Coverage Report

Created: 2024-11-15 12:18

/root/bitcoin/src/cluster_linearize.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#ifndef BITCOIN_CLUSTER_LINEARIZE_H
6
#define BITCOIN_CLUSTER_LINEARIZE_H
7
8
#include <algorithm>
9
#include <numeric>
10
#include <optional>
11
#include <stdint.h>
12
#include <vector>
13
#include <utility>
14
15
#include <random.h>
16
#include <span.h>
17
#include <util/feefrac.h>
18
#include <util/vecdeque.h>
19
20
namespace cluster_linearize {
21
22
/** Data type to represent transaction indices in clusters. */
23
using ClusterIndex = uint32_t;
24
25
/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
26
 *  descendants). */
27
template<typename SetType>
28
class DepGraph
29
{
30
    /** Information about a single transaction. */
31
    struct Entry
32
    {
33
        /** Fee and size of transaction itself. */
34
        FeeFrac feerate;
35
        /** All ancestors of the transaction (including itself). */
36
        SetType ancestors;
37
        /** All descendants of the transaction (including itself). */
38
        SetType descendants;
39
40
        /** Equality operator (primarily for for testing purposes). */
41
0
        friend bool operator==(const Entry&, const Entry&) noexcept = default;
42
43
        /** Construct an empty entry. */
44
0
        Entry() noexcept = default;
45
        /** Construct an entry with a given feerate, ancestor set, descendant set. */
46
0
        Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
47
    };
48
49
    /** Data for each transaction. */
50
    std::vector<Entry> entries;
51
52
    /** Which positions are used. */
53
    SetType m_used;
54
55
public:
56
    /** Equality operator (primarily for testing purposes). */
57
    friend bool operator==(const DepGraph& a, const DepGraph& b) noexcept
58
0
    {
59
0
        if (a.m_used != b.m_used) return false;
60
        // Only compare the used positions within the entries vector.
61
0
        for (auto idx : a.m_used) {
62
0
            if (a.entries[idx] != b.entries[idx]) return false;
63
0
        }
64
0
        return true;
65
0
    }
66
67
    // Default constructors.
68
0
    DepGraph() noexcept = default;
69
    DepGraph(const DepGraph&) noexcept = default;
70
    DepGraph(DepGraph&&) noexcept = default;
71
    DepGraph& operator=(const DepGraph&) noexcept = default;
72
0
    DepGraph& operator=(DepGraph&&) noexcept = default;
73
74
    /** Construct a DepGraph object given another DepGraph and a mapping from old to new.
75
     *
76
     * @param depgraph   The original DepGraph that is being remapped.
77
     *
78
     * @param mapping    A Span such that mapping[i] gives the position in the new DepGraph
79
     *                   for position i in the old depgraph. Its size must be equal to
80
     *                   depgraph.PositionRange(). The value of mapping[i] is ignored if
81
     *                   position i is a hole in depgraph (i.e., if !depgraph.Positions()[i]).
82
     *
83
     * @param pos_range  The PositionRange() for the new DepGraph. It must equal the largest
84
     *                   value in mapping for any used position in depgraph plus 1, or 0 if
85
     *                   depgraph.TxCount() == 0.
86
     *
87
     * Complexity: O(N^2) where N=depgraph.TxCount().
88
     */
89
0
    DepGraph(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> mapping, ClusterIndex pos_range) noexcept : entries(pos_range)
90
0
    {
91
0
        Assume(mapping.size() == depgraph.PositionRange());
92
0
        Assume((pos_range == 0) == (depgraph.TxCount() == 0));
93
0
        for (ClusterIndex i : depgraph.Positions()) {
94
0
            auto new_idx = mapping[i];
95
0
            Assume(new_idx < pos_range);
96
            // Add transaction.
97
0
            entries[new_idx].ancestors = SetType::Singleton(new_idx);
98
0
            entries[new_idx].descendants = SetType::Singleton(new_idx);
99
0
            m_used.Set(new_idx);
100
            // Fill in fee and size.
101
0
            entries[new_idx].feerate = depgraph.entries[i].feerate;
102
0
        }
103
0
        for (ClusterIndex i : depgraph.Positions()) {
104
            // Fill in dependencies by mapping direct parents.
105
0
            SetType parents;
106
0
            for (auto j : depgraph.GetReducedParents(i)) parents.Set(mapping[j]);
107
0
            AddDependencies(parents, mapping[i]);
108
0
        }
109
        // Verify that the provided pos_range was correct (no unused positions at the end).
110
0
        Assume(m_used.None() ? (pos_range == 0) : (pos_range == m_used.Last() + 1));
111
0
    }
112
113
    /** Get the set of transactions positions in use. Complexity: O(1). */
114
0
    const SetType& Positions() const noexcept { return m_used; }
115
    /** Get the range of positions in this DepGraph. All entries in Positions() are in [0, PositionRange() - 1]. */
116
0
    ClusterIndex PositionRange() const noexcept { return entries.size(); }
117
    /** Get the number of transactions in the graph. Complexity: O(1). */
118
0
    auto TxCount() const noexcept { return m_used.Count(); }
119
    /** Get the feerate of a given transaction i. Complexity: O(1). */
120
0
    const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
121
    /** Get the mutable feerate of a given transaction i. Complexity: O(1). */
122
0
    FeeFrac& FeeRate(ClusterIndex i) noexcept { return entries[i].feerate; }
123
    /** Get the ancestors of a given transaction i. Complexity: O(1). */
124
0
    const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
125
    /** Get the descendants of a given transaction i. Complexity: O(1). */
126
0
    const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
127
128
    /** Add a new unconnected transaction to this transaction graph (in the first available
129
     *  position), and return its ClusterIndex.
