Coverage Report

Created: 2024-11-15 12:18

/root/bitcoin/src/crypto/ctaes/ctaes.c
Line
Count
Source (jump to first uncovered line)
1
 /*********************************************************************
2
 * Copyright (c) 2016 Pieter Wuille                                   *
3
 * Distributed under the MIT software license, see the accompanying   *
4
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5
 **********************************************************************/
6
7
/* Constant time, unoptimized, concise, plain C, AES implementation
8
 * Based On:
9
 *   Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM
10
 *   http://www.iacr.org/archive/ches2009/57470001/57470001.pdf
11
 * But using 8 16-bit integers representing a single AES state rather than 8 128-bit
12
 * integers representing 8 AES states.
13
 */
14
15
#include "ctaes.h"
16
17
/* Slice variable slice_i contains the i'th bit of the 16 state variables in this order:
18
 *  0  1  2  3
19
 *  4  5  6  7
20
 *  8  9 10 11
21
 * 12 13 14 15
22
 */
23
24
/** Convert a byte to sliced form, storing it corresponding to given row and column in s */
25
0
static void LoadByte(AES_state* s, unsigned char byte, int r, int c) {
26
0
    int i;
27
0
    for (i = 0; i < 8; i++) {
28
0
        s->slice[i] |= (byte & 1) << (r * 4 + c);
29
0
        byte >>= 1;
30
0
    }
31
0
}
32
33
/** Load 16 bytes of data into 8 sliced integers */
34
0
static void LoadBytes(AES_state *s, const unsigned char* data16) {
35
0
    int c;
36
0
    for (c = 0; c < 4; c++) {
37
0
        int r;
38
0
        for (r = 0; r < 4; r++) {
39
0
            LoadByte(s, *(data16++), r, c);
40
0
        }
41
0
    }
42
0
}
43
44
/** Convert 8 sliced integers into 16 bytes of data */
45
0
static void SaveBytes(unsigned char* data16, const AES_state *s) {
46
0
    int c;
47
0
    for (c = 0; c < 4; c++) {
48
0
        int r;
49
0
        for (r = 0; r < 4; r++) {
50
0
            int b;
51
0
            uint8_t v = 0;
52
0
            for (b = 0; b < 8; b++) {
53
0
                v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b;
54
0
            }
55
0
            *(data16++) = v;
56
0
        }
57
0
    }
58
0
}
59
60
/* S-box implementation based on the gate logic from:
61
 *   Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box.
62
 *   https://eprint.iacr.org/2011/332.pdf
63
*/
64
0
static void SubBytes(AES_state *s, int inv) {
65
    /* Load the bit slices */
66
0
    uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4];
67
0
    uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0];
68
69
0
    uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16;
70
0
    uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;
71
0
    uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;
72
0
    uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54;
73
0
    uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;
74
75
0
    if (inv) {
76
0
        uint16_t R5, R13, R17, R18, R19;
77
        /* Undo linear postprocessing */
78
0
        T23 = U0 ^ U3;
79
0
        T22 = ~(U1 ^ U3);
80
0
        T2 = ~(U0 ^ U1);
81
0
        T1 = U3 ^ U4;
82
0
        T24 = ~(U4 ^ U7);
83
0
        R5 = U6 ^ U7;
84
0
        T8 = ~(U1 ^ T23);
85
0
        T19 = T22 ^ R5;
86
0
        T9 = ~(U7 ^ T1);
87
0
        T10 = T2 ^ T24;
88
0
        T13 = T2 ^ R5;
89
0
        T3 = T1 ^ R5;
90
0
        T25 = ~(U2 ^ T1);
91
0
        R13 = U1 ^ U6;
92
0
        T17 = ~(U2 ^ T19);
93
0
        T20 = T24 ^ R13;
94
0
        T4 = U4 ^ T8;
95
0
        R17 = ~(U2 ^ U5);
96
0
        R18 = ~(U5 ^ U6);
97
0
        R19 = ~(U2 ^ U4);
98
0
        D = U0 ^ R17;
99
0
        T6 = T22 ^ R17;
100
0
        T16 = R13 ^ R19;
101
0
        T27 = T1 ^ R18;
102
0
        T15 = T10 ^ T27;
103
0
