
| 9 |  |  | 
| 10 |  | #include "util.h" | 
| 11 |  |  | 
| 12 |  | /* This file defines the generic interface for working with secp256k1_fe | 
| 13 |  |  * objects, which represent field elements (integers modulo 2^256 - 2^32 - 977). | 
| 14 |  |  * | 
| 15 |  |  * The actual definition of the secp256k1_fe type depends on the chosen field | 
| 16 |  |  * implementation; see the field_5x52.h and field_10x26.h files for details. | 
| 17 |  |  * | 
| 18 |  |  * All secp256k1_fe objects have implicit properties that determine what | 
| 19 |  |  * operations are permitted on it. These are purely a function of what | 
| 20 |  |  * secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at | 
| 21 |  |  * compile time, and do not depend on the chosen field implementation. Despite | 
| 22 |  |  * that, what these properties actually entail for the field representation | 
| 23 |  |  * values depends on the chosen field implementation. These properties are: | 
| 24 |  |  * - magnitude: an integer in [0,32] | 
| 25 |  |  * - normalized: 0 or 1; normalized=1 implies magnitude <= 1. | 
| 26 |  |  * | 
| 27 |  |  * In VERIFY mode, they are materialized explicitly as fields in the struct, | 
| 28 |  |  * allowing run-time verification of these properties. In that case, the field | 
| 29 |  |  * implementation also provides a secp256k1_fe_verify routine to verify that | 
| 30 |  |  * these fields match the run-time value and perform internal consistency | 
| 31 |  |  * checks. */ | 
| 32 |  | #ifdef VERIFY | 
| 33 |  | #  define SECP256K1_FE_VERIFY_FIELDS \ | 
| 34 |  |     int magnitude; \ | 
| 35 |  |     int normalized; | 
| 36 |  | #else | 
| 37 |  | #  define SECP256K1_FE_VERIFY_FIELDS | 
| 38 |  | #endif | 
| 39 |  |  | 
| 40 |  | #if defined(SECP256K1_WIDEMUL_INT128) | 
| 41 |  | #include "field_5x52.h" | 
| 42 |  | #elif defined(SECP256K1_WIDEMUL_INT64) | 
| 43 |  | #include "field_10x26.h" | 
| 44 |  | #else | 
| 45 |  | #error "Please select wide multiplication implementation" | 
| 46 |  | #endif | 
| 47 |  |  | 
| 48 |  | #ifdef VERIFY | 
| 49 |  | /* Magnitude and normalized value for constants. */ | 
| 50 |  | #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \ | 
| 51 |  |     /* Magnitude is 0 for constant 0; 1 otherwise. */ \ | 
| 52 |  |     , (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \ | 
| 53 |  |     /* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \ | 
| 54 |  |     , (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f))))) | 
| 55 |  | #else | 
| 56 |  | #define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) | 
| 57 |  | #endif | 
| 58 |  |  | 
| 59 |  | /** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p. | 
| 60 |  |  * | 
| 61 |  |  * It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0. | 
| 62 |  |  * It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p. | 
| 63 |  |  * | 
| 64 |  |  * SECP256K1_FE_CONST_INNER is provided by the implementation. | 
| 65 |  |  */ | 
| 66 |  | #define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) } | 
| 67 |  |  | 
| 68 |  | static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); | 
| 69 |  | static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST( | 
| 70 |  |     0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, | 
| 71 |  |     0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul | 
| 72 |  | ); | 
| 73 |  |  | 
| 74 |  | #ifndef VERIFY | 
| 75 |  | /* In non-VERIFY mode, we #define the fe operations to be identical to their | 
| 76 |  |  * internal field implementation, to avoid the potential overhead of a | 
| 77 |  |  * function call (even though presumably inlinable). */ | 
