Coverage Report

Created: 2024-09-19 18:47

/root/bitcoin/src/cluster_linearize.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#ifndef BITCOIN_CLUSTER_LINEARIZE_H
6
#define BITCOIN_CLUSTER_LINEARIZE_H
7
8
#include <algorithm>
9
#include <numeric>
10
#include <optional>
11
#include <stdint.h>
12
#include <vector>
13
#include <utility>
14
15
#include <random.h>
16
#include <span.h>
17
#include <util/feefrac.h>
18
#include <util/vecdeque.h>
19
20
namespace cluster_linearize {
21
22
/** Data type to represent cluster input.
23
 *
24
 * cluster[i].first is tx_i's fee and size.
25
 * cluster[i].second[j] is true iff tx_i spends one or more of tx_j's outputs.
26
 */
27
template<typename SetType>
28
using Cluster = std::vector<std::pair<FeeFrac, SetType>>;
29
30
/** Data type to represent transaction indices in clusters. */
31
using ClusterIndex = uint32_t;
32
33
/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
34
 *  descendants). */
35
template<typename SetType>
36
class DepGraph
37
{
38
    /** Information about a single transaction. */
39
    struct Entry
40
    {
41
        /** Fee and size of transaction itself. */
42
        FeeFrac feerate;
43
        /** All ancestors of the transaction (including itself). */
44
        SetType ancestors;
45
        /** All descendants of the transaction (including itself). */
46
        SetType descendants;
47
48
        /** Equality operator (primarily for for testing purposes). */
49
0
        friend bool operator==(const Entry&, const Entry&) noexcept = default;
50
51
        /** Construct an empty entry. */
52
0
        Entry() noexcept = default;
53
        /** Construct an entry with a given feerate, ancestor set, descendant set. */
54
0
        Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
55
    };
56
57
    /** Data for each transaction, in the same order as the Cluster it was constructed from. */
58
    std::vector<Entry> entries;
59
60
public:
61
    /** Equality operator (primarily for testing purposes). */
62
0
    friend bool operator==(const DepGraph&, const DepGraph&) noexcept = default;
63
64
    // Default constructors.
65
0
    DepGraph() noexcept = default;
66
    DepGraph(const DepGraph&) noexcept = default;
67
    DepGraph(DepGraph&&) noexcept = default;
68
    DepGraph& operator=(const DepGraph&) noexcept = default;
69
0
    DepGraph& operator=(DepGraph&&) noexcept = default;
70
71
    /** Construct a DepGraph object for ntx transactions, with no dependencies.
72
     *
73
     * Complexity: O(N) where N=ntx.
74
     **/
75
    explicit DepGraph(ClusterIndex ntx) noexcept
76
    {
77
        Assume(ntx <= SetType::Size());
78
        entries.resize(ntx);
79
        for (ClusterIndex i = 0; i < ntx; ++i) {
80
            entries[i].ancestors = SetType::Singleton(i);
81
            entries[i].descendants = SetType::Singleton(i);
82
        }
83
    }
84
85
    /** Construct a DepGraph object given a cluster.
86
     *
87
     * Complexity: O(N^2) where N=cluster.size().
88
     */
89
0
    explicit DepGraph(const Cluster<SetType>& cluster) noexcept : entries(cluster.size())
90
0
    {
91
0
        for (ClusterIndex i = 0; i < cluster.size(); ++i) {
92
            // Fill in fee and size.
93
0
            entries[i].feerate = cluster[i].first;
94
            // Fill in direct parents as ancestors.
95
0
            entries[i].ancestors = cluster[i].second;
96
            // Make sure transactions are ancestors of themselves.
97
0
            entries[i].ancestors.Set(i);
98
0
        }
99
100
        // Propagate ancestor information.
101
0
        for (ClusterIndex i = 0; i < entries.size(); ++i) {
102
            // At this point, entries[a].ancestors[b] is true iff b is an ancestor of a and there
103
            // is a path from a to b through the subgraph consisting of {a, b} union
104
            // {0, 1, ..., (i-1)}.
105
0
            SetType to_merge = entries[i].ancestors;
106
0
            for (ClusterIndex j = 0; j < entries.size(); ++j) {
107
0
                if (entries[j].ancestors[i]) {
108
0
                    entries[j].ancestors |= to_merge;
109
0
                }
110
0
            }
111
0
        }
112
113
        // Fill in descendant information by transposing the ancestor information.
114
0
        for (ClusterIndex i = 0; i < entries.size(); ++i) {
115
0
            for (auto j : entries[i].ancestors) {
116
0
                entries[j].descendants.Set(i);
117
0
            }
118
0
        }
119
0
    }
120
121
    /** Construct a DepGraph object given another DepGraph and a mapping from old to new.
122
     *
123
     * Complexity: O(N^2) where N=depgraph.TxCount().
124
     */
125
0
    DepGraph(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> mapping) noexcept : entries(depgraph.TxCount())
126
0
    {
127
0
        Assert(mapping.size() == depgraph.TxCount());
128
        // Fill in fee, size, ancestors.
129
0
        for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
130
0
            const auto& input = depgraph.entries[i];
131
0
            auto& output = entries[mapping[i]];
132
0
            output.feerate = input.feerate;
133
0
            for (auto j : input.ancestors) output.ancestors.Set(mapping[j]);
134
0
        }
135
        // Fill in descendant information.
136
0
        for (ClusterIndex i = 0; i < entries.size(); ++i) {
137
0
            for (auto j : entries[i].ancestors) {
138
0
                entries[j].descendants.Set(i);
139
0
            }
140
0
        }
141
0
    }
142
143
    /** Get the number of transactions in the graph. Complexity: O(1). */
144
0
    auto TxCount() const noexcept { return entries.size(); }
145
    /** Get the feerate of a given transaction i. Complexity: O(1). */
146
0
    const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
147
    /** Get the mutable feerate of a given transaction i. Complexity: O(1). */
148
0
    FeeFrac& FeeRate(ClusterIndex i) noexcept { return entries[i].feerate; }
149
    /** Get the ancestors of a given transaction i. Complexity: O(1). */
150
0
    const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
151
    /** Get the descendants of a given transaction i. Complexity: O(1). */
152
0
    const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
153
154
    /** Add a new unconnected transaction to this transaction graph (at the end), and return its
155
     *  ClusterIndex.
156
     *
157
     * Complexity: O(1) (amortized, due to resizing of backing vector).
158
     */
159
    ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
160
0
    {
161
0
        Assume(TxCount() < SetType::Size());
162
0
        ClusterIndex new_idx = TxCount();
163
0
        entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
164
0
        return new_idx;
165
0
    }
166
167
    /** Modify this transaction graph, adding a dependency between a specified parent and child.
168
     *
169
     * Complexity: O(N) where N=TxCount().
170
     **/
171
    void AddDependency(ClusterIndex parent, ClusterIndex child) noexcept
172
0
    {
173
        // Bail out if dependency is already implied.
174
0
        if (entries[child].ancestors[parent]) return;
175
        // To each ancestor of the parent, add as descendants the descendants of the child.
176
0
        const auto& chl_des = entries[child].descendants;
177
0
        for (auto anc_of_par : Ancestors(parent)) {
178
0
            entries[anc_of_par].descendants |= chl_des;
179
0
        }
180
        // To each descendant of the child, add as ancestors the ancestors of the parent.