        T14 = T10 ^ R18;
104
0
        T26 = T3 ^ T16;
105
0
    } else {
106
        /* Linear preprocessing. */
107
0
        T1 = U0 ^ U3;
108
0
        T2 = U0 ^ U5;
109
0
        T3 = U0 ^ U6;
110
0
        T4 = U3 ^ U5;
111
0
        T5 = U4 ^ U6;
112
0
        T6 = T1 ^ T5;
113
0
        T7 = U1 ^ U2;
114
0
        T8 = U7 ^ T6;
115
0
        T9 = U7 ^ T7;
116
0
        T10 = T6 ^ T7;
117
0
        T11 = U1 ^ U5;
118
0
        T12 = U2 ^ U5;
119
0
        T13 = T3 ^ T4;
120
0
        T14 = T6 ^ T11;
121
0
        T15 = T5 ^ T11;
122
0
        T16 = T5 ^ T12;
123
0
        T17 = T9 ^ T16;
124
0
        T18 = U3 ^ U7;
125
0
        T19 = T7 ^ T18;
126
0
        T20 = T1 ^ T19;
127
0
        T21 = U6 ^ U7;
128
0
        T22 = T7 ^ T21;
129
0
        T23 = T2 ^ T22;
130
0
        T24 = T2 ^ T10;
131
0
        T25 = T20 ^ T17;
132
0
        T26 = T3 ^ T16;
133
0
        T27 = T1 ^ T12;
134
0
        D = U7;
135
0
    }
136
137
    /* Non-linear transformation (shared between the forward and backward case) */
138
0
    M1 = T13 & T6;
139
0
    M6 = T3 & T16;
140
0
    M11 = T1 & T15;
141
0
    M13 = (T4 & T27) ^ M11;
142
0
    M15 = (T2 & T10) ^ M11;
143
0
    M20 = T14 ^ M1 ^ (T23 & T8) ^ M13;
144
0
    M21 = (T19 & D) ^ M1 ^ T24 ^ M15;
145
0
    M22 = T26 ^ M6 ^ (T22 & T9) ^ M13;
146
0
    M23 = (T20 & T17) ^ M6 ^ M15 ^ T25;
147
0
    M25 = M22 & M20;
148
0
    M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25));
149
0
    M38 = M20 ^ M25 ^ (M21 | (M20 & M23));
150
0
    M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25));
151
0
    M40 = M22 ^ M25 ^ (M23 | (M21 & M22));
152
0
    M41 = M38 ^ M40;
153
0
    M42 = M37 ^ M39;
154
0
    M43 = M37 ^ M38;
155
0
    M44 = M39 ^ M40;
156
0
    M45 = M42 ^ M41;
157
0
    M46 = M44 & T6;
158
0
    M47 = M40 & T8;
159
0
    M48 = M39 & D;
160
0
    M49 = M43 & T16;
161
0
    M50 = M38 & T9;
162
0
    M51 = M37 & T17;
163
0
    M52 = M42 & T15;
164
0
    M53 = M45 & T27;
165
0
    M54 = M41 & T10;
166
0
    M55 = M44 & T13;
167
0
    M56 = M40 & T23;
168
0
    M57 = M39 & T19;
169
0
    M58 = M43 & T3;
170
0
    M59 = M38 & T22;
171
0
    M60 = M37 & T20;
172
0
    M61 = M42 & T1;
173
0
    M62 = M45 & T4;
174
0
    M63 = M41 & T2;
175
176
0
    if (inv){
177
        /* Undo linear preprocessing */
178
0
        uint16_t P0 = M52 ^ M61;
179
0
        uint16_t P1 = M58 ^ M59;
180
0
        uint16_t P2 = M54 ^ M62;
181
0
        uint16_t P3 = M47 ^ M50;
182
0
        uint16_t P4 = M48 ^ M56;
183
0
        uint16_t P5 = M46 ^ M51;
184
0
        uint16_t P6 = M49 ^ M60;
185
0
        uint16_t P7 = P0 ^ P1;
186
0
        uint16_t P8 = M50 ^ M53;
187
0
        uint16_t P9 = M55 ^ M63;
188
0
        uint16_t P10 = M57 ^ P4;
189
0
        uint16_t P11 = P0 ^ P3;
190
0
        uint16_t P12 = M46 ^ M48;
191
0
        uint16_t P13 = M49 ^ M51;
192
0
        uint16_t P14 = M49 ^ M62;
193
0
        uint16_t P15 = M54 ^ M59;
194
0
        uint16_t P16 = M57 ^ M61;
195
0
        uint16_t P17 = M58 ^ P2;
196
0
        uint16_t P18 = M63 ^ P5;
197
0
        uint16_t P19 = P2 ^ P3;
198
0
        uint16_t P20 = P4 ^ P6;
199
0
        uint16_t P22 = P2 ^ P7;
200
0
        uint16_t P23 = P7 ^ P8;
201
0
        uint16_t P24 = P5 ^ P7;
202
0
        uint16_t P25 = P6 ^ P10;
203
0
        uint16_t P26 = P9 ^ P11;
204
0
        uint16_t P27 = P10 ^ P18;
205
0
        uint16_t P28 = P11 ^ P25;
206
0
        uint16_t P29 = P15 ^ P20;
207
0
        s->slice[7] = P13 ^ P22;
208
0
        s->slice[6] = P26 ^ P29;
209
0
        s->slice[5] = P17 ^ P28;
210
0
        s->slice[4] = P12 ^ P22;
211
0
        s->slice[3] = P23 ^ P27;
212
0
        s->slice[2] = P19 ^ P24;
213
0
        s->slice[1] = P14 ^ P23;
214
0
        s->slice[0] = P9 ^ P16;
215
0
    } else {
216
        /* Linear postprocessing */
