/root/bitcoin/src/pubkey.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2009-present The Bitcoin Core developers |
2 | | // Copyright (c) 2017 The Zcash developers |
3 | | // Distributed under the MIT software license, see the accompanying |
4 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
5 | | |
6 | | #include <pubkey.h> |
7 | | |
8 | | #include <hash.h> |
9 | | #include <secp256k1.h> |
10 | | #include <secp256k1_ellswift.h> |
11 | | #include <secp256k1_extrakeys.h> |
12 | | #include <secp256k1_recovery.h> |
13 | | #include <secp256k1_schnorrsig.h> |
14 | | #include <span.h> |
15 | | #include <uint256.h> |
16 | | #include <util/strencodings.h> |
17 | | |
18 | | #include <algorithm> |
19 | | #include <cassert> |
20 | | |
21 | | using namespace util::hex_literals; |
22 | | |
23 | | namespace { |
24 | | |
25 | | struct Secp256k1SelfTester |
26 | | { |
27 | 0 | Secp256k1SelfTester() { |
28 | | /* Run libsecp256k1 self-test before using the secp256k1_context_static. */ |
29 | 0 | secp256k1_selftest(); |
30 | 0 | } |
31 | | } SECP256K1_SELFTESTER; |
32 | | |
33 | | } // namespace |
34 | | |
35 | | /** This function is taken from the libsecp256k1 distribution and implements |
36 | | * DER parsing for ECDSA signatures, while supporting an arbitrary subset of |
37 | | * format violations. |
38 | | * |
39 | | * Supported violations include negative integers, excessive padding, garbage |
40 | | * at the end, and overly long length descriptors. This is safe to use in |
41 | | * Bitcoin because since the activation of BIP66, signatures are verified to be |
42 | | * strict DER before being passed to this module, and we know it supports all |
43 | | * violations present in the blockchain before that point. |
44 | | */ |
45 | 0 | int ecdsa_signature_parse_der_lax(secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) { |
46 | 0 | size_t rpos, rlen, spos, slen; |
47 | 0 | size_t pos = 0; |
48 | 0 | size_t lenbyte; |
49 | 0 | unsigned char tmpsig[64] = {0}; |
50 | 0 | int overflow = 0; |
51 | | |
52 | | /* Hack to initialize sig with a correctly-parsed but invalid signature. */ |
53 | 0 | secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig); |
54 | | |
55 | | /* Sequence tag byte */ |
56 | 0 | if (pos == inputlen || input[pos] != 0x30) { |
57 | 0 | return 0; |
58 | 0 | } |
59 | 0 | pos++; |
60 | | |
61 | | /* Sequence length bytes */ |
62 | 0 | if (pos == inputlen) { |
63 | 0 | return 0; |
64 | 0 | } |
65 | 0 | lenbyte = input[pos++]; |
66 | 0 | if (lenbyte & 0x80) { |
67 | 0 | lenbyte -= 0x80; |
68 | 0 | if (lenbyte > inputlen - pos) { |
69 | 0 | return 0; |
70 | 0 | } |
71 | 0 | pos += lenbyte; |
72 | 0 | } |
73 | | |
74 | | /* Integer tag byte for R */ |
75 | 0 | if (pos == inputlen || input[pos] != 0x02) { |
76 | 0 | return 0; |
77 | 0 | } |
78 | 0 | pos++; |
79 | | |
80 | | /* Integer length for R */ |
81 | 0 | if (pos == inputlen) { |
82 | 0 | return 0; |
83 | 0 | } |
84 | 0 | lenbyte = input[pos++]; |
85 | 0 | if (lenbyte & 0x80) { |
86 | 0 | lenbyte -= 0x80; |
87 | 0 | if (lenbyte > inputlen - pos) { |
88 | 0 | return 0; |
89 | 0 | } |
90 | 0 | while (lenbyte > 0 && input[pos] == 0) { |
91 | 0 | pos++; |
92 | 0 | lenbyte--; |
93 | 0 | } |
94 | 0 | static_assert(sizeof(size_t) >= 4, "size_t too small"); |
95 | 0 | if (lenbyte >= 4) { |