| 78 | 0 | #  define secp256k1_fe_normalize secp256k1_fe_impl_normalize | 
| 79 | 0 | #  define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak | 
| 80 | 0 | #  define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var | 
| 81 | 0 | #  define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero | 
| 82 | 0 | #  define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var | 
| 83 | 0 | #  define secp256k1_fe_set_int secp256k1_fe_impl_set_int | 
| 84 | 0 | #  define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero | 
| 85 | 0 | #  define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd | 
| 86 | 0 | #  define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var | 
| 87 | 0 | #  define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod | 
| 88 | 0 | #  define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit | 
| 89 | 0 | #  define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32 | 
| 90 |  | #  define secp256k1_fe_negate_unchecked secp256k1_fe_impl_negate_unchecked | 
| 91 |  | #  define secp256k1_fe_mul_int_unchecked secp256k1_fe_impl_mul_int_unchecked | 
| 92 | 0 | #  define secp256k1_fe_add secp256k1_fe_impl_add | 
| 93 | 0 | #  define secp256k1_fe_mul secp256k1_fe_impl_mul | 
| 94 | 0 | #  define secp256k1_fe_sqr secp256k1_fe_impl_sqr | 
| 95 | 0 | #  define secp256k1_fe_cmov secp256k1_fe_impl_cmov | 
| 96 | 0 | #  define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage | 
| 97 | 0 | #  define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage | 
| 98 | 0 | #  define secp256k1_fe_inv secp256k1_fe_impl_inv | 
| 99 | 0 | #  define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var | 
| 100 |  | #  define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds | 
| 101 | 0 | #  define secp256k1_fe_half secp256k1_fe_impl_half | 
| 102 | 0 | #  define secp256k1_fe_add_int secp256k1_fe_impl_add_int | 
| 103 | 0 | #  define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var | 
| 104 |  | #endif /* !defined(VERIFY) */ | 
| 105 |  |  | 
| 106 |  | /** Normalize a field element. | 
| 107 |  |  * | 
| 108 |  |  * On input, r must be a valid field element. | 
| 109 |  |  * On output, r represents the same value but has normalized=1 and magnitude=1. | 
| 110 |  |  */ | 
| 111 |  | static void secp256k1_fe_normalize(secp256k1_fe *r); | 
| 112 |  |  | 
| 113 |  | /** Give a field element magnitude 1. | 
| 114 |  |  * | 
| 115 |  |  * On input, r must be a valid field element. | 
| 116 |  |  * On output, r represents the same value but has magnitude=1. Normalized is unchanged. | 
| 117 |  |  */ | 
| 118 |  | static void secp256k1_fe_normalize_weak(secp256k1_fe *r); | 
| 119 |  |  | 
| 120 |  | /** Normalize a field element, without constant-time guarantee. | 
| 121 |  |  * | 
| 122 |  |  * Identical in behavior to secp256k1_fe_normalize, but not constant time in r. | 
| 123 |  |  */ | 
| 124 |  | static void secp256k1_fe_normalize_var(secp256k1_fe *r); | 
| 125 |  |  | 
| 126 |  | /** Determine whether r represents field element 0. | 
| 127 |  |  * | 
| 128 |  |  * On input, r must be a valid field element. | 
| 129 |  |  * Returns whether r = 0 (mod p). | 
| 130 |  |  */ | 
| 131 |  | static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r); | 
| 132 |  |  | 
| 133 |  | /** Determine whether r represents field element 0, without constant-time guarantee. | 
| 134 |  |  * | 
| 135 |  |  * Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r. | 
| 136 |  |  */ | 
| 137 |  | static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r); | 
| 138 |  |  | 
| 139 |  | /** Set a field element to an integer in range [0,0x7FFF]. | 
| 140 |  |  * | 