130
     *
131
     * Complexity: O(1) (amortized, due to resizing of backing vector).
132
     */
133
    ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
134
0
    {
135
0
        static constexpr auto ALL_POSITIONS = SetType::Fill(SetType::Size());
136
0
        auto available = ALL_POSITIONS - m_used;
137
0
        Assume(available.Any());
138
0
        ClusterIndex new_idx = available.First();
139
0
        if (new_idx == entries.size()) {
140
0
            entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
141
0
        } else {
142
0
            entries[new_idx] = Entry(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
143
0
        }
144
0
        m_used.Set(new_idx);
145
0
        return new_idx;
146
0
    }
147
148
    /** Remove the specified positions from this DepGraph.
149
     *
150
     * The specified positions will no longer be part of Positions(), and dependencies with them are
151
     * removed. Note that due to DepGraph only tracking ancestors/descendants (and not direct
152
     * dependencies), if a parent is removed while a grandparent remains, the grandparent will
153
     * remain an ancestor.
154
     *
155
     * Complexity: O(N) where N=TxCount().
156
     */
157
    void RemoveTransactions(const SetType& del) noexcept
158
0
    {
159
0
        m_used -= del;
160
        // Remove now-unused trailing entries.
161
0
        while (!entries.empty() && !m_used[entries.size() - 1]) {
162
0
            entries.pop_back();
163
0
        }
164
        // Remove the deleted transactions from ancestors/descendants of other transactions. Note
165
        // that the deleted positions will retain old feerate and dependency information. This does
166
        // not matter as they will be overwritten by AddTransaction if they get used again.
167
0
        for (auto& entry : entries) {
168
0
            entry.ancestors &= m_used;
169
0
            entry.descendants &= m_used;
170
0
        }
171
0
    }
172
173
    /** Modify this transaction graph, adding multiple parents to a specified child.
174
     *
175
     * Complexity: O(N) where N=TxCount().
176
     */
177
    void AddDependencies(const SetType& parents, ClusterIndex child) noexcept
178
0
    {
179
0
        Assume(m_used[child]);
180
0
        Assume(parents.IsSubsetOf(m_used));
181
        // Compute the ancestors of parents that are not already ancestors of child.
182
0
        SetType par_anc;
183
0
        for (auto par : parents - Ancestors(child)) {
184
0
            par_anc |= Ancestors(par);
185
0
        }
186
0
        par_anc -= Ancestors(child);
187
        // Bail out if there are no such ancestors.
188
0
        if (par_anc.None()) return;
189
        // To each such ancestor, add as descendants the descendants of the child.
190
0
        const auto& chl_des = entries[child].descendants;
191
0
        for (auto anc_of_par : par_anc) {
192
0
            entries[anc_of_par].descendants |= chl_des;
193
0
        }
194
        // To each descendant of the child, add those ancestors.
195
0
        for (auto dec_of_chl : Descendants(child)) {
196
0
            entries[dec_of_chl].ancestors |= par_anc;
197
0
        }
198
0
    }
199
200
    /** Compute the (reduced) set of parents of node i in this graph.
201
     *
202
     * This returns the minimal subset of the parents of i whose ancestors together equal all of
203
     * i's ancestors (unless i is part of a cycle of dependencies). Note that DepGraph does not
204
     * store the set of parents; this information is inferred from the ancestor sets.
205
     *
206
     * Complexity: O(N) where N=Ancestors(i).Count() (which is bounded by TxCount()).
207
     */
208
    SetType GetReducedParents(ClusterIndex i) const noexcept
209
0
    {
210
0
        SetType parents = Ancestors(i);
211
0
        parents.Reset(i);
212
0
        for (auto parent : parents) {
213
0
            if (parents[parent]) {
214
0
                parents -= Ancestors(parent);
215
0
                parents.Set(parent);
216
0
            }
217
0
        }
218
0
        return parents;
219
0
    }
220
221
    /** Compute the (reduced) set of children of node i in this graph.
222
     *
223
     * This returns the minimal subset of the children of i whose descendants together equal all of
224
     * i's descendants (unless i is part of a cycle of dependencies). Note that DepGraph does not
225
     * store the set of children; this information is inferred from the descendant sets.
226
     *
227
     * Complexity: O(N) where N=Descendants(i).Count() (which is bounded by TxCount()).
228
     */
229
    SetType GetReducedChildren(ClusterIndex i) const noexcept
230
0
    {
231
0
        SetType children = Descendants(i);
232
0
        children.Reset(i);
233
0
        for (auto child : children) {
234
0
            if (children[child]) {
235
0
                children -= Descendants(child);
236
0
                children.Set(child);
237
0
            }
238
0
        }
239
0
        return children;
240
0
    }
241
242
    /** Compute the aggregate feerate of a set of nodes in this graph.
243
     *
244
     * Complexity: O(N) where N=elems.Count().
245
     **/
246
    FeeFrac FeeRate(const SetType& elems) const noexcept
247
0
    {
248
0
        FeeFrac ret;
249
0
        for (auto pos : elems) ret += entries[pos].feerate;
250
0
        return ret;
251
0
    }
252
253
    /** Find some connected component within the subset "todo" of this graph.
254
     *
255
     * Specifically, this finds the connected component which contains the first transaction of
256
     * todo (if any).
257
     *
258
     * Two transactions are considered connected if they are both in `todo`, and one is an ancestor
259
     * of the other in the entire graph (so not just within `todo`), or transitively there is a
260
     * path of transactions connecting them. This does mean that if `todo` contains a transaction
261
     * and a grandparent, but misses the parent, they will still be part of the same component.