96 | 0 | return 0; |
97 | 0 | } |
98 | 0 | rlen = 0; |
99 | 0 | while (lenbyte > 0) { |
100 | 0 | rlen = (rlen << 8) + input[pos]; |
101 | 0 | pos++; |
102 | 0 | lenbyte--; |
103 | 0 | } |
104 | 0 | } else { |
105 | 0 | rlen = lenbyte; |
106 | 0 | } |
107 | 0 | if (rlen > inputlen - pos) { |
108 | 0 | return 0; |
109 | 0 | } |
110 | 0 | rpos = pos; |
111 | 0 | pos += rlen; |
112 | | |
113 | | /* Integer tag byte for S */ |
114 | 0 | if (pos == inputlen || input[pos] != 0x02) { |
115 | 0 | return 0; |
116 | 0 | } |
117 | 0 | pos++; |
118 | | |
119 | | /* Integer length for S */ |
120 | 0 | if (pos == inputlen) { |
121 | 0 | return 0; |
122 | 0 | } |
123 | 0 | lenbyte = input[pos++]; |
124 | 0 | if (lenbyte & 0x80) { |
125 | 0 | lenbyte -= 0x80; |
126 | 0 | if (lenbyte > inputlen - pos) { |
127 | 0 | return 0; |
128 | 0 | } |
129 | 0 | while (lenbyte > 0 && input[pos] == 0) { |
130 | 0 | pos++; |
131 | 0 | lenbyte--; |
132 | 0 | } |
133 | 0 | static_assert(sizeof(size_t) >= 4, "size_t too small"); |
134 | 0 | if (lenbyte >= 4) { |
135 | 0 | return 0; |
136 | 0 | } |
137 | 0 | slen = 0; |
138 | 0 | while (lenbyte > 0) { |
139 | 0 | slen = (slen << 8) + input[pos]; |
140 | 0 | pos++; |
141 | 0 | lenbyte--; |
142 | 0 | } |
143 | 0 | } else { |
144 | 0 | slen = lenbyte; |
145 | 0 | } |
146 | 0 | if (slen > inputlen - pos) { |
147 | 0 | return 0; |
148 | 0 | } |
149 | 0 | spos = pos; |
150 | | |
151 | | /* Ignore leading zeroes in R */ |
152 | 0 | while (rlen > 0 && input[rpos] == 0) { |
153 | 0 | rlen--; |
154 | 0 | rpos++; |
155 | 0 | } |
156 | | /* Copy R value */ |
157 | 0 | if (rlen > 32) { |
158 | 0 | overflow = 1; |
159 | 0 | } else { |
160 | 0 | memcpy(tmpsig + 32 - rlen, input + rpos, rlen); |
161 | 0 | } |
162 | | |
163 | | /* Ignore leading zeroes in S */ |
164 | 0 | while (slen > 0 && input[spos] == 0) { |
165 | 0 | slen--; |
166 | 0 | spos++; |
167 | 0 | } |
168 | | /* Copy S value */ |
169 | 0 | if (slen > 32) { |
170 | 0 | overflow = 1; |
171 | 0 | } else { |
172 | 0 | memcpy(tmpsig + 64 - slen, input + spos, slen); |
173 | 0 | } |
174 | |
|
175 | 0 | if (!overflow) { |
176 | 0 | overflow = !secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig); |
177 | 0 | } |
178 | 0 | if (overflow) { |
179 | | /* Overwrite the result again with a correctly-parsed but invalid |
180 | | signature if parsing failed. */ |
181 | 0 | memset(tmpsig, 0, 64); |
182 | 0 | secp256k1_ecdsa_signature_parse_compact(secp256k1_context_static, sig, tmpsig); |
183 | 0 | } |
184 | 0 | return 1; |
185 | 0 | } |
186 | | |
187 | | /** Nothing Up My Sleeve (NUMS) point |
188 | | * |
189 | | * NUMS_H is a point with an unknown discrete logarithm, constructed by taking the sha256 of 'g' |
190 | | * (uncompressed encoding), which happens to be a point on the curve. |
191 | | * |
192 | | * For an example script for calculating H, refer to the unit tests in |
193 | | * ./test/functional/test_framework/crypto/secp256k1.py |
194 | | */ |
195 | | constexpr XOnlyPubKey XOnlyPubKey::NUMS_H{ |
196 | | // Use immediate lambda to work around GCC-14 bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=117966 |
197 | | []() consteval { return XOnlyPubKey{"50929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0"_hex_u8}; }(), |
198 | | }; |
199 | | |
200 | | std::vector<CKeyID> XOnlyPubKey::GetKeyIDs() const |
