/root/bitcoin/src/common/bloom.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2012-present The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <common/bloom.h> |
6 | | |
7 | | #include <hash.h> |
8 | | #include <primitives/transaction.h> |
9 | | #include <random.h> |
10 | | #include <script/script.h> |
11 | | #include <script/solver.h> |
12 | | #include <span.h> |
13 | | #include <streams.h> |
14 | | #include <util/fastrange.h> |
15 | | |
16 | | #include <algorithm> |
17 | | #include <cmath> |
18 | | #include <cstdlib> |
19 | | #include <limits> |
20 | | #include <vector> |
21 | | |
22 | | static constexpr double LN2SQUARED = 0.4804530139182014246671025263266649717305529515945455; |
23 | | static constexpr double LN2 = 0.6931471805599453094172321214581765680755001343602552; |
24 | | |
25 | | CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) : |
26 | | /** |
27 | | * The ideal size for a bloom filter with a given number of elements and false positive rate is: |
28 | | * - nElements * log(fp rate) / ln(2)^2 |
29 | | * We ignore filter parameters which will create a bloom filter larger than the protocol limits |
30 | | */ |
31 | 0 | vData(std::min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8), |
32 | | /** |
33 | | * The ideal number of hash functions is filter size * ln(2) / number of elements |
34 | | * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits |
35 | | * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas |
36 | | */ |
37 | 0 | nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)), |
38 | 0 | nTweak(nTweakIn), |
39 | 0 | nFlags(nFlagsIn) |
40 | 0 | { |
41 | 0 | } |
42 | | |
43 | | inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, std::span<const unsigned char> vDataToHash) const |
44 | 0 | { |
45 | | // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values. |
46 | 0 | return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8); |
47 | 0 | } |
48 | | |
49 | | void CBloomFilter::insert(std::span<const unsigned char> vKey) |
50 | 0 | { |
51 | 0 | if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700) |
52 | 0 | return; |
53 | 0 | for (unsigned int i = 0; i < nHashFuncs; i++) |
54 | 0 | { |
55 | 0 | unsigned int nIndex = Hash(i, vKey); |
56 | | // Sets bit nIndex of vData |
57 | 0 | vData[nIndex >> 3] |= (1 << (7 & nIndex)); |
58 | 0 | } |
59 | 0 | } |
60 | | |
61 | | void CBloomFilter::insert(const COutPoint& outpoint) |
62 | 0 | { |
63 | 0 | DataStream stream{}; |
64 | 0 | stream << outpoint; |
65 | 0 | insert(MakeUCharSpan(stream)); |
66 | 0 | } |
67 | | |
68 | | bool CBloomFilter::contains(std::span<const unsigned char> vKey) const |
69 | 0 | { |
70 | 0 | if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700) |
71 | 0 | return true; |
72 | 0 | for (unsigned int i = 0; i < nHashFuncs; i++) |
73 | 0 | { |
74 | 0 | unsigned int nIndex = Hash(i, vKey); |
75 | | // Checks bit nIndex of vData |
76 | 0 | if (!(vData[nIndex >> 3] & (1 << (7 & nIndex)))) |
77 | 0 | return false; |
78 | 0 | } |
79 | 0 | return true; |
80 | 0 | } |
81 | | |
82 | | bool CBloomFilter::contains(const COutPoint& outpoint) const |
83 | 0 | { |
84 | 0 | DataStream stream{}; |
85 | 0 | stream << outpoint; |
86 | 0 | return contains(MakeUCharSpan(stream)); |
87 | 0 | } |
88 | | |
89 | | bool CBloomFilter::IsWithinSizeConstraints() const |
90 | 0 | { |
91 | 0 | return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS; |
92 | 0 | } |
93 | | |
94 | | bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx) |
95 | 0 | { |
96 | 0 | bool fFound = false; |
97 | | // Match if the filter contains the hash of tx |
98 | | // for finding tx when they appear in a block |
99 | 0 | if (vData.empty()) // zero-size = "match-all" filter |
100 | 0 | return true; |
101 | 0 | const Txid& hash = tx.GetHash(); |
102 | 0 | if (contains(hash.ToUint256())) |
103 | 0 | fFound = true; |
104 | |
|
105 | 0 | for (unsigned int i = 0; i < tx.vout.size(); i++) |
106 | 0 | { |
107 | 0 | const CTxOut& txout = tx.vout[i]; |
108 | | // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx |
109 | | // If this matches, also add the specific output that was matched. |
110 | | // This means clients don't have to update the filter themselves when a new relevant tx |
111 | | // is discovered in order to find spending transactions, which avoids round-tripping and race conditions. |
112 | 0 | CScript::const_iterator pc = txout.scriptPubKey.begin(); |
113 | 0 | std::vector<unsigned char> data; |
114 | 0 | while (pc < txout.scriptPubKey.end()) |
115 | 0 | { |
116 | 0 | opcodetype opcode; |
117 | 0 | if (!txout.scriptPubKey.GetOp(pc, opcode, data)) |
118 | 0 | break; |
119 | 0 | if (data.size() != 0 && contains(data)) |
120 | 0 | { |
121 | 0 | fFound = true; |
122 | 0 | if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL) |
123 | 0 | insert(COutPoint(hash, i)); |
124 | 0 | else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY) |
125 | 0 | { |
126 | 0 | std::vector<std::vector<unsigned char> > vSolutions; |
127 | 0 | TxoutType type = Solver(txout.scriptPubKey, vSolutions); |