262
     *
263
     * Complexity: O(ret.Count()).
264
     */
265
    SetType FindConnectedComponent(const SetType& todo) const noexcept
266
0
    {
267
0
        if (todo.None()) return todo;
268
0
        auto to_add = SetType::Singleton(todo.First());
269
0
        SetType ret;
270
0
        do {
271
0
            SetType old = ret;
272
0
            for (auto add : to_add) {
273
0
                ret |= Descendants(add);
274
0
                ret |= Ancestors(add);
275
0
            }
276
0
            ret &= todo;
277
0
            to_add = ret - old;
278
0
        } while (to_add.Any());
279
0
        return ret;
280
0
    }
281
282
    /** Determine if a subset is connected.
283
     *
284
     * Complexity: O(subset.Count()).
285
     */
286
    bool IsConnected(const SetType& subset) const noexcept
287
0
    {
288
0
        return FindConnectedComponent(subset) == subset;
289
0
    }
290
291
    /** Determine if this entire graph is connected.
292
     *
293
     * Complexity: O(TxCount()).
294
     */
295
0
    bool IsConnected() const noexcept { return IsConnected(m_used); }
296
297
    /** Append the entries of select to list in a topologically valid order.
298
     *
299
     * Complexity: O(select.Count() * log(select.Count())).
300
     */
301
    void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
302
0
    {
303
0
        ClusterIndex old_len = list.size();
304
0
        for (auto i : select) list.push_back(i);
305
0
        std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
306
0
            const auto a_anc_count = entries[a].ancestors.Count();
307
0
            const auto b_anc_count = entries[b].ancestors.Count();
308
0
            if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
309
0
            return a < b;
310
0
        });
311
0
    }
312
};
313
314
/** A set of transactions together with their aggregate feerate. */
315
template<typename SetType>
316
struct SetInfo
317
{
318
    /** The transactions in the set. */
319
    SetType transactions;
320
    /** Their combined fee and size. */
321
    FeeFrac feerate;
322
323
    /** Construct a SetInfo for the empty set. */
324
0
    SetInfo() noexcept = default;
325
326
    /** Construct a SetInfo for a specified set and feerate. */
327
0
    SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
328
329
    /** Construct a SetInfo for a given transaction in a depgraph. */
330
    explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
331
0
        transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
332
333
    /** Construct a SetInfo for a set of transactions in a depgraph. */
334
    explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
335
0
        transactions(txn), feerate(depgraph.FeeRate(txn)) {}
336
337
    /** Add a transaction to this SetInfo (which must not yet be in it). */
338
    void Set(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept
339
0
    {
340
0
        Assume(!transactions[pos]);
341
0
        transactions.Set(pos);
342
0
        feerate += depgraph.FeeRate(pos);
343
0
    }
344
345
    /** Add the transactions of other to this SetInfo (no overlap allowed). */
346
    SetInfo& operator|=(const SetInfo& other) noexcept
347
0
    {
348
0
        Assume(!transactions.Overlaps(other.transactions));
349
0
        transactions |= other.transactions;
350
0
        feerate += other.feerate;
351
0
        return *this;
352
0
    }
353
354
    /** Construct a new SetInfo equal to this, with more transactions added (which may overlap
355
     *  with the existing transactions in the SetInfo). */
356
    [[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
357
0
    {
358
0
        return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
359
0
    }
360
361
    /** Swap two SetInfo objects. */
362
    friend void swap(SetInfo& a, SetInfo& b) noexcept
363
0
    {
364
0
        swap(a.transactions, b.transactions);
365
0
        swap(a.feerate, b.feerate);
366
0
    }
367
368
    /** Permit equality testing. */
369
0
    friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
370
};
371
372
/** Compute the feerates of the chunks of linearization. */
373
template<typename SetType>
374
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
375
0
{
376
0
    std::vector<FeeFrac> ret;
377
0
    for (ClusterIndex i : linearization) {
378
        /** The new chunk to be added, initially a singleton. */
379
0
        auto new_chunk = depgraph.FeeRate(i);
380
        // As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
381
0
        while (!ret.empty() && new_chunk >> ret.back()) {
382
0
            new_chunk += ret.back();
383
0
            ret.pop_back();
384
0
        }
385
        // Actually move that new chunk into the chunking.
386
0
        ret.push_back(std::move(new_chunk));
387
0
    }
388
0
    return ret;
389
0
}
390
391
/** Data structure encapsulating the chunking of a linearization, permitting removal of subsets. */
392
template<typename SetType>
393
class LinearizationChunking
394
{
395
    /** The depgraph this linearization is for. */
396
    const DepGraph<SetType>& m_depgraph;
397
398
    /** The linearization we started from, possibly with removed prefix stripped. */
399
    Span<const ClusterIndex> m_linearization;
400
401
    /** Chunk sets and their feerates, of what remains of the linearization. */
402
    std::vector<SetInfo<SetType>> m_chunks;
403
404
    /** How large a prefix of m_chunks corresponds to removed transactions. */
405
    ClusterIndex m_chunks_skip{0};
406
407
    /** Which transactions remain in the linearization. */
408
    SetType m_todo;
409
410
    /** Fill the m_chunks variable, and remove the done prefix of m_linearization. */
411
    void BuildChunks() noexcept
412
0
    {
413
        // Caller must clear m_chunks.
414
0
        Assume(m_chunks.empty());
415
416
        // Chop off the initial part of m_linearization that is already done.