201 | 0 | { |
202 | 0 | std::vector<CKeyID> out; |
203 | | // For now, use the old full pubkey-based key derivation logic. As it is indexed by |
204 | | // Hash160(full pubkey), we need to return both a version prefixed with 0x02, and one |
205 | | // with 0x03. |
206 | 0 | unsigned char b[33] = {0x02}; |
207 | 0 | std::copy(m_keydata.begin(), m_keydata.end(), b + 1); |
208 | 0 | CPubKey fullpubkey; |
209 | 0 | fullpubkey.Set(b, b + 33); |
210 | 0 | out.push_back(fullpubkey.GetID()); |
211 | 0 | b[0] = 0x03; |
212 | 0 | fullpubkey.Set(b, b + 33); |
213 | 0 | out.push_back(fullpubkey.GetID()); |
214 | 0 | return out; |
215 | 0 | } |
216 | | |
217 | | CPubKey XOnlyPubKey::GetEvenCorrespondingCPubKey() const |
218 | 0 | { |
219 | 0 | unsigned char full_key[CPubKey::COMPRESSED_SIZE] = {0x02}; |
220 | 0 | std::copy(begin(), end(), full_key + 1); |
221 | 0 | return CPubKey{full_key}; |
222 | 0 | } |
223 | | |
224 | | bool XOnlyPubKey::IsFullyValid() const |
225 | 0 | { |
226 | 0 | secp256k1_xonly_pubkey pubkey; |
227 | 0 | return secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data()); |
228 | 0 | } |
229 | | |
230 | | bool XOnlyPubKey::VerifySchnorr(const uint256& msg, std::span<const unsigned char> sigbytes) const |
231 | 0 | { |
232 | 0 | assert(sigbytes.size() == 64); |
233 | 0 | secp256k1_xonly_pubkey pubkey; |
234 | 0 | if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &pubkey, m_keydata.data())) return false; |
235 | 0 | return secp256k1_schnorrsig_verify(secp256k1_context_static, sigbytes.data(), msg.begin(), 32, &pubkey); |
236 | 0 | } |
237 | | |
238 | | static const HashWriter HASHER_TAPTWEAK{TaggedHash("TapTweak")}; |
239 | | |
240 | | uint256 XOnlyPubKey::ComputeTapTweakHash(const uint256* merkle_root) const |
241 | 0 | { |
242 | 0 | if (merkle_root == nullptr) { |
243 | | // We have no scripts. The actual tweak does not matter, but follow BIP341 here to |
244 | | // allow for reproducible tweaking. |
245 | 0 | return (HashWriter{HASHER_TAPTWEAK} << m_keydata).GetSHA256(); |
246 | 0 | } else { |
247 | 0 | return (HashWriter{HASHER_TAPTWEAK} << m_keydata << *merkle_root).GetSHA256(); |
248 | 0 | } |
249 | 0 | } |
250 | | |
251 | | bool XOnlyPubKey::CheckTapTweak(const XOnlyPubKey& internal, const uint256& merkle_root, bool parity) const |
252 | 0 | { |
253 | 0 | secp256k1_xonly_pubkey internal_key; |
254 | 0 | if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &internal_key, internal.data())) return false; |
255 | 0 | uint256 tweak = internal.ComputeTapTweakHash(&merkle_root); |
256 | 0 | return secp256k1_xonly_pubkey_tweak_add_check(secp256k1_context_static, m_keydata.begin(), parity, &internal_key, tweak.begin()); |
257 | 0 | } |
258 | | |
259 | | std::optional<std::pair<XOnlyPubKey, bool>> XOnlyPubKey::CreateTapTweak(const uint256* merkle_root) const |
260 | 0 | { |
261 | 0 | secp256k1_xonly_pubkey base_point; |
262 | 0 | if (!secp256k1_xonly_pubkey_parse(secp256k1_context_static, &base_point, data())) return std::nullopt; |
263 | 0 | secp256k1_pubkey out; |
264 | 0 | uint256 tweak = ComputeTapTweakHash(merkle_root); |
265 | 0 | if (!secp256k1_xonly_pubkey_tweak_add(secp256k1_context_static, &out, &base_point, tweak.data())) return std::nullopt; |
266 | 0 | int parity = -1; |
267 | 0 | std::pair<XOnlyPubKey, bool> ret; |