217
0
        uint16_t L0 = M61 ^ M62;
218
0
        uint16_t L1 = M50 ^ M56;
219
0
        uint16_t L2 = M46 ^ M48;
220
0
        uint16_t L3 = M47 ^ M55;
221
0
        uint16_t L4 = M54 ^ M58;
222
0
        uint16_t L5 = M49 ^ M61;
223
0
        uint16_t L6 = M62 ^ L5;
224
0
        uint16_t L7 = M46 ^ L3;
225
0
        uint16_t L8 = M51 ^ M59;
226
0
        uint16_t L9 = M52 ^ M53;
227
0
        uint16_t L10 = M53 ^ L4;
228
0
        uint16_t L11 = M60 ^ L2;
229
0
        uint16_t L12 = M48 ^ M51;
230
0
        uint16_t L13 = M50 ^ L0;
231
0
        uint16_t L14 = M52 ^ M61;
232
0
        uint16_t L15 = M55 ^ L1;
233
0
        uint16_t L16 = M56 ^ L0;
234
0
        uint16_t L17 = M57 ^ L1;
235
0
        uint16_t L18 = M58 ^ L8;
236
0
        uint16_t L19 = M63 ^ L4;
237
0
        uint16_t L20 = L0 ^ L1;
238
0
        uint16_t L21 = L1 ^ L7;
239
0
        uint16_t L22 = L3 ^ L12;
240
0
        uint16_t L23 = L18 ^ L2;
241
0
        uint16_t L24 = L15 ^ L9;
242
0
        uint16_t L25 = L6 ^ L10;
243
0
        uint16_t L26 = L7 ^ L9;
244
0
        uint16_t L27 = L8 ^ L10;
245
0
        uint16_t L28 = L11 ^ L14;
246
0
        uint16_t L29 = L11 ^ L17;
247
0
        s->slice[7] = L6 ^ L24;
248
0
        s->slice[6] = ~(L16 ^ L26);
249
0
        s->slice[5] = ~(L19 ^ L28);
250
0
        s->slice[4] = L6 ^ L21;
251
0
        s->slice[3] = L20 ^ L22;
252
0
        s->slice[2] = L25 ^ L29;
253
0
        s->slice[1] = ~(L13 ^ L27);
254
0
        s->slice[0] = ~(L6 ^ L23);
255
0
    }
256
0
}
257
258
0
#define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from))
259
260
0
#define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift))
261
0
#define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift))
262
263
0
static void ShiftRows(AES_state* s) {
264
0
    int i;
265
0
    for (i = 0; i < 8; i++) {
266
0
        uint16_t v = s->slice[i];
267
0
        s->slice[i] =
268
0
            (v & BIT_RANGE(0, 4)) |
269
0
            BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) |
270
0
            BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
271
0
            BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3);
272
0
    }
273
0
}
274
275
0
static void InvShiftRows(AES_state* s) {
276
0
    int i;
277
0
    for (i = 0; i < 8; i++) {
278
0
        uint16_t v = s->slice[i];
279
0
        s->slice[i] =
280
0
            (v & BIT_RANGE(0, 4)) |
281
0
            BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) |
282
0
            BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
283
0
            BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1);
284
0
    }
285
0
}
286
287
0
#define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4)))
288
289
0
static void MixColumns(AES_state* s, int inv) {
290
    /* The MixColumns transform treats the bytes of the columns of the state as
291
     * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them
292
     * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo
293
     * x^4 + {01}.
294
     *
295
     * In the inverse transform, we multiply by the inverse of a(x),
296
     * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to
297
     * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code
298
     * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna)
299
     *
300
     * In the bitsliced representation, a multiplication of every column by x
301
     * mod x^4 + 1 is simply a right rotation.
302
     */
303
304
    /* Shared for both directions is a multiplication by a(x), which can be
305
     * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}).
306
     *
307
     * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01
308
     * variables and (x^3 + x^2 + x)*s into the s?_123 variables.