417
0
        while (!m_linearization.empty() && !m_todo[m_linearization.front()]) {
418
0
            m_linearization = m_linearization.subspan(1);
419
0
        }
420
421
        // Iterate over the remaining entries in m_linearization. This is effectively the same
422
        // algorithm as ChunkLinearization, but supports skipping parts of the linearization and
423
        // keeps track of the sets themselves instead of just their feerates.
424
0
        for (auto idx : m_linearization) {
425
0
            if (!m_todo[idx]) continue;
426
            // Start with an initial chunk containing just element idx.
427
0
            SetInfo add(m_depgraph, idx);
428
            // Absorb existing final chunks into add while they have lower feerate.
429
0
            while (!m_chunks.empty() && add.feerate >> m_chunks.back().feerate) {
430
0
                add |= m_chunks.back();
431
0
                m_chunks.pop_back();
432
0
            }
433
            // Remember new chunk.
434
0
            m_chunks.push_back(std::move(add));
435
0
        }
436
0
    }
437
438
public:
439
    /** Initialize a LinearizationSubset object for a given length of linearization. */
440
    explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
441
0
        m_depgraph(depgraph), m_linearization(lin)
442
0
    {
443
        // Mark everything in lin as todo still.
444
0
        for (auto i : m_linearization) m_todo.Set(i);
445
        // Compute the initial chunking.
446
0
        m_chunks.reserve(depgraph.TxCount());
447
0
        BuildChunks();
448
0
    }
449
450
    /** Determine how many chunks remain in the linearization. */
451
0
    ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
452
453
    /** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
454
    const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
455
0
    {
456
0
        Assume(n + m_chunks_skip < m_chunks.size());
457
0
        return m_chunks[n + m_chunks_skip];
458
0
    }
459
460
    /** Remove some subset of transactions from the linearization. */
461
    void MarkDone(SetType subset) noexcept
462
0
    {
463
0
        Assume(subset.Any());
464
0
        Assume(subset.IsSubsetOf(m_todo));
465
0
        m_todo -= subset;
466
0
        if (GetChunk(0).transactions == subset) {
467
            // If the newly done transactions exactly match the first chunk of the remainder of
468
            // the linearization, we do not need to rechunk; just remember to skip one
469
            // additional chunk.
470
0
            ++m_chunks_skip;
471
            // With subset marked done, some prefix of m_linearization will be done now. How long
472
            // that prefix is depends on how many done elements were interspersed with subset,
473
            // but at least as many transactions as there are in subset.
474
0
            m_linearization = m_linearization.subspan(subset.Count());
475
0
        } else {
476
            // Otherwise rechunk what remains of m_linearization.
477
0
            m_chunks.clear();
478
0
            m_chunks_skip = 0;
479
0
            BuildChunks();
480
0
        }
481
0
    }
482
483
    /** Find the shortest intersection between subset and the prefixes of remaining chunks
484
     *  of the linearization that has a feerate not below subset's.
485
     *
486
     * This is a crucial operation in guaranteeing improvements to linearizations. If subset has
487
     * a feerate not below GetChunk(0)'s, then moving IntersectPrefixes(subset) to the front of
488
     * (what remains of) the linearization is guaranteed not to make it worse at any point.
489
     *
490
     * See https://delvingbitcoin.org/t/introduction-to-cluster-linearization/1032 for background.
491
     */
492
    SetInfo<SetType> IntersectPrefixes(const SetInfo<SetType>& subset) const noexcept
493
0
    {
494
0
        Assume(subset.transactions.IsSubsetOf(m_todo));
495
0
        SetInfo<SetType> accumulator;
496
        // Iterate over all chunks of the remaining linearization.
497
0
        for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
498
            // Find what (if any) intersection the chunk has with subset.
499
0
            const SetType to_add = GetChunk(i).transactions & subset.transactions;
500
0
            if (to_add.Any()) {
501
                // If adding that to accumulator makes us hit all of subset, we are done as no
502
                // shorter intersection with higher/equal feerate exists.
503
0
                accumulator.transactions |= to_add;
504
0
                if (accumulator.transactions == subset.transactions) break;
505
                // Otherwise update the accumulator feerate.
506
0
                accumulator.feerate += m_depgraph.FeeRate(to_add);
507
                // If that does result in something better, or something with the same feerate but
508
                // smaller, return that. Even if a longer, higher-feerate intersection exists, it
509
                // does not hurt to return the shorter one (the remainder of the longer intersection
510
                // will generally be found in the next call to Intersect, but even if not, it is not
511
                // required for the improvement guarantee this function makes).
512
0
                if (!(accumulator.feerate << subset.feerate)) return accumulator;
513
0
            }
514
0
        }
515
0
        return subset;
516
0
    }
517
};
518
519
/** Class encapsulating the state needed to find the best remaining ancestor set.
520
 *
521
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
522
 * MarkDone.
523
 *
524
 * As long as any part of the graph remains, FindCandidateSet() can be called which will return a
525
 * SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
526
 * transaction together with all its remaining ancestors).
527
 */
528
template<typename SetType>
529
class AncestorCandidateFinder
530
{
531
    /** Internal dependency graph. */
532
    const DepGraph<SetType>& m_depgraph;
533
    /** Which transaction are left to include. */
534
    SetType m_todo;
535
    /** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
536
    std::vector<FeeFrac> m_ancestor_set_feerates;
537
538
public:
539
    /** Construct an AncestorCandidateFinder for a given cluster.
540
     *
541
     * Complexity: O(N^2) where N=depgraph.TxCount().