268 | 0 | secp256k1_xonly_pubkey out_xonly; |
269 | 0 | if (!secp256k1_xonly_pubkey_from_pubkey(secp256k1_context_static, &out_xonly, &parity, &out)) return std::nullopt; |
270 | 0 | secp256k1_xonly_pubkey_serialize(secp256k1_context_static, ret.first.begin(), &out_xonly); |
271 | 0 | assert(parity == 0 || parity == 1); |
272 | 0 | ret.second = parity; |
273 | 0 | return ret; |
274 | 0 | } |
275 | | |
276 | | |
277 | 0 | bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
278 | 0 | if (!IsValid()) |
279 | 0 | return false; |
280 | 0 | secp256k1_pubkey pubkey; |
281 | 0 | secp256k1_ecdsa_signature sig; |
282 | 0 | if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) { |
283 | 0 | return false; |
284 | 0 | } |
285 | 0 | if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) { |
286 | 0 | return false; |
287 | 0 | } |
288 | | /* libsecp256k1's ECDSA verification requires lower-S signatures, which have |
289 | | * not historically been enforced in Bitcoin, so normalize them first. */ |
290 | 0 | secp256k1_ecdsa_signature_normalize(secp256k1_context_static, &sig, &sig); |
291 | 0 | return secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pubkey); |
292 | 0 | } |
293 | | |
294 | 0 | bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
295 | 0 | if (vchSig.size() != COMPACT_SIGNATURE_SIZE) |
296 | 0 | return false; |
297 | 0 | int recid = (vchSig[0] - 27) & 3; |
298 | 0 | bool fComp = ((vchSig[0] - 27) & 4) != 0; |
299 | 0 | secp256k1_pubkey pubkey; |
300 | 0 | secp256k1_ecdsa_recoverable_signature sig; |
301 | 0 | if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_static, &sig, &vchSig[1], recid)) { |
302 | 0 | return false; |
303 | 0 | } |
304 | 0 | if (!secp256k1_ecdsa_recover(secp256k1_context_static, &pubkey, &sig, hash.begin())) { |
305 | 0 | return false; |
306 | 0 | } |
307 | 0 | unsigned char pub[SIZE]; |
308 | 0 | size_t publen = SIZE; |
309 | 0 | secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); |
310 | 0 | Set(pub, pub + publen); |
311 | 0 | return true; |
312 | 0 | } |
313 | | |
314 | 0 | bool CPubKey::IsFullyValid() const { |
315 | 0 | if (!IsValid()) |
316 | 0 | return false; |
317 | 0 | secp256k1_pubkey pubkey; |
318 | 0 | return secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size()); |
319 | 0 | } |
320 | | |
321 | 0 | bool CPubKey::Decompress() { |
322 | 0 | if (!IsValid()) |
323 | 0 | return false; |
324 | 0 | secp256k1_pubkey pubkey; |
325 | 0 | if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) { |
326 | 0 | return false; |
327 | 0 | } |
328 | 0 | unsigned char pub[SIZE]; |
329 | 0 | size_t publen = SIZE; |
330 | 0 | secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED); |
331 | 0 | Set(pub, pub + publen); |
332 | 0 | return true; |
333 | 0 | } |
334 | | |
335 | 0 | bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { |
336 | 0 | assert(IsValid()); |
337 | 0 | assert((nChild >> 31) == 0); |
338 | 0 | assert(size() == COMPRESSED_SIZE); |
339 | 0 | unsigned char out[64]; |
340 | 0 | BIP32Hash(cc, nChild, *begin(), begin()+1, out); |
341 | 0 | memcpy(ccChild.begin(), out+32, 32); |
342 | 0 | secp256k1_pubkey pubkey; |
343 | 0 | if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, vch, size())) { |
344 | 0 | return false; |
345 | 0 | } |
346 | 0 | if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_static, &pubkey, out)) { |
