/root/bitcoin/src/chain.cpp
Line | Count | Source |
1 | | // Copyright (c) 2009-2010 Satoshi Nakamoto |
2 | | // Copyright (c) 2009-2022 The Bitcoin Core developers |
3 | | // Distributed under the MIT software license, see the accompanying |
4 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
5 | | |
6 | | #include <chain.h> |
7 | | #include <tinyformat.h> |
8 | | #include <util/time.h> |
9 | | |
10 | | std::string CBlockFileInfo::ToString() const |
11 | 1.37k | { |
12 | 1.37k | return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, FormatISO8601Date(nTimeFirst), FormatISO8601Date(nTimeLast)); |
13 | 1.37k | } |
14 | | |
15 | | std::string CBlockIndex::ToString() const |
16 | 196 | { |
17 | 196 | return strprintf("CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)", |
18 | 196 | pprev, nHeight, hashMerkleRoot.ToString(), GetBlockHash().ToString()); |
19 | 196 | } |
20 | | |
21 | | void CChain::SetTip(CBlockIndex& block) |
22 | 558k | { |
23 | 558k | CBlockIndex* pindex = █ |
24 | 558k | vChain.resize(pindex->nHeight + 1); |
25 | 34.6M | while (pindex && vChain[pindex->nHeight] != pindex) { |
26 | 34.0M | vChain[pindex->nHeight] = pindex; |
27 | 34.0M | pindex = pindex->pprev; |
28 | 34.0M | } |
29 | 558k | } |
30 | | |
31 | | std::vector<uint256> LocatorEntries(const CBlockIndex* index) |
32 | 258k | { |
33 | 258k | int step = 1; |
34 | 258k | std::vector<uint256> have; |
35 | 258k | if (index == nullptr) return have; |
36 | | |
37 | 258k | have.reserve(32); |
38 | 1.21M | while (index) { |
39 | 1.21M | have.emplace_back(index->GetBlockHash()); |
40 | 1.21M | if (index->nHeight == 0) break; |
41 | | // Exponentially larger steps back, plus the genesis block. |
42 | 959k | int height = std::max(index->nHeight - step, 0); |
43 | | // Use skiplist. |
44 | 959k | index = index->GetAncestor(height); |
45 | 959k | if (have.size() > 10) step *= 2; |
46 | 959k | } |
47 | 258k | return have; |
48 | 258k | } |
49 | | |
50 | | CBlockLocator GetLocator(const CBlockIndex* index) |
51 | 81.6k | { |
52 | 81.6k | return CBlockLocator{LocatorEntries(index)}; |
53 | 81.6k | } |
54 | | |
55 | 227k | const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const { |
56 | 227k | if (pindex == nullptr) { |
57 | 1.37k | return nullptr; |
58 | 1.37k | } |
59 | 225k | if (pindex->nHeight > Height()) |
60 | 113k | pindex = pindex->GetAncestor(Height()); |
61 | 225k | while (pindex && !Contains(pindex)) |
62 | 0 | pindex = pindex->pprev; |
63 | 225k | return pindex; |
64 | 227k | } |
65 | | |
66 | | CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime, int height) const |
67 | 0 | { |
68 | 0 | std::pair<int64_t, int> blockparams = std::make_pair(nTime, height); |
69 | 0 | std::vector<CBlockIndex*>::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), blockparams, |
70 | 0 | [](CBlockIndex* pBlock, const std::pair<int64_t, int>& blockparams) -> bool { return pBlock->GetBlockTimeMax() < blockparams.first || pBlock->nHeight < blockparams.second; }); |
71 | 0 | return (lower == vChain.end() ? nullptr : *lower); |
72 | 0 | } |
73 | | |
74 | | /** Turn the lowest '1' bit in the binary representation of a number into a '0'. */ |
75 | 31.7M | int static inline InvertLowestOne(int n) { return n & (n - 1); } |
76 | | |
77 | | /** Compute what height to jump back to with the CBlockIndex::pskip pointer. */ |
78 | 21.3M | int static inline GetSkipHeight(int height) { |
79 | 21.3M | if (height < 2) |
80 | 162k | return 0; |
81 | | |
82 | | // Determine which height to jump back to. Any number strictly lower than height is acceptable, |
83 | | // but the following expression seems to perform well in simulations (max 110 steps to go back |