542
     */
543
    AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
544
0
        m_depgraph(depgraph),
545
0
        m_todo{depgraph.Positions()},
546
0
        m_ancestor_set_feerates(depgraph.PositionRange())
547
0
    {
548
        // Precompute ancestor-set feerates.
549
0
        for (ClusterIndex i : m_depgraph.Positions()) {
550
            /** The remaining ancestors for transaction i. */
551
0
            SetType anc_to_add = m_depgraph.Ancestors(i);
552
0
            FeeFrac anc_feerate;
553
            // Reuse accumulated feerate from first ancestor, if usable.
554
0
            Assume(anc_to_add.Any());
555
0
            ClusterIndex first = anc_to_add.First();
556
0
            if (first < i) {
557
0
                anc_feerate = m_ancestor_set_feerates[first];
558
0
                Assume(!anc_feerate.IsEmpty());
559
0
                anc_to_add -= m_depgraph.Ancestors(first);
560
0
            }
561
            // Add in other ancestors (which necessarily include i itself).
562
0
            Assume(anc_to_add[i]);
563
0
            anc_feerate += m_depgraph.FeeRate(anc_to_add);
564
            // Store the result.
565
0
            m_ancestor_set_feerates[i] = anc_feerate;
566
0
        }
567
0
    }
568
569
    /** Remove a set of transactions from the set of to-be-linearized ones.
570
     *
571
     * The same transaction may not be MarkDone()'d twice.
572
     *
573
     * Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
574
     */
575
    void MarkDone(SetType select) noexcept
576
0
    {
577
0
        Assume(select.Any());
578
0
        Assume(select.IsSubsetOf(m_todo));
579
0
        m_todo -= select;
580
0
        for (auto i : select) {
581
0
            auto feerate = m_depgraph.FeeRate(i);
582
0
            for (auto j : m_depgraph.Descendants(i) & m_todo) {
583
0
                m_ancestor_set_feerates[j] -= feerate;
584
0
            }
585
0
        }
586
0
    }
587
588
    /** Check whether any unlinearized transactions remain. */
589
    bool AllDone() const noexcept
590
0
    {
591
0
        return m_todo.None();
592
0
    }
593
594
    /** Count the number of remaining unlinearized transactions. */
595
    ClusterIndex NumRemaining() const noexcept
596
0
    {
597
0
        return m_todo.Count();
598
0
    }
599
600
    /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
601
     *  among the remaining transactions. Requires !AllDone().
602
     *
603
     * Complexity: O(N) where N=depgraph.TxCount();
604
     */
605
    SetInfo<SetType> FindCandidateSet() const noexcept
606
0
    {
607
0
        Assume(!AllDone());
608
0
        std::optional<ClusterIndex> best;
609
0
        for (auto i : m_todo) {
610
0
            if (best.has_value()) {
611
0
                Assume(!m_ancestor_set_feerates[i].IsEmpty());
612
0
                if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
613
0
            }
614
0
            best = i;
615
0
        }
616
0
        Assume(best.has_value());
617
0
        return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
618
0
    }
619
};
620
621
/** Class encapsulating the state needed to perform search for good candidate sets.
622
 *
623
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
624
 * MarkDone().
625
 *
626
 * As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
627
 * over the set of topologically-valid subsets of that remainder, with a limit on how many
628
 * combinations are tried.
629
 */
630
template<typename SetType>
631
class SearchCandidateFinder
632
{
633
    /** Internal RNG. */
634
    InsecureRandomContext m_rng;
635
    /** m_sorted_to_original[i] is the original position that sorted transaction position i had. */
636
    std::vector<ClusterIndex> m_sorted_to_original;
637
    /** m_original_to_sorted[i] is the sorted position original transaction position i has. */
638
    std::vector<ClusterIndex> m_original_to_sorted;
639
    /** Internal dependency graph for the cluster (with transactions in decreasing individual
640
     *  feerate order). */
641
    DepGraph<SetType> m_sorted_depgraph;
642
    /** Which transactions are left to do (indices in m_sorted_depgraph's order). */
643
    SetType m_todo;
644
645
    /** Given a set of transactions with sorted indices, get their original indices. */
646
    SetType SortedToOriginal(const SetType& arg) const noexcept
647
0
    {
648
0
        SetType ret;
649
0
        for (auto pos : arg) ret.Set(m_sorted_to_original[pos]);
650
0
        return ret;
651
0
    }
652
653
    /** Given a set of transactions with original indices, get their sorted indices. */
654
    SetType OriginalToSorted(const SetType& arg) const noexcept
655
0
    {
656
0
        SetType ret;
657
0
        for (auto pos : arg) ret.Set(m_original_to_sorted[pos]);
658
0
        return ret;
659
0
    }
660
661
public:
662
    /** Construct a candidate finder for a graph.
663
     *
664
     * @param[in] depgraph   Dependency graph for the to-be-linearized cluster.
665
     * @param[in] rng_seed   A random seed to control the search order.
666
     *
667
     * Complexity: O(N^2) where N=depgraph.Count().
668
     */
669
    SearchCandidateFinder(const DepGraph<SetType>& depgraph, uint64_t rng_seed) noexcept :
670
0
        m_rng(rng_seed),
671
0
        m_sorted_to_original(depgraph.TxCount()),
672
0
        m_original_to_sorted(depgraph.PositionRange())
673
0
    {
674
        // Determine reordering mapping, by sorting by decreasing feerate. Unused positions are
675
        // not included, as they will never be looked up anyway.