347 | 0 | return false; |
348 | 0 | } |
349 | 0 | unsigned char pub[COMPRESSED_SIZE]; |
350 | 0 | size_t publen = COMPRESSED_SIZE; |
351 | 0 | secp256k1_ec_pubkey_serialize(secp256k1_context_static, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED); |
352 | 0 | pubkeyChild.Set(pub, pub + publen); |
353 | 0 | return true; |
354 | 0 | } |
355 | | |
356 | | EllSwiftPubKey::EllSwiftPubKey(std::span<const std::byte> ellswift) noexcept |
357 | 0 | { |
358 | 0 | assert(ellswift.size() == SIZE); |
359 | 0 | std::copy(ellswift.begin(), ellswift.end(), m_pubkey.begin()); |
360 | 0 | } |
361 | | |
362 | | CPubKey EllSwiftPubKey::Decode() const |
363 | 0 | { |
364 | 0 | secp256k1_pubkey pubkey; |
365 | 0 | secp256k1_ellswift_decode(secp256k1_context_static, &pubkey, UCharCast(m_pubkey.data())); |
366 | |
|
367 | 0 | size_t sz = CPubKey::COMPRESSED_SIZE; |
368 | 0 | std::array<uint8_t, CPubKey::COMPRESSED_SIZE> vch_bytes; |
369 | |
|
370 | 0 | secp256k1_ec_pubkey_serialize(secp256k1_context_static, vch_bytes.data(), &sz, &pubkey, SECP256K1_EC_COMPRESSED); |
371 | 0 | assert(sz == vch_bytes.size()); |
372 | | |
373 | 0 | return CPubKey{vch_bytes.begin(), vch_bytes.end()}; |
374 | 0 | } |
375 | | |
376 | 0 | void CExtPubKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const { |
377 | 0 | code[0] = nDepth; |
378 | 0 | memcpy(code+1, vchFingerprint, 4); |
379 | 0 | WriteBE32(code+5, nChild); |
380 | 0 | memcpy(code+9, chaincode.begin(), 32); |
381 | 0 | assert(pubkey.size() == CPubKey::COMPRESSED_SIZE); |
382 | 0 | memcpy(code+41, pubkey.begin(), CPubKey::COMPRESSED_SIZE); |
383 | 0 | } |
384 | | |
385 | 0 | void CExtPubKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) { |
386 | 0 | nDepth = code[0]; |
387 | 0 | memcpy(vchFingerprint, code+1, 4); |
388 | 0 | nChild = ReadBE32(code+5); |
389 | 0 | memcpy(chaincode.begin(), code+9, 32); |
390 | 0 | pubkey.Set(code+41, code+BIP32_EXTKEY_SIZE); |
391 | 0 | if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || !pubkey.IsFullyValid()) pubkey = CPubKey(); |
392 | 0 | } |
393 | | |
394 | | void CExtPubKey::EncodeWithVersion(unsigned char code[BIP32_EXTKEY_WITH_VERSION_SIZE]) const |
395 | 0 | { |
396 | 0 | memcpy(code, version, 4); |
397 | 0 | Encode(&code[4]); |
398 | 0 | } |
399 | | |
400 | | void CExtPubKey::DecodeWithVersion(const unsigned char code[BIP32_EXTKEY_WITH_VERSION_SIZE]) |
401 | 0 | { |
402 | 0 | memcpy(version, code, 4); |
403 | 0 | Decode(&code[4]); |
404 | 0 | } |
405 | | |
406 | 0 | bool CExtPubKey::Derive(CExtPubKey &out, unsigned int _nChild) const { |
407 | 0 | if (nDepth == std::numeric_limits<unsigned char>::max()) return false; |
408 | 0 | out.nDepth = nDepth + 1; |
409 | 0 | CKeyID id = pubkey.GetID(); |
410 | 0 | memcpy(out.vchFingerprint, &id, 4); |
411 | 0 | out.nChild = _nChild; |
412 | 0 | return pubkey.Derive(out.pubkey, out.chaincode, _nChild, chaincode); |
413 | 0 | } |
414 | | |
415 | 0 | /* static */ bool CPubKey::CheckLowS(const std::vector<unsigned char>& vchSig) { |
416 | 0 | secp256k1_ecdsa_signature sig; |
417 | 0 | if (!ecdsa_signature_parse_der_lax(&sig, vchSig.data(), vchSig.size())) { |
418 | 0 | return false; |
419 | 0 | } |
420 | 0 | return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_static, nullptr, &sig)); |
421 | 0 | } |