| 141 |  |  * On input, r does not need to be initialized, a must be in [0,0x7FFF]. | 
| 142 |  |  * On output, r represents value a, is normalized and has magnitude (a!=0). | 
| 143 |  |  */ | 
| 144 |  | static void secp256k1_fe_set_int(secp256k1_fe *r, int a); | 
| 145 |  |  | 
| 146 |  | /** Clear a field element to prevent leaking sensitive information. */ | 
| 147 |  | static void secp256k1_fe_clear(secp256k1_fe *a); | 
| 148 |  |  | 
| 149 |  | /** Determine whether a represents field element 0. | 
| 150 |  |  * | 
| 151 |  |  * On input, a must be a valid normalized field element. | 
| 152 |  |  * Returns whether a = 0 (mod p). | 
| 153 |  |  * | 
| 154 |  |  * This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires | 
| 155 |  |  * normalized input (and is much faster). | 
| 156 |  |  */ | 
| 157 |  | static int secp256k1_fe_is_zero(const secp256k1_fe *a); | 
| 158 |  |  | 
| 159 |  | /** Determine whether a (mod p) is odd. | 
| 160 |  |  * | 
| 161 |  |  * On input, a must be a valid normalized field element. | 
| 162 |  |  * Returns (int(a) mod p) & 1. | 
| 163 |  |  */ | 
| 164 |  | static int secp256k1_fe_is_odd(const secp256k1_fe *a); | 
| 165 |  |  | 
| 166 |  | /** Determine whether two field elements are equal. | 
| 167 |  |  * | 
| 168 |  |  * On input, a and b must be valid field elements with magnitudes not exceeding | 
| 169 |  |  * 1 and 31, respectively. | 
| 170 |  |  * Returns a = b (mod p). | 
| 171 |  |  */ | 
| 172 |  | static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b); | 
| 173 |  |  | 
| 174 |  | /** Compare the values represented by 2 field elements, without constant-time guarantee. | 
| 175 |  |  * | 
| 176 |  |  * On input, a and b must be valid normalized field elements. | 
| 177 |  |  * Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers | 
| 178 |  |  * in range 0..p-1). | 
| 179 |  |  */ | 
| 180 |  | static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b); | 
| 181 |  |  | 
| 182 |  | /** Set a field element equal to the element represented by a provided 32-byte big endian value | 
| 183 |  |  * interpreted modulo p. | 
| 184 |  |  * | 
| 185 |  |  * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array. | 
| 186 |  |  * On output, r = a (mod p). It will have magnitude 1, and not be normalized. | 
| 187 |  |  */ | 
| 188 |  | static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a); | 
| 189 |  |  | 
| 190 |  | /** Set a field element equal to a provided 32-byte big endian value, checking for overflow. | 
| 191 |  |  * | 
| 192 |  |  * On input, r does not need to be initialized. a must be a pointer to an initialized 32-byte array. | 
| 193 |  |  * On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned. | 
| 194 |  |  * If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting). | 
| 195 |  |  */ | 
| 196 |  | static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a); | 
| 197 |  |  | 
| 198 |  | /** Convert a field element to 32-byte big endian byte array. | 
| 199 |  |  * On input, a must be a valid normalized field element, and r a pointer to a 32-byte array. | 
| 200 |  |  * On output, r = a (mod p). | 
| 201 |  |  */ | 
| 202 |  | static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a); | 
| 203 |  |  | 
| 204 |  | /** Negate a field element. | 
| 205 |  |  * | 
| 206 |  |  * On input, r does not need to be initialized. a must be a valid field element with | 
| 207 |  |  * magnitude not exceeding m. m must be an integer constant expression in [0,31]. | 
| 208 |  |  * Performs {r = -a}. | 
| 209 |  |  * On output, r will not be normalized, and will have magnitude m+1. | 
| 210 |  |  */ | 
| 211 | 0 | #define secp256k1_fe_negate(r, a, m) ASSERT_INT_CONST_AND_DO(m, secp256k1_fe_negate_unchecked(r, a, m)) | 