676
0
        ClusterIndex sorted_pos{0};
677
0
        for (auto i : depgraph.Positions()) {
678
0
            m_sorted_to_original[sorted_pos++] = i;
679
0
        }
680
0
        std::sort(m_sorted_to_original.begin(), m_sorted_to_original.end(), [&](auto a, auto b) {
681
0
            auto feerate_cmp = depgraph.FeeRate(a) <=> depgraph.FeeRate(b);
682
0
            if (feerate_cmp == 0) return a < b;
683
0
            return feerate_cmp > 0;
684
0
        });
685
        // Compute reverse mapping.
686
0
        for (ClusterIndex i = 0; i < m_sorted_to_original.size(); ++i) {
687
0
            m_original_to_sorted[m_sorted_to_original[i]] = i;
688
0
        }
689
        // Compute reordered dependency graph.
690
0
        m_sorted_depgraph = DepGraph(depgraph, m_original_to_sorted, m_sorted_to_original.size());
691
0
        m_todo = m_sorted_depgraph.Positions();
692
0
    }
693
694
    /** Check whether any unlinearized transactions remain. */
695
    bool AllDone() const noexcept
696
0
    {
697
0
        return m_todo.None();
698
0
    }
699
700
    /** Find a high-feerate topologically-valid subset of what remains of the cluster.
701
     *  Requires !AllDone().
702
     *
703
     * @param[in] max_iterations  The maximum number of optimization steps that will be performed.
704
     * @param[in] best            A set/feerate pair with an already-known good candidate. This may
705
     *                            be empty.
706
     * @return                    A pair of:
707
     *                            - The best (highest feerate, smallest size as tiebreaker)
708
     *                              topologically valid subset (and its feerate) that was
709
     *                              encountered during search. It will be at least as good as the
710
     *                              best passed in (if not empty).
711
     *                            - The number of optimization steps that were performed. This will
712
     *                              be <= max_iterations. If strictly < max_iterations, the
713
     *                              returned subset is optimal.
714
     *
715
     * Complexity: possibly O(N * min(max_iterations, sqrt(2^N))) where N=depgraph.TxCount().
716
     */
717
    std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
718
0
    {
719
0
        Assume(!AllDone());
720
721
        // Convert the provided best to internal sorted indices.
722
0
        best.transactions = OriginalToSorted(best.transactions);
723
724
        /** Type for work queue items. */
725
0
        struct WorkItem
726
0
        {
727
            /** Set of transactions definitely included (and its feerate). This must be a subset
728
             *  of m_todo, and be topologically valid (includes all in-m_todo ancestors of
729
             *  itself). */
730
0
            SetInfo<SetType> inc;
731
            /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
732
             *  with inc. The set (inc | und) must be topologically valid. */
733
0
            SetType und;
734
            /** (Only when inc is not empty) The best feerate of any superset of inc that is also a
735
             *  subset of (inc | und), without requiring it to be topologically valid. It forms a
736
             *  conservative upper bound on how good a set this work item can give rise to.
737
             *  Transactions whose feerate is below best's are ignored when determining this value,
738
             *  which means it may technically be an underestimate, but if so, this work item
739
             *  cannot result in something that beats best anyway. */
740
0
            FeeFrac pot_feerate;
741
742
            /** Construct a new work item. */
743
0
            WorkItem(SetInfo<SetType>&& i, SetType&& u, FeeFrac&& p_f) noexcept :
744
0
                inc(std::move(i)), und(std::move(u)), pot_feerate(std::move(p_f))
745
0
            {
746
0
                Assume(pot_feerate.IsEmpty() == inc.feerate.IsEmpty());
747
0
            }
748
749
            /** Swap two WorkItems. */
750
0
            void Swap(WorkItem& other) noexcept
751
0
            {
752
0
                swap(inc, other.inc);
753
0
                swap(und, other.und);
754
0
                swap(pot_feerate, other.pot_feerate);
755
0
            }
756
0
        };
757
758
        /** The queue of work items. */
759
0
        VecDeque<WorkItem> queue;
760
0
        queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
761
762
        // Create initial entries per connected component of m_todo. While clusters themselves are
763
        // generally connected, this is not necessarily true after some parts have already been
764
        // removed from m_todo. Without this, effort can be wasted on searching "inc" sets that
765
        // span multiple components.
766
0
        auto to_cover = m_todo;
767
0
        do {
768
0
            auto component = m_sorted_depgraph.FindConnectedComponent(to_cover);
769
0
            to_cover -= component;
770
            // If best is not provided, set it to the first component, so that during the work
771
            // processing loop below, and during the add_fn/split_fn calls, we do not need to deal
772
            // with the best=empty case.
773
0
            if (best.feerate.IsEmpty()) best = SetInfo(m_sorted_depgraph, component);
774
0
            queue.emplace_back(/*inc=*/SetInfo<SetType>{},
775
0
                               /*und=*/std::move(component),
776
0
                               /*pot_feerate=*/FeeFrac{});
777
0
        } while (to_cover.Any());
778
779
        /** Local copy of the iteration limit. */
780
0
        uint64_t iterations_left = max_iterations;
781
782
        /** The set of transactions in m_todo which have feerate > best's. */
783
0
        SetType imp = m_todo;
784
0
        while (imp.Any()) {
785
0
            ClusterIndex check = imp.Last();
786
0
            if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
787
0
            imp.Reset(check);
788
0
        }
789
790
        /** Internal function to add an item to the queue of elements to explore if there are any
791
         *  transactions left to split on, possibly improving it before doing so, and to update
792
         *  best/imp.
793
         *
794
         * - inc: the "inc" value for the new work item (must be topological).
795
         * - und: the "und" value for the new work item ((inc | und) must be topological).