181
0
        const auto& par_anc = entries[parent].ancestors;
182
0
        for (auto dec_of_chl : Descendants(child)) {
183
0
            entries[dec_of_chl].ancestors |= par_anc;
184
0
        }
185
0
    }
186
187
    /** Compute the aggregate feerate of a set of nodes in this graph.
188
     *
189
     * Complexity: O(N) where N=elems.Count().
190
     **/
191
    FeeFrac FeeRate(const SetType& elems) const noexcept
192
0
    {
193
0
        FeeFrac ret;
194
0
        for (auto pos : elems) ret += entries[pos].feerate;
195
0
        return ret;
196
0
    }
197
198
    /** Find some connected component within the subset "todo" of this graph.
199
     *
200
     * Specifically, this finds the connected component which contains the first transaction of
201
     * todo (if any).
202
     *
203
     * Two transactions are considered connected if they are both in `todo`, and one is an ancestor
204
     * of the other in the entire graph (so not just within `todo`), or transitively there is a
205
     * path of transactions connecting them. This does mean that if `todo` contains a transaction
206
     * and a grandparent, but misses the parent, they will still be part of the same component.
207
     *
208
     * Complexity: O(ret.Count()).
209
     */
210
    SetType FindConnectedComponent(const SetType& todo) const noexcept
211
0
    {
212
0
        if (todo.None()) return todo;
213
0
        auto to_add = SetType::Singleton(todo.First());
214
0
        SetType ret;
215
0
        do {
216
0
            SetType old = ret;
217
0
            for (auto add : to_add) {
218
0
                ret |= Descendants(add);
219
0
                ret |= Ancestors(add);
220
0
            }
221
0
            ret &= todo;
222
0
            to_add = ret - old;
223
0
        } while (to_add.Any());
224
0
        return ret;
225
0
    }
226
227
    /** Determine if a subset is connected.
228
     *
229
     * Complexity: O(subset.Count()).
230
     */
231
    bool IsConnected(const SetType& subset) const noexcept
232
0
    {
233
0
        return FindConnectedComponent(subset) == subset;
234
0
    }
235
236
    /** Determine if this entire graph is connected.
237
     *
238
     * Complexity: O(TxCount()).
239
     */
240
0
    bool IsConnected() const noexcept { return IsConnected(SetType::Fill(TxCount())); }
241
242
    /** Append the entries of select to list in a topologically valid order.
243
     *
244
     * Complexity: O(select.Count() * log(select.Count())).
245
     */
246
    void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
247
0
    {
248
0
        ClusterIndex old_len = list.size();
249
0
        for (auto i : select) list.push_back(i);
250
0
        std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
251
0
            const auto a_anc_count = entries[a].ancestors.Count();
252
0
            const auto b_anc_count = entries[b].ancestors.Count();
253
0
            if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
254
0
            return a < b;
255
0
        });
256
0
    }
257
};
258
259
/** A set of transactions together with their aggregate feerate. */
260
template<typename SetType>
261
struct SetInfo
262
{
263
    /** The transactions in the set. */
264
    SetType transactions;
265
    /** Their combined fee and size. */
266
    FeeFrac feerate;
267
268
    /** Construct a SetInfo for the empty set. */
269
0
    SetInfo() noexcept = default;
270
271
    /** Construct a SetInfo for a specified set and feerate. */
272
0
    SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
273
274
    /** Construct a SetInfo for a given transaction in a depgraph. */
275
    explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
276
0
        transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
277
278
    /** Construct a SetInfo for a set of transactions in a depgraph. */
279
    explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
280
0
        transactions(txn), feerate(depgraph.FeeRate(txn)) {}
281
282
    /** Add a transaction to this SetInfo (which must not yet be in it). */
283
    void Set(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept
284
0
    {
285
0
        Assume(!transactions[pos]);
286
0
        transactions.Set(pos);
287
0
        feerate += depgraph.FeeRate(pos);
288
0
    }
289
290
    /** Add the transactions of other to this SetInfo (no overlap allowed). */
291
    SetInfo& operator|=(const SetInfo& other) noexcept
292
0
    {
293
0
        Assume(!transactions.Overlaps(other.transactions));
294
0
        transactions |= other.transactions;
295
0
        feerate += other.feerate;
296
0
        return *this;
297
0
    }
298
299
    /** Construct a new SetInfo equal to this, with more transactions added (which may overlap
300
     *  with the existing transactions in the SetInfo). */
301
    [[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
302
0
    {
303
0
        return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
304
0
    }
305
306
    /** Swap two SetInfo objects. */
307
    friend void swap(SetInfo& a, SetInfo& b) noexcept
308
0
    {
309
0
        swap(a.transactions, b.transactions);
310
0
        swap(a.feerate, b.feerate);
311
0
    }
312
313
    /** Permit equality testing. */
314
0
    friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
315
};
316
317
/** Compute the feerates of the chunks of linearization. */
318
template<typename SetType>
319
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
320
0
{
321
0
    std::vector<FeeFrac> ret;
322
0
    for (ClusterIndex i : linearization) {
323
        /** The new chunk to be added, initially a singleton. */
324
0
        auto new_chunk = depgraph.FeeRate(i);
325
        // As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
326
0
        while (!ret.empty() && new_chunk >> ret.back()) {
327
0
            new_chunk += ret.back();
328
0
            ret.pop_back();
329
0
        }
330
        // Actually move that new chunk into the chunking.
331
0
        ret.push_back(std::move(new_chunk));
332
0
    }
333
0
    return ret;
334
0
}
335
336
/** Data structure encapsulating the chunking of a linearization, permitting removal of subsets. */
337
template<typename SetType>
338
class LinearizationChunking
339
{
340
    /** The depgraph this linearization is for. */
341
    const DepGraph<SetType>& m_depgraph;
342
343
    /** The linearization we started from, possibly with removed prefix stripped. */
344
    Span<const ClusterIndex> m_linearization;
345
346
    /** Chunk sets and their feerates, of what remains of the linearization. */
347
    std::vector<SetInfo<SetType>> m_chunks;
348
349
    /** How large a prefix of m_chunks corresponds to removed transactions. */
350
    ClusterIndex m_chunks_skip{0};
351
352
    /** Which transactions remain in the linearization. */
353
    SetType m_todo;
354
355
    /** Fill the m_chunks variable, and remove the done prefix of m_linearization. */
356
    void BuildChunks() noexcept
357
0
    {
358
        // Caller must clear m_chunks.
359
0
        Assume(m_chunks.empty());
360
361
        // Chop off the initial part of m_linearization that is already done.
362
0
        while (!m_linearization.empty() && !m_todo[m_linearization.front()]) {
363
0
            m_linearization = m_linearization.subspan(1);
364
0
        }
365
366
        // Iterate over the remaining entries in m_linearization. This is effectively the same
367
        // algorithm as ChunkLinearization, but supports skipping parts of the linearization and
368
        // keeps track of the sets themselves instead of just their feerates.
369
0
        for (auto idx : m_linearization) {
370
0
            if (!m_todo[idx]) continue;
371
            // Start with an initial chunk containing just element idx.
372
0
            SetInfo add(m_depgraph, idx);
373
            // Absorb existing final chunks into add while they have lower feerate.