| 212 |  |  | 
| 213 |  | /** Like secp256k1_fe_negate_unchecked but m is not checked to be an integer constant expression. | 
| 214 |  |  * | 
| 215 |  |  * Should not be called directly outside of tests. | 
| 216 |  |  */ | 
| 217 |  | static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m); | 
| 218 |  |  | 
| 219 |  | /** Add a small integer to a field element. | 
| 220 |  |  * | 
| 221 |  |  * Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared. | 
| 222 |  |  * a must be in range [0,0x7FFF]. | 
| 223 |  |  */ | 
| 224 |  | static void secp256k1_fe_add_int(secp256k1_fe *r, int a); | 
| 225 |  |  | 
| 226 |  | /** Multiply a field element with a small integer. | 
| 227 |  |  * | 
| 228 |  |  * On input, r must be a valid field element. a must be an integer constant expression in [0,32]. | 
| 229 |  |  * The magnitude of r times a must not exceed 32. | 
| 230 |  |  * Performs {r *= a}. | 
| 231 |  |  * On output, r's magnitude is multiplied by a, and r will not be normalized. | 
| 232 |  |  */ | 
| 233 | 0 | #define secp256k1_fe_mul_int(r, a) ASSERT_INT_CONST_AND_DO(a, secp256k1_fe_mul_int_unchecked(r, a)) | 
| 234 |  |  | 
| 235 |  | /** Like secp256k1_fe_mul_int but a is not checked to be an integer constant expression. | 
| 236 |  |  *  | 
| 237 |  |  * Should not be called directly outside of tests. | 
| 238 |  |  */ | 
| 239 |  | static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a); | 
| 240 |  |  | 
| 241 |  | /** Increment a field element by another. | 
| 242 |  |  * | 
| 243 |  |  * On input, r and a must be valid field elements, not necessarily normalized. | 
| 244 |  |  * The sum of their magnitudes must not exceed 32. | 
| 245 |  |  * Performs {r += a}. | 
| 246 |  |  * On output, r will not be normalized, and will have magnitude incremented by a's. | 
| 247 |  |  */ | 
| 248 |  | static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a); | 
| 249 |  |  | 
| 250 |  | /** Multiply two field elements. | 
| 251 |  |  * | 
| 252 |  |  * On input, a and b must be valid field elements; r does not need to be initialized. | 
| 253 |  |  * r and a may point to the same object, but neither may point to the object pointed | 
| 254 |  |  * to by b. The magnitudes of a and b must not exceed 8. | 
| 255 |  |  * Performs {r = a * b} | 
| 256 |  |  * On output, r will have magnitude 1, but won't be normalized. | 
| 257 |  |  */ | 
| 258 |  | static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b); | 
| 259 |  |  | 
| 260 |  | /** Square a field element. | 
| 261 |  |  * | 
| 262 |  |  * On input, a must be a valid field element; r does not need to be initialized. The magnitude | 
| 263 |  |  * of a must not exceed 8. | 
| 264 |  |  * Performs {r = a**2} | 
| 265 |  |  * On output, r will have magnitude 1, but won't be normalized. | 
| 266 |  |  */ | 
| 267 |  | static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); | 
| 268 |  |  | 
| 269 |  | /** Compute a square root of a field element. | 
| 270 |  |  * | 
| 271 |  |  * On input, a must be a valid field element with magnitude<=8; r need not be initialized. | 
| 272 |  |  * If sqrt(a) exists, performs {r = sqrt(a)} and returns 1. | 
| 273 |  |  * Otherwise, sqrt(-a) exists. The function performs {r = sqrt(-a)} and returns 0. | 
| 274 |  |  * The resulting value represented by r will be a square itself. | 
| 275 |  |  * Variables r and a must not point to the same object. | 
| 276 |  |  * On output, r will have magnitude 1 but will not be normalized. | 
| 277 |  |  */ | 
| 278 |  | static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a); | 
| 279 |  |  | 
| 280 |  | /** Compute the modular inverse of a field element. | 