309
     */
310
0
    uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3];
311
0
    uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7];
312
0
    uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3);
313
0
    uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3);
314
0
    uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3);
315
0
    uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3);
316
0
    uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3);
317
0
    uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3);
318
0
    uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3);
319
0
    uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3);
320
    /* Now compute s = s?_123 + {02} * s?_01. */
321
0
    s->slice[0] = s7_01 ^ s0_123;
322
0
    s->slice[1] = s7_01 ^ s0_01 ^ s1_123;
323
0
    s->slice[2] = s1_01 ^ s2_123;
324
0
    s->slice[3] = s7_01 ^ s2_01 ^ s3_123;
325
0
    s->slice[4] = s7_01 ^ s3_01 ^ s4_123;
326
0
    s->slice[5] = s4_01 ^ s5_123;
327
0
    s->slice[6] = s5_01 ^ s6_123;
328
0
    s->slice[7] = s6_01 ^ s7_123;
329
0
    if (inv) {
330
        /* In the reverse direction, we further need to multiply by
331
         * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}.
332
         *
333
         * First compute (x^2 + {01}) * s into the t?_02 variables: */
334
0
        uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2);
335
0
        uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2);
336
0
        uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2);
337
0
        uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2);
338
0
        uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2);
339
0
        uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2);
340
0
        uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2);
341
0
        uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2);
342
        /* And then update s += {04} * t?_02 */
343
0
        s->slice[0] ^= t6_02;
344
0
        s->slice[1] ^= t6_02 ^ t7_02;
345
0
        s->slice[2] ^= t0_02 ^ t7_02;
346
0
        s->slice[3] ^= t1_02 ^ t6_02;
347
0
        s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02;
348
0
        s->slice[5] ^= t3_02 ^ t7_02;
349
0
        s->slice[6] ^= t4_02;
350
0
        s->slice[7] ^= t5_02;
351
0
    }
352
0
}
353
354
0
static void AddRoundKey(AES_state* s, const AES_state* round) {
355
0
    int b;
356
0
    for (b = 0; b < 8; b++) {
357
0
        s->slice[b] ^= round->slice[b];
358
0
    }
359
0
}
360
361
/** column_0(s) = column_c(a) */
362
0
static void GetOneColumn(AES_state* s, const AES_state* a, int c) {
363
0
    int b;
364
0
    for (b = 0; b < 8; b++) {
365
0
        s->slice[b] = (a->slice[b] >> c) & 0x1111;
366
0
    }
367
0
}
368
369
/** column_c1(r) |= (column_0(s) ^= column_c2(a)) */
370
0
static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) {
371
0
    int b;
372
0
    for (b = 0; b < 8; b++) {
373
0
        r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1;
374
0
    }
375
0
}
376
377
/** Rotate the rows in s one position upwards, and xor in r */
378
0
static void KeySetupTransform(AES_state* s, const AES_state* r) {
379
0
    int b;
380
0
    for (b = 0; b < 8; b++) {
381
0
        s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b];
382
0
    }
383
0
}
384
385
/* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */
386
0
static void MultX(AES_state* s) {
387
0
    uint16_t top = s->slice[7];
388
0
    s->slice[7] = s->slice[6];
389
0
    s->slice[6] = s->slice[5];
390
0
    s->slice[5] = s->slice[4];
391
0
    s->slice[4] = s->slice[3] ^ top;
392
0
    s->slice[3] = s->slice[2] ^ top;
393
0
    s->slice[2] = s->slice[1];
394
0
    s->slice[1] = s->slice[0] ^ top;
395
0
    s->slice[0] = top;
396
0
}
397
398
/** Expand the cipher key into the key schedule.
399
 *
400
 *  state must be a pointer to an array of size nrounds + 1.
401
 *  key must be a pointer to 4 * nkeywords bytes.