374
0
            while (!m_chunks.empty() && add.feerate >> m_chunks.back().feerate) {
375
0
                add |= m_chunks.back();
376
0
                m_chunks.pop_back();
377
0
            }
378
            // Remember new chunk.
379
0
            m_chunks.push_back(std::move(add));
380
0
        }
381
0
    }
382
383
public:
384
    /** Initialize a LinearizationSubset object for a given length of linearization. */
385
    explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
386
0
        m_depgraph(depgraph), m_linearization(lin)
387
0
    {
388
        // Mark everything in lin as todo still.
389
0
        for (auto i : m_linearization) m_todo.Set(i);
390
        // Compute the initial chunking.
391
0
        m_chunks.reserve(depgraph.TxCount());
392
0
        BuildChunks();
393
0
    }
394
395
    /** Determine how many chunks remain in the linearization. */
396
0
    ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
397
398
    /** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
399
    const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
400
0
    {
401
0
        Assume(n + m_chunks_skip < m_chunks.size());
402
0
        return m_chunks[n + m_chunks_skip];
403
0
    }
404
405
    /** Remove some subset of transactions from the linearization. */
406
    void MarkDone(SetType subset) noexcept
407
0
    {
408
0
        Assume(subset.Any());
409
0
        Assume(subset.IsSubsetOf(m_todo));
410
0
        m_todo -= subset;
411
0
        if (GetChunk(0).transactions == subset) {
412
            // If the newly done transactions exactly match the first chunk of the remainder of
413
            // the linearization, we do not need to rechunk; just remember to skip one
414
            // additional chunk.
415
0
            ++m_chunks_skip;
416
            // With subset marked done, some prefix of m_linearization will be done now. How long
417
            // that prefix is depends on how many done elements were interspersed with subset,
418
            // but at least as many transactions as there are in subset.
419
0
            m_linearization = m_linearization.subspan(subset.Count());
420
0
        } else {
421
            // Otherwise rechunk what remains of m_linearization.
422
0
            m_chunks.clear();
423
0
            m_chunks_skip = 0;
424
0
            BuildChunks();
425
0
        }
426
0
    }
427
428
    /** Find the shortest intersection between subset and the prefixes of remaining chunks
429
     *  of the linearization that has a feerate not below subset's.
430
     *
431
     * This is a crucial operation in guaranteeing improvements to linearizations. If subset has
432
     * a feerate not below GetChunk(0)'s, then moving IntersectPrefixes(subset) to the front of
433
     * (what remains of) the linearization is guaranteed not to make it worse at any point.
434
     *
435
     * See https://delvingbitcoin.org/t/introduction-to-cluster-linearization/1032 for background.
436
     */
437
    SetInfo<SetType> IntersectPrefixes(const SetInfo<SetType>& subset) const noexcept
438
0
    {
439
0
        Assume(subset.transactions.IsSubsetOf(m_todo));
440
0
        SetInfo<SetType> accumulator;
441
        // Iterate over all chunks of the remaining linearization.
442
0
        for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
443
            // Find what (if any) intersection the chunk has with subset.
444
0
            const SetType to_add = GetChunk(i).transactions & subset.transactions;
445
0
            if (to_add.Any()) {
446
                // If adding that to accumulator makes us hit all of subset, we are done as no
447
                // shorter intersection with higher/equal feerate exists.
448
0
                accumulator.transactions |= to_add;
449
0
                if (accumulator.transactions == subset.transactions) break;
450
                // Otherwise update the accumulator feerate.
451
0
                accumulator.feerate += m_depgraph.FeeRate(to_add);
452
                // If that does result in something better, or something with the same feerate but
453
                // smaller, return that. Even if a longer, higher-feerate intersection exists, it
454
                // does not hurt to return the shorter one (the remainder of the longer intersection
455
                // will generally be found in the next call to Intersect, but even if not, it is not
456
                // required for the improvement guarantee this function makes).
457
0
                if (!(accumulator.feerate << subset.feerate)) return accumulator;
458
0
            }
459
0
        }
460
0
        return subset;
461
0
    }
462
};
463
464
/** Class encapsulating the state needed to find the best remaining ancestor set.
465
 *
466
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
467
 * MarkDone.
468
 *
469
 * As long as any part of the graph remains, FindCandidateSet() can be called which will return a
470
 * SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
471
 * transaction together with all its remaining ancestors).
472
 */
473
template<typename SetType>
474
class AncestorCandidateFinder
475
{
476
    /** Internal dependency graph. */
477
    const DepGraph<SetType>& m_depgraph;
478
    /** Which transaction are left to include. */
479
    SetType m_todo;
480
    /** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
481
    std::vector<FeeFrac> m_ancestor_set_feerates;
482
483
public:
484
    /** Construct an AncestorCandidateFinder for a given cluster.
485
     *
486
     * Complexity: O(N^2) where N=depgraph.TxCount().
487
     */
488
    AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
489
0
        m_depgraph(depgraph),
490
0
        m_todo{SetType::Fill(depgraph.TxCount())},
491
0
        m_ancestor_set_feerates(depgraph.TxCount())
492
0
    {
493
        // Precompute ancestor-set feerates.
494
0
        for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
495
            /** The remaining ancestors for transaction i. */
496
0
            SetType anc_to_add = m_depgraph.Ancestors(i);
497
0
            FeeFrac anc_feerate;
498
            // Reuse accumulated feerate from first ancestor, if usable.
499
0
            Assume(anc_to_add.Any());
500
0
            ClusterIndex first = anc_to_add.First();
501
0
            if (first < i) {
502
0
                anc_feerate = m_ancestor_set_feerates[first];
503
0
                Assume(!anc_feerate.IsEmpty());
504
0
                anc_to_add -= m_depgraph.Ancestors(first);
505
0
            }
506
            // Add in other ancestors (which necessarily include i itself).
507
0
            Assume(anc_to_add[i]);
508
0
            anc_feerate += m_depgraph.FeeRate(anc_to_add);
509
            // Store the result.
510
0
            m_ancestor_set_feerates[i] = anc_feerate;
511
0
        }
512
0
    }
513
514
    /** Remove a set of transactions from the set of to-be-linearized ones.
515
     *
516
     * The same transaction may not be MarkDone()'d twice.
517
     *
518
     * Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
519
     */
520
    void MarkDone(SetType select) noexcept
521
0
    {
522
0
        Assume(select.Any());
523
0
        Assume(select.IsSubsetOf(m_todo));
524
0
        m_todo -= select;
525
0
        for (auto i : select) {
526
0
            auto feerate = m_depgraph.FeeRate(i);
527
0
            for (auto j : m_depgraph.Descendants(i) & m_todo) {
528
0
                m_ancestor_set_feerates[j] -= feerate;
529
0
            }
530
0
        }
531
0
    }
532
533
    /** Check whether any unlinearized transactions remain. */
534
    bool AllDone() const noexcept
535
0
    {
536
0
        return m_todo.None();
537
0
    }
538
539
    /** Count the number of remaining unlinearized transactions. */
540
    ClusterIndex NumRemaining() const noexcept
541
0
    {
542
0
        return m_todo.Count();
543
0
    }
544
545
    /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
546
     *  among the remaining transactions. Requires !AllDone().