| 281 |  |  * | 
| 282 |  |  * On input, a must be a valid field element; r need not be initialized. | 
| 283 |  |  * Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its | 
| 284 |  |  * inverse). | 
| 285 |  |  * On output, r will have magnitude (a.magnitude != 0) and be normalized. | 
| 286 |  |  */ | 
| 287 |  | static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); | 
| 288 |  |  | 
| 289 |  | /** Compute the modular inverse of a field element, without constant-time guarantee. | 
| 290 |  |  * | 
| 291 |  |  * Behaves identically to secp256k1_fe_inv, but is not constant-time in a. | 
| 292 |  |  */ | 
| 293 |  | static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); | 
| 294 |  |  | 
| 295 |  | /** Convert a field element to secp256k1_fe_storage. | 
| 296 |  |  * | 
| 297 |  |  * On input, a must be a valid normalized field element. | 
| 298 |  |  * Performs {r = a}. | 
| 299 |  |  */ | 
| 300 |  | static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); | 
| 301 |  |  | 
| 302 |  | /** Convert a field element back from secp256k1_fe_storage. | 
| 303 |  |  * | 
| 304 |  |  * On input, r need not be initialized. | 
| 305 |  |  * Performs {r = a}. | 
| 306 |  |  * On output, r will be normalized and will have magnitude 1. | 
| 307 |  |  */ | 
| 308 |  | static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); | 
| 309 |  |  | 
| 310 |  | /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time.  Both *r and *a must be initialized.*/ | 
| 311 |  | static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag); | 
| 312 |  |  | 
| 313 |  | /** Conditionally move a field element in constant time. | 
| 314 |  |  * | 
| 315 |  |  * On input, both r and a must be valid field elements. Flag must be 0 or 1. | 
| 316 |  |  * Performs {r = flag ? a : r}. | 
| 317 |  |  * | 
| 318 |  |  * On output, r's magnitude will be the maximum of both input magnitudes. | 
| 319 |  |  * It will be normalized if and only if both inputs were normalized. | 
| 320 |  |  */ | 
| 321 |  | static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); | 
| 322 |  |  | 
| 323 |  | /** Halve the value of a field element modulo the field prime in constant-time. | 
| 324 |  |  * | 
| 325 |  |  * On input, r must be a valid field element. | 
| 326 |  |  * On output, r will be normalized and have magnitude floor(m/2) + 1 where m is | 
| 327 |  |  * the magnitude of r on input. | 
| 328 |  |  */ | 
| 329 |  | static void secp256k1_fe_half(secp256k1_fe *r); | 
| 330 |  |  | 
| 331 |  | /** Sets r to a field element with magnitude m, normalized if (and only if) m==0. | 
| 332 |  |  *  The value is chosen so that it is likely to trigger edge cases related to | 
| 333 |  |  *  internal overflows. */ | 
| 334 |  | static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m); | 
| 335 |  |  | 
| 336 |  | /** Determine whether a is a square (modulo p). | 
| 337 |  |  * | 
| 338 |  |  * On input, a must be a valid field element. | 
| 339 |  |  */ | 
| 340 |  | static int secp256k1_fe_is_square_var(const secp256k1_fe *a); | 
| 341 |  |  | 
| 342 |  | /** Check invariants on a field element (no-op unless VERIFY is enabled). */ | 
| 343 |  | static void secp256k1_fe_verify(const secp256k1_fe *a); | 
| 344 | 0 | #define SECP256K1_FE_VERIFY(a) secp256k1_fe_verify(a) | 
| 345 |  |  | 
| 346 |  | /** Check that magnitude of a is at most m (no-op unless VERIFY is enabled). */ | 
| 347 |  | static void secp256k1_fe_verify_magnitude(const secp256k1_fe *a, int m); | 
| 348 | 0 | #define SECP256K1_FE_VERIFY_MAGNITUDE(a, m) secp256k1_fe_verify_magnitude(a, m) | 
| 349 |  |  | 
| 350 |  | #endif /* SECP256K1_FIELD_H */ |