796
         */
797
0
        auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
798
            /** SetInfo object with the set whose feerate will become the new work item's
799
             *  pot_feerate. It starts off equal to inc. */
800
0
            auto pot = inc;
801
0
            if (!inc.feerate.IsEmpty()) {
802
                // Add entries to pot. We iterate over all undecided transactions whose feerate is
803
                // higher than best. While undecided transactions of lower feerate may improve pot,
804
                // the resulting pot feerate cannot possibly exceed best's (and this item will be
805
                // skipped in split_fn anyway).
806
0
                for (auto pos : imp & und) {
807
                    // Determine if adding transaction pos to pot (ignoring topology) would improve
808
                    // it. If not, we're done updating pot. This relies on the fact that
809
                    // m_sorted_depgraph, and thus the transactions iterated over, are in decreasing
810
                    // individual feerate order.
811
0
                    if (!(m_sorted_depgraph.FeeRate(pos) >> pot.feerate)) break;
812
0
                    pot.Set(m_sorted_depgraph, pos);
813
0
                }
814
815
                // The "jump ahead" optimization: whenever pot has a topologically-valid subset,
816
                // that subset can be added to inc. Any subset of (pot - inc) has the property that
817
                // its feerate exceeds that of any set compatible with this work item (superset of
818
                // inc, subset of (inc | und)). Thus, if T is a topological subset of pot, and B is
819
                // the best topologically-valid set compatible with this work item, and (T - B) is
820
                // non-empty, then (T | B) is better than B and also topological. This is in
821
                // contradiction with the assumption that B is best. Thus, (T - B) must be empty,
822
                // or T must be a subset of B.
823
                //
824
                // See https://delvingbitcoin.org/t/how-to-linearize-your-cluster/303 section 2.4.
825
0
                const auto init_inc = inc.transactions;
826
0
                for (auto pos : pot.transactions - inc.transactions) {
827
                    // If the transaction's ancestors are a subset of pot, we can add it together
828
                    // with its ancestors to inc. Just update the transactions here; the feerate
829
                    // update happens below.
830
0
                    auto anc_todo = m_sorted_depgraph.Ancestors(pos) & m_todo;
831
0
                    if (anc_todo.IsSubsetOf(pot.transactions)) inc.transactions |= anc_todo;
832
0
                }
833
                // Finally update und and inc's feerate to account for the added transactions.
834
0
                und -= inc.transactions;
835
0
                inc.feerate += m_sorted_depgraph.FeeRate(inc.transactions - init_inc);
836
837
                // If inc's feerate is better than best's, remember it as our new best.
838
0
                if (inc.feerate > best.feerate) {
839
0
                    best = inc;
840
                    // See if we can remove any entries from imp now.
841
0
                    while (imp.Any()) {
842
0
                        ClusterIndex check = imp.Last();
843
0
                        if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
844
0
                        imp.Reset(check);
845
0
                    }
846
0
                }
847
848
                // If no potential transactions exist beyond the already included ones, no
849
                // improvement is possible anymore.
850
0
                if (pot.feerate.size == inc.feerate.size) return;
851
                // At this point und must be non-empty. If it were empty then pot would equal inc.
852
0
                Assume(und.Any());
853
0
            } else {
854
0
                Assume(inc.transactions.None());
855
                // If inc is empty, we just make sure there are undecided transactions left to
856
                // split on.
857
0
                if (und.None()) return;
858
0
            }
859
860
            // Actually construct a new work item on the queue. Due to the switch to DFS when queue
861
            // space runs out (see below), we know that no reallocation of the queue should ever
862
            // occur.
863
0
            Assume(queue.size() < queue.capacity());
864
0
            queue.emplace_back(/*inc=*/std::move(inc),
865
0
                               /*und=*/std::move(und),
866
0
                               /*pot_feerate=*/std::move(pot.feerate));
867
0
        };
868
869
        /** Internal process function. It takes an existing work item, and splits it in two: one
870
         *  with a particular transaction (and its ancestors) included, and one with that
871
         *  transaction (and its descendants) excluded. */
872
0
        auto split_fn = [&](WorkItem&& elem) noexcept {
873
            // Any queue element must have undecided transactions left, otherwise there is nothing
874
            // to explore anymore.
875
0
            Assume(elem.und.Any());
876
            // The included and undecided set are all subsets of m_todo.
877
0
            Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
878
            // Included transactions cannot be undecided.
879
0
            Assume(!elem.inc.transactions.Overlaps(elem.und));
880
            // If pot is empty, then so is inc.
881
0
            Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty());
882
883
0
            const ClusterIndex first = elem.und.First();
884
0
            if (!elem.inc.feerate.IsEmpty()) {
885
                // If no undecided transactions remain with feerate higher than best, this entry
886
                // cannot be improved beyond best.
887
0
                if (!elem.und.Overlaps(imp)) return;
888
                // We can ignore any queue item whose potential feerate isn't better than the best
889
                // seen so far.
890
0
                if (elem.pot_feerate <= best.feerate) return;
891
0
            } else {
892
                // In case inc is empty use a simpler alternative check.
893
0
                if (m_sorted_depgraph.FeeRate(first) <= best.feerate) return;
894
0
            }
895
896
            // Decide which transaction to split on. Splitting is how new work items are added, and
897
            // how progress is made. One split transaction is chosen among the queue item's
898
            // undecided ones, and:
899
            // - A work item is (potentially) added with that transaction plus its remaining
900
            //   descendants excluded (removed from the und set).
901
            // - A work item is (potentially) added with that transaction plus its remaining
902
            //   ancestors included (added to the inc set).