547
     *
548
     * Complexity: O(N) where N=depgraph.TxCount();
549
     */
550
    SetInfo<SetType> FindCandidateSet() const noexcept
551
0
    {
552
0
        Assume(!AllDone());
553
0
        std::optional<ClusterIndex> best;
554
0
        for (auto i : m_todo) {
555
0
            if (best.has_value()) {
556
0
                Assume(!m_ancestor_set_feerates[i].IsEmpty());
557
0
                if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
558
0
            }
559
0
            best = i;
560
0
        }
561
0
        Assume(best.has_value());
562
0
        return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
563
0
    }
564
};
565
566
/** Class encapsulating the state needed to perform search for good candidate sets.
567
 *
568
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
569
 * MarkDone().
570
 *
571
 * As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
572
 * over the set of topologically-valid subsets of that remainder, with a limit on how many
573
 * combinations are tried.
574
 */
575
template<typename SetType>
576
class SearchCandidateFinder
577
{
578
    /** Internal RNG. */
579
    InsecureRandomContext m_rng;
580
    /** m_sorted_to_original[i] is the original position that sorted transaction position i had. */
581
    std::vector<ClusterIndex> m_sorted_to_original;
582
    /** m_original_to_sorted[i] is the sorted position original transaction position i has. */
583
    std::vector<ClusterIndex> m_original_to_sorted;
584
    /** Internal dependency graph for the cluster (with transactions in decreasing individual
585
     *  feerate order). */
586
    DepGraph<SetType> m_sorted_depgraph;
587
    /** Which transactions are left to do (indices in m_sorted_depgraph's order). */
588
    SetType m_todo;
589
590
    /** Given a set of transactions with sorted indices, get their original indices. */
591
    SetType SortedToOriginal(const SetType& arg) const noexcept
592
0
    {
593
0
        SetType ret;
594
0
        for (auto pos : arg) ret.Set(m_sorted_to_original[pos]);
595
0
        return ret;
596
0
    }
597
598
    /** Given a set of transactions with original indices, get their sorted indices. */
599
    SetType OriginalToSorted(const SetType& arg) const noexcept
600
0
    {
601
0
        SetType ret;
602
0
        for (auto pos : arg) ret.Set(m_original_to_sorted[pos]);
603
0
        return ret;
604
0
    }
605
606
public:
607
    /** Construct a candidate finder for a graph.
608
     *
609
     * @param[in] depgraph   Dependency graph for the to-be-linearized cluster.
610
     * @param[in] rng_seed   A random seed to control the search order.
611
     *
612
     * Complexity: O(N^2) where N=depgraph.Count().
613
     */
614
    SearchCandidateFinder(const DepGraph<SetType>& depgraph, uint64_t rng_seed) noexcept :
615
0
        m_rng(rng_seed),
616
0
        m_sorted_to_original(depgraph.TxCount()),
617
0
        m_original_to_sorted(depgraph.TxCount()),
618
0
        m_todo(SetType::Fill(depgraph.TxCount()))
619
0
    {
620
        // Determine reordering mapping, by sorting by decreasing feerate.
621
0
        std::iota(m_sorted_to_original.begin(), m_sorted_to_original.end(), ClusterIndex{0});
622
0
        std::sort(m_sorted_to_original.begin(), m_sorted_to_original.end(), [&](auto a, auto b) {
623
0
            auto feerate_cmp = depgraph.FeeRate(a) <=> depgraph.FeeRate(b);
624
0
            if (feerate_cmp == 0) return a < b;
625
0
            return feerate_cmp > 0;
626
0
        });
627
        // Compute reverse mapping.
628
0
        for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
629
0
            m_original_to_sorted[m_sorted_to_original[i]] = i;
630
0
        }
631
        // Compute reordered dependency graph.
632
0
        m_sorted_depgraph = DepGraph(depgraph, m_original_to_sorted);
633
0
    }
634
635
    /** Check whether any unlinearized transactions remain. */
636
    bool AllDone() const noexcept
637
0
    {
638
0
        return m_todo.None();
639
0
    }
640
641
    /** Find a high-feerate topologically-valid subset of what remains of the cluster.
642
     *  Requires !AllDone().
643
     *
644
     * @param[in] max_iterations  The maximum number of optimization steps that will be performed.
645
     * @param[in] best            A set/feerate pair with an already-known good candidate. This may
646
     *                            be empty.
647
     * @return                    A pair of:
648
     *                            - The best (highest feerate, smallest size as tiebreaker)
649
     *                              topologically valid subset (and its feerate) that was
650
     *                              encountered during search. It will be at least as good as the
651
     *                              best passed in (if not empty).
652
     *                            - The number of optimization steps that were performed. This will
653
     *                              be <= max_iterations. If strictly < max_iterations, the
654
     *                              returned subset is optimal.
655
     *
656
     * Complexity: possibly O(N * min(max_iterations, sqrt(2^N))) where N=depgraph.TxCount().
657
     */
658
    std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
659
0
    {
660
0
        Assume(!AllDone());
661
662
        // Convert the provided best to internal sorted indices.
663
0
        best.transactions = OriginalToSorted(best.transactions);
664
665
        /** Type for work queue items. */
666
0
        struct WorkItem
667
0
        {
668
            /** Set of transactions definitely included (and its feerate). This must be a subset
669
             *  of m_todo, and be topologically valid (includes all in-m_todo ancestors of
670
             *  itself). */
671
0
            SetInfo<SetType> inc;
672
            /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
673
             *  with inc. The set (inc | und) must be topologically valid. */
674
0
            SetType und;
675
            /** (Only when inc is not empty) The best feerate of any superset of inc that is also a
676
             *  subset of (inc | und), without requiring it to be topologically valid. It forms a
677
             *  conservative upper bound on how good a set this work item can give rise to.
678
             *  Transactions whose feerate is below best's are ignored when determining this value,
679
             *  which means it may technically be an underestimate, but if so, this work item
680
             *  cannot result in something that beats best anyway. */
681
0
            FeeFrac pot_feerate;
682
683
            /** Construct a new work item. */
684
0
            WorkItem(SetInfo<SetType>&& i, SetType&& u, FeeFrac&& p_f) noexcept :
685
0
                inc(std::move(i)), und(std::move(u)), pot_feerate(std::move(p_f))
686
0
            {
687
0
                Assume(pot_feerate.IsEmpty() == inc.feerate.IsEmpty());
688
0
            }
689
690
            /** Swap two WorkItems. */
691
0
            void Swap(WorkItem& other) noexcept
692
0
            {
693
0
                swap(inc, other.inc);
694
0
                swap(und, other.und);
695
0
                swap(pot_feerate, other.pot_feerate);
696
0
            }
697
0
        };
698
699
        /** The queue of work items. */
700
0
        VecDeque<WorkItem> queue;
701
0
        queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
702
703
        // Create initial entries per connected component of m_todo. While clusters themselves are
704
        // generally connected, this is not necessarily true after some parts have already been
705
        // removed from m_todo. Without this, effort can be wasted on searching "inc" sets that
706
        // span multiple components.
707
0
        auto to_cover = m_todo;
708
0
        do {
709
0
            auto component = m_sorted_depgraph.FindConnectedComponent(to_cover);
710
0
            to_cover -= component;
711
            // If best is not provided, set it to the first component, so that during the work
712
            // processing loop below, and during the add_fn/split_fn calls, we do not need to deal
713
            // with the best=empty case.