84 | | // up to 2**18 blocks). |
85 | 21.1M | return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height); |
86 | 21.3M | } |
87 | | |
88 | | const CBlockIndex* CBlockIndex::GetAncestor(int height) const |
89 | 4.89M | { |
90 | 4.89M | if (height > nHeight || height < 0) { |
91 | 2.06M | return nullptr; |
92 | 2.06M | } |
93 | | |
94 | 2.83M | const CBlockIndex* pindexWalk = this; |
95 | 2.83M | int heightWalk = nHeight; |
96 | 13.3M | while (heightWalk > height) { |
97 | 10.5M | int heightSkip = GetSkipHeight(heightWalk); |
98 | 10.5M | int heightSkipPrev = GetSkipHeight(heightWalk - 1); |
99 | 10.5M | if (pindexWalk->pskip != nullptr && |
100 | 10.5M | (heightSkip == height || |
101 | 10.2M | (heightSkip > height && !(heightSkipPrev < heightSkip - 2 && |
102 | 5.06M | heightSkipPrev >= height)))) { |
103 | | // Only follow pskip if pprev->pskip isn't better than pskip->pprev. |
104 | 5.06M | pindexWalk = pindexWalk->pskip; |
105 | 5.06M | heightWalk = heightSkip; |
106 | 5.48M | } else { |
107 | 5.48M | assert(pindexWalk->pprev); |
108 | 5.48M | pindexWalk = pindexWalk->pprev; |
109 | 5.48M | heightWalk--; |
110 | 5.48M | } |
111 | 10.5M | } |
112 | 2.83M | return pindexWalk; |
113 | 2.83M | } |
114 | | |
115 | | CBlockIndex* CBlockIndex::GetAncestor(int height) |
116 | 1.81M | { |
117 | 1.81M | return const_cast<CBlockIndex*>(static_cast<const CBlockIndex*>(this)->GetAncestor(height)); |
118 | 1.81M | } |
119 | | |
120 | | void CBlockIndex::BuildSkip() |
121 | 220k | { |
122 | 220k | if (pprev) |
123 | 220k | pskip = pprev->GetAncestor(GetSkipHeight(nHeight)); |
124 | 220k | } |
125 | | |
126 | | arith_uint256 GetBlockProof(const CBlockIndex& block) |
127 | 725k | { |
128 | 725k | arith_uint256 bnTarget; |
129 | 725k | bool fNegative; |
130 | 725k | bool fOverflow; |
131 | 725k | bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow); |
132 | 725k | if (fNegative || fOverflow || bnTarget == 0) |
133 | 87.9k | return 0; |
134 | | // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 |
135 | | // as it's too large for an arith_uint256. However, as 2**256 is at least as large |
136 | | // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, |
137 | | // or ~bnTarget / (bnTarget+1) + 1. |
138 | 637k | return (~bnTarget / (bnTarget + 1)) + 1; |
139 | 725k | } |
140 | | |
141 | | int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params) |
142 | 57.7k | { |
143 | 57.7k | arith_uint256 r; |
144 | 57.7k | int sign = 1; |
145 | 57.7k | if (to.nChainWork > from.nChainWork) { |
146 | 14.4k | r = to.nChainWork - from.nChainWork; |
147 | 43.2k | } else { |
148 | 43.2k | r = from.nChainWork - to.nChainWork; |
149 | 43.2k | sign = -1; |
150 | 43.2k | } |
151 | 57.7k | r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip); |
152 | 57.7k | if (r.bits() > 63) { |
153 | 10.2k | return sign * std::numeric_limits<int64_t>::max(); |
154 | 10.2k | } |
155 | 47.5k | return sign * int64_t(r.GetLow64()); |
156 | 57.7k | } |
157 | | |
158 | | /** Find the last common ancestor two blocks have. |
159 | | * Both pa and pb must be non-nullptr. */ |
160 | 0 | const CBlockIndex* LastCommonAncestor(const CBlockIndex* pa, const CBlockIndex* pb) { |
161 | 0 | if (pa->nHeight > pb->nHeight) { |
162 | 0 | pa = pa->GetAncestor(pb->nHeight); |
163 | 0 | } else if (pb->nHeight > pa->nHeight) { |
164 | 0 | pb = pb->GetAncestor(pa->nHeight); |
165 | 0 | } |
166 | |
|
167 | 0 | while (pa != pb && pa && pb) { |
168 | 0 | pa = pa->pprev; |
169 | 0 | pb = pb->pprev; |
170 | 0 | } |
171 | | |
172 | | // Eventually all chain branches meet at the genesis block. |
173 | 0 | assert(pa == pb); |
174 | 0 | return pa; |
175 | 0 | } |