402
 *
403
 *  AES128 uses nkeywords = 4, nrounds = 10
404
 *  AES192 uses nkeywords = 6, nrounds = 12
405
 *  AES256 uses nkeywords = 8, nrounds = 14
406
 */
407
static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds)
408
0
{
409
0
    int i;
410
411
    /* The one-byte round constant */
412
0
    AES_state rcon = {{1,0,0,0,0,0,0,0}};
413
    /* The number of the word being generated, modulo nkeywords */
414
0
    int pos = 0;
415
    /* The column representing the word currently being processed */
416
0
    AES_state column;
417
418
0
    for (i = 0; i < nrounds + 1; i++) {
419
0
        int b;
420
0
        for (b = 0; b < 8; b++) {
421
0
            rounds[i].slice[b] = 0;
422
0
        }
423
0
    }
424
425
    /* The first nkeywords round columns are just taken from the key directly. */
426
0
    for (i = 0; i < nkeywords; i++) {
427
0
        int r;
428
0
        for (r = 0; r < 4; r++) {
429
0
            LoadByte(&rounds[i >> 2], *(key++), r, i & 3);
430
0
        }
431
0
    }
432
433
0
    GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3);
434
435
0
    for (i = nkeywords; i < 4 * (nrounds + 1); i++) {
436
        /* Transform column */
437
0
        if (pos == 0) {
438
0
            SubBytes(&column, 0);
439
0
            KeySetupTransform(&column, &rcon);
440
0
            MultX(&rcon);
441
0
        } else if (nkeywords > 6 && pos == 4) {
442
0
            SubBytes(&column, 0);
443
0
        }
444
0
        if (++pos == nkeywords) pos = 0;
445
0
        KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3);
446
0
    }
447
0
}
448
449
0
static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) {
450
0
    AES_state s = {{0}};
451
0
    int round;
452
453
0
    LoadBytes(&s, plain16);
454
0
    AddRoundKey(&s, rounds++);
455
456
0
    for (round = 1; round < nrounds; round++) {
457
0
        SubBytes(&s, 0);
458
0
        ShiftRows(&s);
459
0
        MixColumns(&s, 0);
460
0
        AddRoundKey(&s, rounds++);
461
0
    }
462
463
0
    SubBytes(&s, 0);
464
0
    ShiftRows(&s);
465
0
    AddRoundKey(&s, rounds);
466
467
0
    SaveBytes(cipher16, &s);
468
0
}
469
470
0
static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) {
471
    /* Most AES decryption implementations use the alternate scheme
472
     * (the Equivalent Inverse Cipher), which allows for more code reuse between
473
     * the encryption and decryption code, but requires separate setup for both.
474
     */
475
0
    AES_state s = {{0}};
476
0
    int round;
477
478
0
    rounds += nrounds;
479
480
0
    LoadBytes(&s, cipher16);
481
0
    AddRoundKey(&s, rounds--);
482
483
0
    for (round = 1; round < nrounds; round++) {
484
0
        InvShiftRows(&s);
485
0
        SubBytes(&s, 1);
486
0
        AddRoundKey(&s, rounds--);
487
0
        MixColumns(&s, 1);
488
0
    }
489
490
0
    InvShiftRows(&s);
491
0
    SubBytes(&s, 1);
492
0
    AddRoundKey(&s, rounds);
493
494
0
    SaveBytes(plain16, &s);
495
0
}
496
497
0
void AES128_init(AES128_ctx* ctx, const unsigned char* key16) {
498
0
    AES_setup(ctx->rk, key16, 4, 10);
499
0
}
500
501
0
void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
502
0
    while (blocks--) {
503
0
        AES_encrypt(ctx->rk, 10, cipher16, plain16);
504
0
        cipher16 += 16;
505
0
        plain16 += 16;
506
0
    }
507
0
}
508
509
0
void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
510
0
    while (blocks--) {
511
0
        AES_decrypt(ctx->rk, 10, plain16, cipher16);
512
0
        cipher16 += 16;
513
0
        plain16 += 16;
514
0
    }
515
0
}
516
517
0
void AES192_init(AES192_ctx* ctx, const unsigned char* key24) {
518
0
    AES_setup(ctx->rk, key24, 6, 12);
519
0
}
520
521
0
void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
522
0
    while (blocks--) {
523
0
        AES_encrypt(ctx->rk, 12, cipher16, plain16);
524
0
        cipher16 += 16;
525
0
        plain16 += 16;
526
0
    }
527
528
0
}
529
530
0
void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
531
0
    while (blocks--) {
532
0
        AES_decrypt(ctx->rk, 12, plain16, cipher16);
533
0
        cipher16 += 16;
534
0
        plain16 += 16;
535
0
    }
536
0
}
537
538
0
void AES256_init(AES256_ctx* ctx, const unsigned char* key32) {
539
0
    AES_setup(ctx->rk, key32, 8, 14);
540
0
}
541
542
0
void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
543
0
    while (blocks--) {
544
0
        AES_encrypt(ctx->rk, 14, cipher16, plain16);
545
0
        cipher16 += 16;
546
0
        plain16 += 16;
547
0
    }
548
0
}
549
550
0
void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
551
0
    while (blocks--) {
552
0
        AES_decrypt(ctx->rk, 14, plain16, cipher16);
553
0
        cipher16 += 16;
554
0
        plain16 += 16;
555
0
    }
556
0
}