714
0
            if (best.feerate.IsEmpty()) best = SetInfo(m_sorted_depgraph, component);
715
0
            queue.emplace_back(/*inc=*/SetInfo<SetType>{},
716
0
                               /*und=*/std::move(component),
717
0
                               /*pot_feerate=*/FeeFrac{});
718
0
        } while (to_cover.Any());
719
720
        /** Local copy of the iteration limit. */
721
0
        uint64_t iterations_left = max_iterations;
722
723
        /** The set of transactions in m_todo which have feerate > best's. */
724
0
        SetType imp = m_todo;
725
0
        while (imp.Any()) {
726
0
            ClusterIndex check = imp.Last();
727
0
            if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
728
0
            imp.Reset(check);
729
0
        }
730
731
        /** Internal function to add an item to the queue of elements to explore if there are any
732
         *  transactions left to split on, possibly improving it before doing so, and to update
733
         *  best/imp.
734
         *
735
         * - inc: the "inc" value for the new work item (must be topological).
736
         * - und: the "und" value for the new work item ((inc | und) must be topological).
737
         */
738
0
        auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
739
            /** SetInfo object with the set whose feerate will become the new work item's
740
             *  pot_feerate. It starts off equal to inc. */
741
0
            auto pot = inc;
742
0
            if (!inc.feerate.IsEmpty()) {
743
                // Add entries to pot. We iterate over all undecided transactions whose feerate is
744
                // higher than best. While undecided transactions of lower feerate may improve pot,
745
                // the resulting pot feerate cannot possibly exceed best's (and this item will be
746
                // skipped in split_fn anyway).
747
0
                for (auto pos : imp & und) {
748
                    // Determine if adding transaction pos to pot (ignoring topology) would improve
749
                    // it. If not, we're done updating pot. This relies on the fact that
750
                    // m_sorted_depgraph, and thus the transactions iterated over, are in decreasing
751
                    // individual feerate order.
752
0
                    if (!(m_sorted_depgraph.FeeRate(pos) >> pot.feerate)) break;
753
0
                    pot.Set(m_sorted_depgraph, pos);
754
0
                }
755
756
                // The "jump ahead" optimization: whenever pot has a topologically-valid subset,
757
                // that subset can be added to inc. Any subset of (pot - inc) has the property that
758
                // its feerate exceeds that of any set compatible with this work item (superset of
759
                // inc, subset of (inc | und)). Thus, if T is a topological subset of pot, and B is
760
                // the best topologically-valid set compatible with this work item, and (T - B) is
761
                // non-empty, then (T | B) is better than B and also topological. This is in
762
                // contradiction with the assumption that B is best. Thus, (T - B) must be empty,
763
                // or T must be a subset of B.
764
                //
765
                // See https://delvingbitcoin.org/t/how-to-linearize-your-cluster/303 section 2.4.
766
0
                const auto init_inc = inc.transactions;
767
0
                for (auto pos : pot.transactions - inc.transactions) {
768
                    // If the transaction's ancestors are a subset of pot, we can add it together
769
                    // with its ancestors to inc. Just update the transactions here; the feerate
770
                    // update happens below.
771
0
                    auto anc_todo = m_sorted_depgraph.Ancestors(pos) & m_todo;
772
0
                    if (anc_todo.IsSubsetOf(pot.transactions)) inc.transactions |= anc_todo;
773
0
                }
774
                // Finally update und and inc's feerate to account for the added transactions.
775
0
                und -= inc.transactions;
776
0
                inc.feerate += m_sorted_depgraph.FeeRate(inc.transactions - init_inc);
777
778
                // If inc's feerate is better than best's, remember it as our new best.
779
0
                if (inc.feerate > best.feerate) {
780
0
                    best = inc;
781
                    // See if we can remove any entries from imp now.
782
0
                    while (imp.Any()) {
783
0
                        ClusterIndex check = imp.Last();
784
0
                        if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
785
0
                        imp.Reset(check);
786
0
                    }
787
0
                }
788
789
                // If no potential transactions exist beyond the already included ones, no
790
                // improvement is possible anymore.
791
0
                if (pot.feerate.size == inc.feerate.size) return;
792
                // At this point und must be non-empty. If it were empty then pot would equal inc.
793
0
                Assume(und.Any());
794
0
            } else {
795
0
                Assume(inc.transactions.None());
796
                // If inc is empty, we just make sure there are undecided transactions left to
797
                // split on.
798
0
                if (und.None()) return;
799
0
            }
800
801
            // Actually construct a new work item on the queue. Due to the switch to DFS when queue
802
            // space runs out (see below), we know that no reallocation of the queue should ever
803
            // occur.
804
0
            Assume(queue.size() < queue.capacity());
805
0
            queue.emplace_back(/*inc=*/std::move(inc),
806
0
                               /*und=*/std::move(und),
807
0
                               /*pot_feerate=*/std::move(pot.feerate));
808
0
        };
809
810
        /** Internal process function. It takes an existing work item, and splits it in two: one
811
         *  with a particular transaction (and its ancestors) included, and one with that
812
         *  transaction (and its descendants) excluded. */
813
0
        auto split_fn = [&](WorkItem&& elem) noexcept {
814
            // Any queue element must have undecided transactions left, otherwise there is nothing
815
            // to explore anymore.
816
0
            Assume(elem.und.Any());
817
            // The included and undecided set are all subsets of m_todo.
818
0
            Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
819
            // Included transactions cannot be undecided.
820
0
            Assume(!elem.inc.transactions.Overlaps(elem.und));
821
            // If pot is empty, then so is inc.
822
0
            Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty());
823
824
0
            const ClusterIndex first = elem.und.First();
825
0
            if (!elem.inc.feerate.IsEmpty()) {
826
                // If no undecided transactions remain with feerate higher than best, this entry
827
                // cannot be improved beyond best.
828
0
                if (!elem.und.Overlaps(imp)) return;
829
                // We can ignore any queue item whose potential feerate isn't better than the best
830
                // seen so far.
831
0
                if (elem.pot_feerate <= best.feerate) return;
832
0
            } else {
833
                // In case inc is empty use a simpler alternative check.
834
0
                if (m_sorted_depgraph.FeeRate(first) <= best.feerate) return;
835
0
            }
836
837
            // Decide which transaction to split on. Splitting is how new work items are added, and
838
            // how progress is made. One split transaction is chosen among the queue item's
839
            // undecided ones, and:
840
            // - A work item is (potentially) added with that transaction plus its remaining
841
            //   descendants excluded (removed from the und set).
842
            // - A work item is (potentially) added with that transaction plus its remaining
843
            //   ancestors included (added to the inc set).
844
            //
845
            // To decide what to split on, consider the undecided ancestors of the highest
846
            // individual feerate undecided transaction. Pick the one which reduces the search space
847
            // most. Let I(t) be the size of the undecided set after including t, and E(t) the size
848
            // of the undecided set after excluding t. Then choose the split transaction t such
849
            // that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t.
850
0
            ClusterIndex split = 0;
851
0
            const auto select = elem.und & m_sorted_depgraph.Ancestors(first);
852
0
            Assume(select.Any());
853
0
            std::optional<std::pair<ClusterIndex, ClusterIndex>> split_counts;
854
0
            for (auto t : select) {
855
                // Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}.