128 | 0 | if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) { |
129 | 0 | insert(COutPoint(hash, i)); |
130 | 0 | } |
131 | 0 | } |
132 | 0 | break; |
133 | 0 | } |
134 | 0 | } |
135 | 0 | } |
136 | |
|
137 | 0 | if (fFound) |
138 | 0 | return true; |
139 | | |
140 | 0 | for (const CTxIn& txin : tx.vin) |
141 | 0 | { |
142 | | // Match if the filter contains an outpoint tx spends |
143 | 0 | if (contains(txin.prevout)) |
144 | 0 | return true; |
145 | | |
146 | | // Match if the filter contains any arbitrary script data element in any scriptSig in tx |
147 | 0 | CScript::const_iterator pc = txin.scriptSig.begin(); |
148 | 0 | std::vector<unsigned char> data; |
149 | 0 | while (pc < txin.scriptSig.end()) |
150 | 0 | { |
151 | 0 | opcodetype opcode; |
152 | 0 | if (!txin.scriptSig.GetOp(pc, opcode, data)) |
153 | 0 | break; |
154 | 0 | if (data.size() != 0 && contains(data)) |
155 | 0 | return true; |
156 | 0 | } |
157 | 0 | } |
158 | | |
159 | 0 | return false; |
160 | 0 | } |
161 | | |
162 | | CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate) |
163 | 1.47k | { |
164 | 1.47k | double logFpRate = log(fpRate); |
165 | | /* The optimal number of hash functions is log(fpRate) / log(0.5), but |
166 | | * restrict it to the range 1-50. */ |
167 | 1.47k | nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50)); |
168 | | /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */ |
169 | 1.47k | nEntriesPerGeneration = (nElements + 1) / 2; |
170 | 1.47k | uint32_t nMaxElements = nEntriesPerGeneration * 3; |
171 | | /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs) |
172 | | * => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits) |
173 | | * => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits) |
174 | | * => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits |
175 | | * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) |
176 | | * => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)) |
177 | | */ |
178 | 1.47k | uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))); |
179 | 1.47k | data.clear(); |
180 | | /* For each data element we need to store 2 bits. If both bits are 0, the |
181 | | * bit is treated as unset. If the bits are (01), (10), or (11), the bit is |
182 | | * treated as set in generation 1, 2, or 3 respectively. |
183 | | * These bits are stored in separate integers: position P corresponds to bit |
184 | | * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */ |
185 | 1.47k | data.resize(((nFilterBits + 63) / 64) << 1); |
186 | 1.47k | reset(); |
187 | 1.47k | } |
188 | | |
189 | | /* Similar to CBloomFilter::Hash */ |
190 | | static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, std::span<const unsigned char> vDataToHash) |
191 | 0 | { |
192 | 0 | return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash); |
193 | 0 | } |
194 | | |
195 | | void CRollingBloomFilter::insert(std::span<const unsigned char> vKey) |
196 | 0 | { |
197 | 0 | if (nEntriesThisGeneration == nEntriesPerGeneration) { |
198 | 0 | nEntriesThisGeneration = 0; |
199 | 0 | nGeneration++; |
200 | 0 | if (nGeneration == 4) { |
201 | 0 | nGeneration = 1; |
202 | 0 | } |
203 | 0 | uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1); |
204 | 0 | uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1); |
205 | | /* Wipe old entries that used this generation number. */ |
206 | 0 | for (uint32_t p = 0; p < data.size(); p += 2) { |
207 | 0 | uint64_t p1 = data[p], p2 = data[p + 1]; |
208 | 0 | uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2); |
209 | 0 | data[p] = p1 & mask; |
210 | 0 | data[p + 1] = p2 & mask; |
211 | 0 | } |
212 | 0 | } |
213 | 0 | nEntriesThisGeneration++; |
214 | |
|
215 | 0 | for (int n = 0; n < nHashFuncs; n++) { |
216 | 0 | uint32_t h = RollingBloomHash(n, nTweak, vKey); |
217 | 0 | int bit = h & 0x3F; |
218 | | /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */ |
219 | 0 | uint32_t pos = FastRange32(h, data.size()); |
220 | | /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */ |
221 | 0 | data[pos & ~1U] = (data[pos & ~1U] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration & 1)) << bit; |
222 | 0 | data[pos | 1] = (data[pos | 1] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration >> 1)) << bit; |
223 | 0 | } |
224 | 0 | } |
225 | | |
226 | | bool CRollingBloomFilter::contains(std::span<const unsigned char> vKey) const |
227 | 0 | { |
228 | 0 | for (int n = 0; n < nHashFuncs; n++) { |
229 | 0 | uint32_t h = RollingBloomHash(n, nTweak, vKey); |
230 | 0 | int bit = h & 0x3F; |
231 | 0 | uint32_t pos = FastRange32(h, data.size()); |
232 | | /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */ |
233 | 0 | if (!(((data[pos & ~1U] | data[pos | 1]) >> bit) & 1)) { |
234 | 0 | return false; |
235 | 0 | } |
236 | 0 | } |
237 | 0 | return true; |
238 | 0 | } |
239 | | |
240 | | void CRollingBloomFilter::reset() |
241 | 1.47k | { |
242 | 1.47k | nTweak = FastRandomContext().rand<unsigned int>(); |
243 | 1.47k | nEntriesThisGeneration = 0; |
244 | 1.47k | nGeneration = 1; |
245 | 1.47k | std::fill(data.begin(), data.end(), 0); |
246 | 1.47k | } |