856
                // Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This
857
                // expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second
858
                // factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always
859
                // increase it, even when min decreases. Because of this, we can first sort by max.
860
0
                std::pair<ClusterIndex, ClusterIndex> counts{
861
0
                    (elem.und - m_sorted_depgraph.Ancestors(t)).Count(),
862
0
                    (elem.und - m_sorted_depgraph.Descendants(t)).Count()};
863
0
                if (counts.first < counts.second) std::swap(counts.first, counts.second);
864
                // Remember the t with the lowest counts.
865
0
                if (!split_counts.has_value() || counts < *split_counts) {
866
0
                    split = t;
867
0
                    split_counts = counts;
868
0
                }
869
0
            }
870
            // Since there was at least one transaction in select, we must always find one.
871
0
            Assume(split_counts.has_value());
872
873
            // Add a work item corresponding to exclusion of the split transaction.
874
0
            const auto& desc = m_sorted_depgraph.Descendants(split);
875
0
            add_fn(/*inc=*/elem.inc,
876
0
                   /*und=*/elem.und - desc);
877
878
            // Add a work item corresponding to inclusion of the split transaction.
879
0
            const auto anc = m_sorted_depgraph.Ancestors(split) & m_todo;
880
0
            add_fn(/*inc=*/elem.inc.Add(m_sorted_depgraph, anc),
881
0
                   /*und=*/elem.und - anc);
882
883
            // Account for the performed split.
884
0
            --iterations_left;
885
0
        };
886
887
        // Work processing loop.
888
        //
889
        // New work items are always added at the back of the queue, but items to process use a
890
        // hybrid approach where they can be taken from the front or the back.
891
        //
892
        // Depth-first search (DFS) corresponds to always taking from the back of the queue. This
893
        // is very memory-efficient (linear in the number of transactions). Breadth-first search
894
        // (BFS) corresponds to always taking from the front, which potentially uses more memory
895
        // (up to exponential in the transaction count), but seems to work better in practice.
896
        //
897
        // The approach here combines the two: use BFS (plus random swapping) until the queue grows
898
        // too large, at which point we temporarily switch to DFS until the size shrinks again.
899
0
        while (!queue.empty()) {
900
            // Randomly swap the first two items to randomize the search order.
901
0
            if (queue.size() > 1 && m_rng.randbool()) {
902
0
                queue[0].Swap(queue[1]);
903
0
            }
904
905
            // Processing the first queue item, and then using DFS for everything it gives rise to,
906
            // may increase the queue size by the number of undecided elements in there, minus 1
907
            // for the first queue item being removed. Thus, only when that pushes the queue over
908
            // its capacity can we not process from the front (BFS), and should we use DFS.
909
0
            while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
910
0
                if (!iterations_left) break;
911
0
                auto elem = queue.back();
912
0
                queue.pop_back();
913
0
                split_fn(std::move(elem));
914
0
            }
915
916
            // Process one entry from the front of the queue (BFS exploration)
917
0
            if (!iterations_left) break;
918
0
            auto elem = queue.front();
919
0
            queue.pop_front();
920
0
            split_fn(std::move(elem));
921
0
        }
922
923
        // Return the found best set (converted to the original transaction indices), and the
924
        // number of iterations performed.
925
0
        best.transactions = SortedToOriginal(best.transactions);
926
0
        return {std::move(best), max_iterations - iterations_left};
927
0
    }
928
929
    /** Remove a subset of transactions from the cluster being linearized.
930
     *
931
     * Complexity: O(N) where N=done.Count().
932
     */
933
    void MarkDone(const SetType& done) noexcept
934
0
    {
935
0
        const auto done_sorted = OriginalToSorted(done);
936
0
        Assume(done_sorted.Any());
937
0
        Assume(done_sorted.IsSubsetOf(m_todo));
938
0
        m_todo -= done_sorted;
939
0
    }
940
};
941
942
/** Find or improve a linearization for a cluster.
943
 *
944
 * @param[in] depgraph            Dependency graph of the cluster to be linearized.
945
 * @param[in] max_iterations      Upper bound on the number of optimization steps that will be done.
946
 * @param[in] rng_seed            A random number seed to control search order. This prevents peers
947
 *                                from predicting exactly which clusters would be hard for us to
948
 *                                linearize.
949
 * @param[in] old_linearization   An existing linearization for the cluster (which must be
950
 *                                topologically valid), or empty.
951
 * @return                        A pair of:
952
 *                                - The resulting linearization. It is guaranteed to be at least as
953
 *                                  good (in the feerate diagram sense) as old_linearization.
954
 *                                - A boolean indicating whether the result is guaranteed to be
955
 *                                  optimal.
956
 *
957
 * Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
958
 */
959
template<typename SetType>
960
std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
961
0
{
962
0
    Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
963
0
    if (depgraph.TxCount() == 0) return {{}, true};
964
965
0
    uint64_t iterations_left = max_iterations;
966
0
    std::vector<ClusterIndex> linearization;
967
968
0
    AncestorCandidateFinder anc_finder(depgraph);
969
0
    std::optional<SearchCandidateFinder<SetType>> src_finder;
970
0
    linearization.reserve(depgraph.TxCount());
971
0
    bool optimal = true;
972
973
    // Treat the initialization of SearchCandidateFinder as taking N^2/64 (rounded up) iterations
974
    // (largely due to the cost of constructing the internal sorted-by-feerate DepGraph inside
975
    // SearchCandidateFinder), a rough approximation based on benchmark. If we don't have that
976
    // many, don't start it.
977
0
    uint64_t start_iterations = (uint64_t{depgraph.TxCount()} * depgraph.TxCount() + 63) / 64;
978
0
    if (iterations_left > start_iterations) {
979
0
        iterations_left -= start_iterations;
980
0
        src_finder.emplace(depgraph, rng_seed);
981
0
    }
982
983
    /** Chunking of what remains of the old linearization. */
984
0
    LinearizationChunking old_chunking(depgraph, old_linearization);
985
986
0
    while (true) {
987
        // Find the highest-feerate prefix of the remainder of old_linearization.
988
0
        SetInfo<SetType> best_prefix;
989
0
        if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
990
991
        // Then initialize best to be either the best remaining ancestor set, or the first chunk.
992
0
        auto best = anc_finder.FindCandidateSet();
993
0
        if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
994
995
0
        uint64_t iterations_done_now = 0;
996
0
        uint64_t max_iterations_now = 0;
997
0
        if (src_finder) {
998
            // Treat the invocation of SearchCandidateFinder::FindCandidateSet() as costing N/4
999
            // up-front (rounded up) iterations (largely due to the cost of connected-component
1000
            // splitting), a rough approximation based on benchmarks.
1001
0
            uint64_t base_iterations = (anc_finder.NumRemaining() + 3) / 4;
1002
0
            if (iterations_left > base_iterations) {
1003
                // Invoke bounded search to update best, with up to half of our remaining
1004
                // iterations as limit.
1005
0
                iterations_left -= base_iterations;
1006
0
                max_iterations_now = (iterations_left + 1) / 2;
1007
0
                std::tie(best, iterations_done_now) = src_finder->FindCandidateSet(max_iterations_now, best);
1008
0
                iterations_left -= iterations_done_now;
1009
0
            }
1010
0
        }
1011
1012
0
        if (iterations_done_now == max_iterations_now) {
1013
0
            optimal = false;
1014
            // If the search result is not (guaranteed to be) optimal, run intersections to make
1015
            // sure we don't pick something that makes us unable to reach further diagram points
1016
            // of the old linearization.
1017
0
            if (old_chunking.NumChunksLeft() > 0) {
1018
0
                best = old_chunking.IntersectPrefixes(best);
1019
0
            }
1020
0
        }
1021
1022
        // Add to output in topological order.
1023
0
        depgraph.AppendTopo(linearization, best.transactions);
1024
1025
        // Update state to reflect best is no longer to be linearized.
1026
0
        anc_finder.MarkDone(best.transactions);
1027
0
        if (anc_finder.AllDone()) break;
1028
0
        if (src_finder) src_finder->MarkDone(best.transactions);
1029
0
        if (old_chunking.NumChunksLeft() > 0) {
1030
0
            old_chunking.MarkDone(best.transactions);
1031
0
        }
1032
0
    }
1033
1034
0
    return {std::move(linearization), optimal};
1035
0
}
1036
1037
/** Improve a given linearization.
1038
 *
1039
 * @param[in]     depgraph       Dependency graph of the cluster being linearized.
1040
 * @param[in,out] linearization  On input, an existing linearization for depgraph. On output, a
1041
 *                               potentially better linearization for the same graph.
1042
 *
1043
 * Postlinearization guarantees:
1044
 * - The resulting chunks are connected.
1045
 * - If the input has a tree shape (either all transactions have at most one child, or all
1046
 *   transactions have at most one parent), the result is optimal.
1047
 * - Given a linearization L1 and a leaf transaction T in it. Let L2 be L1 with T moved to the end,
1048
 *   optionally with its fee increased. Let L3 be the postlinearization of L2. L3 will be at least
1049
 *   as good as L1. This means that replacing transactions with same-size higher-fee transactions
1050
 *   will not worsen linearizations through a "drop conflicts, append new transactions,
1051
 *   postlinearize" process.
1052
 */
1053
template<typename SetType>
1054
void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization)
1055
0
{
1056
    // This algorithm performs a number of passes (currently 2); the even ones operate from back to
1057
    // front, the odd ones from front to back. Each results in an equal-or-better linearization
1058
    // than the one started from.
1059
    // - One pass in either direction guarantees that the resulting chunks are connected.
1060
    // - Each direction corresponds to one shape of tree being linearized optimally (forward passes
1061
    //   guarantee this for graphs where each transaction has at most one child; backward passes
1062
    //   guarantee this for graphs where each transaction has at most one parent).
1063
    // - Starting with a backward pass guarantees the moved-tree property.
1064
    //
1065
    // During an odd (forward) pass, the high-level operation is:
1066
    // - Start with an empty list of groups L=[].
1067
    // - For every transaction i in the old linearization, from front to back:
1068
    //   - Append a new group C=[i], containing just i, to the back of L.
1069
    //   - While L has at least one group before C, and the group immediately before C has feerate
1070
    //     lower than C:
1071
    //     - If C depends on P:
1072
    //       - Merge P into C, making C the concatenation of P+C, continuing with the combined C.
1073
    //     - Otherwise:
1074
    //       - Swap P with C, continuing with the now-moved C.
1075
    // - The output linearization is the concatenation of the groups in L.
1076
    //
1077
    // During even (backward) passes, i iterates from the back to the front of the existing
1078
    // linearization, and new groups are prepended instead of appended to the list L. To enable
1079
    // more code reuse, both passes append groups, but during even passes the meanings of
1080
    // parent/child, and of high/low feerate are reversed, and the final concatenation is reversed
1081
    // on output.
1082
    //
1083
    // In the implementation below, the groups are represented by singly-linked lists (pointing
1084
    // from the back to the front), which are themselves organized in a singly-linked circular
1085
    // list (each group pointing to its predecessor, with a special sentinel group at the front
1086
    // that points back to the last group).
1087
    //
1088
    // Information about transaction t is stored in entries[t + 1], while the sentinel is in
1089
    // entries[0].
1090
1091
    /** Index of the sentinel in the entries array below. */
1092
0
    static constexpr ClusterIndex SENTINEL{0};
1093
    /** Indicator that a group has no previous transaction. */
1094
0
    static constexpr ClusterIndex NO_PREV_TX{0};
1095
1096
1097
    /** Data structure per transaction entry. */
1098
0
    struct TxEntry
1099
0
    {
1100
        /** The index of the previous transaction in this group; NO_PREV_TX if this is the first
1101
         *  entry of a group. */
1102
0
        ClusterIndex prev_tx;
1103
1104
        // The fields below are only used for transactions that are the last one in a group
1105
        // (referred to as tail transactions below).
1106
1107
        /** Index of the first transaction in this group, possibly itself. */
1108
0
        ClusterIndex first_tx;
1109
        /** Index of the last transaction in the previous group. The first group (the sentinel)
1110
         *  points back to the last group here, making it a singly-linked circular list. */
1111
0
        ClusterIndex prev_group;
1112
        /** All transactions in the group. Empty for the sentinel. */
1113
0
        SetType group;
1114
        /** All dependencies of the group (descendants in even passes; ancestors in odd ones). */
1115
0
        SetType deps;
1116
        /** The combined fee/size of transactions in the group. Fee is negated in even passes. */
1117
0
        FeeFrac feerate;
1118
0
    };
1119
1120
    // As an example, consider the state corresponding to the linearization [1,0,3,2], with
1121
    // groups [1,0,3] and [2], in an odd pass. The linked lists would be:
1122
    //
1123
    //                                        +-----+
1124
    //                                 0<-P-- | 0 S | ---\     Legend:
1125
    //                                        +-----+    |
1126
    //                                           ^       |     - digit in box: entries index
1127
    //             /--------------F---------+    G       |       (note: one more than tx value)
1128
    //             v                         \   |       |     - S: sentinel group
1129
    //          +-----+        +-----+        +-----+    |          (empty feerate)
1130
    //   0<-P-- | 2   | <--P-- | 1   | <--P-- | 4 T |    |     - T: tail transaction, contains
1131
    //          +-----+        +-----+        +-----+    |          fields beyond prev_tv.
1132
    //                                           ^       |     - P: prev_tx reference
1133
    //                                           G       G     - F: first_tx reference
1134
    //                                           |       |     - G: prev_group reference
1135
    //                                        +-----+    |
1136
    //                                 0<-P-- | 3 T | <--/
1137
    //                                        +-----+
1138
    //                                         ^   |
1139
    //                                         \-F-/
1140
    //
1141
    // During an even pass, the diagram above would correspond to linearization [2,3,0,1], with
1142
    // groups [2] and [3,0,1].
1143
1144
0
    std::vector<TxEntry> entries(linearization.size() + 1);
1145
1146
    // Perform two passes over the linearization.
1147
0
    for (int pass = 0; pass < 2; ++pass) {
1148
0
        int rev = !(pass & 1);
1149
        // Construct a sentinel group, identifying the start of the list.
1150
0
        entries[SENTINEL].prev_group = SENTINEL;
1151
0
        Assume(entries[SENTINEL].feerate.IsEmpty());
1152
1153
        // Iterate over all elements in the existing linearization.
1154
0
        for (ClusterIndex i = 0; i < linearization.size(); ++i) {
1155
            // Even passes are from back to front; odd passes from front to back.
1156
0
            ClusterIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
1157
            // Construct a new group containing just idx. In even passes, the meaning of
1158
            // parent/child and high/low feerate are swapped.
1159
0
            ClusterIndex cur_group = idx + 1;
1160
0
            entries[cur_group].group = SetType::Singleton(idx);
1161
0
            entries[cur_group].deps = rev ? depgraph.Descendants(idx): depgraph.Ancestors(idx);
1162
0
            entries[cur_group].feerate = depgraph.FeeRate(idx);
1163
0
            if (rev) entries[cur_group].feerate.fee = -entries[cur_group].feerate.fee;
1164
0
            entries[cur_group].prev_tx = NO_PREV_TX; // No previous transaction in group.
1165
0
            entries[cur_group].first_tx = cur_group; // Transaction itself is first of group.
1166
            // Insert the new group at the back of the groups linked list.
1167
0
            entries[cur_group].prev_group = entries[SENTINEL].prev_group;
1168
0
            entries[SENTINEL].prev_group = cur_group;
1169
1170
            // Start merge/swap cycle.
1171
0
            ClusterIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
1172
0
            ClusterIndex prev_group = entries[cur_group].prev_group;
1173
            // Continue as long as the current group has higher feerate than the previous one.
1174
0
            while (entries[cur_group].feerate >> entries[prev_group].feerate) {
1175
                // prev_group/cur_group/next_group refer to (the last transactions of) 3
1176
                // consecutive entries in groups list.
1177
0
                Assume(cur_group == entries[next_group].prev_group);
1178
0
                Assume(prev_group == entries[cur_group].prev_group);
1179
                // The sentinel has empty feerate, which is neither higher or lower than other
1180
                // feerates. Thus, the while loop we are in here guarantees that cur_group and
1181
                // prev_group are not the sentinel.
1182
0
                Assume(cur_group != SENTINEL);
1183
0
                Assume(prev_group != SENTINEL);
1184
0
                if (entries[cur_group].deps.Overlaps(entries[prev_group].group)) {
1185
                    // There is a dependency between cur_group and prev_group; merge prev_group
1186
                    // into cur_group. The group/deps/feerate fields of prev_group remain unchanged
1187
                    // but become unused.
1188
0
                    entries[cur_group].group |= entries[prev_group].group;
1189
0
                    entries[cur_group].deps |= entries[prev_group].deps;
1190
0
                    entries[cur_group].feerate += entries[prev_group].feerate;
1191
                    // Make the first of the current group point to the tail of the previous group.
1192
0
                    entries[entries[cur_group].first_tx].prev_tx = prev_group;
1193
                    // The first of the previous group becomes the first of the newly-merged group.
1194
0
                    entries[cur_group].first_tx = entries[prev_group].first_tx;
1195
                    // The previous group becomes whatever group was before the former one.
1196
0
                    prev_group = entries[prev_group].prev_group;
1197
0
                    entries[cur_group].prev_group = prev_group;
1198
0
                } else {
1199
                    // There is no dependency between cur_group and prev_group; swap them.
1200
0
                    ClusterIndex preprev_group = entries[prev_group].prev_group;
1201
                    // If PP, P, C, N were the old preprev, prev, cur, next groups, then the new
1202
                    // layout becomes [PP, C, P, N]. Update prev_groups to reflect that order.
1203
0
                    entries[next_group].prev_group = prev_group;
1204
0
                    entries[prev_group].prev_group = cur_group;
1205
0
                    entries[cur_group].prev_group = preprev_group;
1206
                    // The current group remains the same, but the groups before/after it have
1207
                    // changed.
1208
0
                    next_group = prev_group;
1209
0
                    prev_group = preprev_group;
1210
0
                }
1211
0
            }
1212
0
        }
1213
1214
        // Convert the entries back to linearization (overwriting the existing one).
1215
0
        ClusterIndex cur_group = entries[0].prev_group;
1216
0
        ClusterIndex done = 0;
1217
0
        while (cur_group != SENTINEL) {
1218
0
            ClusterIndex cur_tx = cur_group;
1219
            // Traverse the transactions of cur_group (from back to front), and write them in the
1220
            // same order during odd passes, and reversed (front to back) in even passes.
1221
0
            if (rev) {
1222
0
                do {
1223
0
                    *(linearization.begin() + (done++)) = cur_tx - 1;
1224
0
                    cur_tx = entries[cur_tx].prev_tx;
1225
0
                } while (cur_tx != NO_PREV_TX);
1226
0
            } else {
1227
0
                do {
1228
0
                    *(linearization.end() - (++done)) = cur_tx - 1;
1229
0
                    cur_tx = entries[cur_tx].prev_tx;
1230
0
                } while (cur_tx != NO_PREV_TX);
1231
0
            }
1232
0
            cur_group = entries[cur_group].prev_group;
1233
0
        }
1234
0
        Assume(done == linearization.size());
1235
0
    }
1236
0
}
1237
1238
/** Merge two linearizations for the same cluster into one that is as good as both.
1239
 *
1240
 * Complexity: O(N^2) where N=depgraph.TxCount(); O(N) if both inputs are identical.
1241
 */
1242
template<typename SetType>
1243
std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> lin1, Span<const ClusterIndex> lin2)
1244
0
{
1245
0
    Assume(lin1.size() == depgraph.TxCount());
1246
0
    Assume(lin2.size() == depgraph.TxCount());
1247
1248
    /** Chunkings of what remains of both input linearizations. */
1249
0
    LinearizationChunking chunking1(depgraph, lin1), chunking2(depgraph, lin2);
1250
    /** Output linearization. */
1251
0
    std::vector<ClusterIndex> ret;
1252
0
    if (depgraph.TxCount() == 0) return ret;
1253
0
    ret.reserve(depgraph.TxCount());
1254
1255
0
    while (true) {
1256
        // As long as we are not done, both linearizations must have chunks left.
1257
0
        Assume(chunking1.NumChunksLeft() > 0);
1258
0
        Assume(chunking2.NumChunksLeft() > 0);
1259
        // Find the set to output by taking the best remaining chunk, and then intersecting it with
1260
        // prefixes of remaining chunks of the other linearization.
1261
0
        SetInfo<SetType> best;
1262
0
        const auto& lin1_firstchunk = chunking1.GetChunk(0);
1263
0
        const auto& lin2_firstchunk = chunking2.GetChunk(0);
1264
0
        if (lin2_firstchunk.feerate >> lin1_firstchunk.feerate) {
1265
0
            best = chunking1.IntersectPrefixes(lin2_firstchunk);
1266
0
        } else {
1267
0
            best = chunking2.IntersectPrefixes(lin1_firstchunk);
1268
0
        }
1269
        // Append the result to the output and mark it as done.
1270
0
        depgraph.AppendTopo(ret, best.transactions);
1271
0
        chunking1.MarkDone(best.transactions);
1272
0
        if (chunking1.NumChunksLeft() == 0) break;
1273
0
        chunking2.MarkDone(best.transactions);
1274
0
    }
1275
1276
0
    Assume(ret.size() == depgraph.TxCount());
1277
0
    return ret;
1278
0
}
1279
1280
} // namespace cluster_linearize
1281
1282
#endif // BITCOIN_CLUSTER_LINEARIZE_H