903
            //
904
            // To decide what to split on, consider the undecided ancestors of the highest
905
            // individual feerate undecided transaction. Pick the one which reduces the search space
906
            // most. Let I(t) be the size of the undecided set after including t, and E(t) the size
907
            // of the undecided set after excluding t. Then choose the split transaction t such
908
            // that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t.
909
0
            ClusterIndex split = 0;
910
0
            const auto select = elem.und & m_sorted_depgraph.Ancestors(first);
911
0
            Assume(select.Any());
912
0
            std::optional<std::pair<ClusterIndex, ClusterIndex>> split_counts;
913
0
            for (auto t : select) {
914
                // Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}.
915
                // Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This
916
                // expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second
917
                // factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always
918
                // increase it, even when min decreases. Because of this, we can first sort by max.
919
0
                std::pair<ClusterIndex, ClusterIndex> counts{
920
0
                    (elem.und - m_sorted_depgraph.Ancestors(t)).Count(),
921
0
                    (elem.und - m_sorted_depgraph.Descendants(t)).Count()};
922
0
                if (counts.first < counts.second) std::swap(counts.first, counts.second);
923
                // Remember the t with the lowest counts.
924
0
                if (!split_counts.has_value() || counts < *split_counts) {
925
0
                    split = t;
926
0
                    split_counts = counts;
927
0
                }
928
0
            }
929
            // Since there was at least one transaction in select, we must always find one.
930
0
            Assume(split_counts.has_value());
931
932
            // Add a work item corresponding to exclusion of the split transaction.
933
0
            const auto& desc = m_sorted_depgraph.Descendants(split);
934
0
            add_fn(/*inc=*/elem.inc,
935
0
                   /*und=*/elem.und - desc);
936
937
            // Add a work item corresponding to inclusion of the split transaction.
938
0
            const auto anc = m_sorted_depgraph.Ancestors(split) & m_todo;
939
0
            add_fn(/*inc=*/elem.inc.Add(m_sorted_depgraph, anc),
940
0
                   /*und=*/elem.und - anc);
941
942
            // Account for the performed split.
943
0
            --iterations_left;
944
0
        };
945
946
        // Work processing loop.
947
        //
948
        // New work items are always added at the back of the queue, but items to process use a
949
        // hybrid approach where they can be taken from the front or the back.
950
        //
951
        // Depth-first search (DFS) corresponds to always taking from the back of the queue. This
952
        // is very memory-efficient (linear in the number of transactions). Breadth-first search
953
        // (BFS) corresponds to always taking from the front, which potentially uses more memory
954
        // (up to exponential in the transaction count), but seems to work better in practice.
955
        //
956
        // The approach here combines the two: use BFS (plus random swapping) until the queue grows
957
        // too large, at which point we temporarily switch to DFS until the size shrinks again.
958
0
        while (!queue.empty()) {
959
            // Randomly swap the first two items to randomize the search order.
960
0
            if (queue.size() > 1 && m_rng.randbool()) {
961
0
                queue[0].Swap(queue[1]);
962
0
            }
963
964
            // Processing the first queue item, and then using DFS for everything it gives rise to,
965
            // may increase the queue size by the number of undecided elements in there, minus 1
966
            // for the first queue item being removed. Thus, only when that pushes the queue over
967
            // its capacity can we not process from the front (BFS), and should we use DFS.
968
0
            while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
969
0
                if (!iterations_left) break;
970
0
                auto elem = queue.back();
971
0
                queue.pop_back();
972
0
                split_fn(std::move(elem));
973
0
            }
974
975
            // Process one entry from the front of the queue (BFS exploration)
976
0
            if (!iterations_left) break;
977
0
            auto elem = queue.front();
978
0
            queue.pop_front();
979
0
            split_fn(std::move(elem));
980
0
        }
981
982
        // Return the found best set (converted to the original transaction indices), and the
983
        // number of iterations performed.
984
0
        best.transactions = SortedToOriginal(best.transactions);
985
0
        return {std::move(best), max_iterations - iterations_left};
986
0
    }
987
988
    /** Remove a subset of transactions from the cluster being linearized.
989
     *
990
     * Complexity: O(N) where N=done.Count().
991
     */
992
    void MarkDone(const SetType& done) noexcept
993
0
    {
994
0
        const auto done_sorted = OriginalToSorted(done);
995
0
        Assume(done_sorted.Any());
996
0
        Assume(done_sorted.IsSubsetOf(m_todo));
997
0
        m_todo -= done_sorted;
998
0
    }
999
};
1000
1001
/** Find or improve a linearization for a cluster.
1002
 *
1003
 * @param[in] depgraph            Dependency graph of the cluster to be linearized.
1004
 * @param[in] max_iterations      Upper bound on the number of optimization steps that will be done.
1005
 * @param[in] rng_seed            A random number seed to control search order. This prevents peers
1006
 *                                from predicting exactly which clusters would be hard for us to
1007
 *                                linearize.
1008
 * @param[in] old_linearization   An existing linearization for the cluster (which must be
1009
 *                                topologically valid), or empty.
1010
 * @return                        A pair of:
1011
 *                                - The resulting linearization. It is guaranteed to be at least as
1012
 *                                  good (in the feerate diagram sense) as old_linearization.
1013
 *                                - A boolean indicating whether the result is guaranteed to be
1014
 *                                  optimal.
1015
 *
1016
 * Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
1017
 */
1018
template<typename SetType>
1019
std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
1020
0
{
1021
0
    Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
1022
0
    if (depgraph.TxCount() == 0) return {{}, true};
1023
1024
0
    uint64_t iterations_left = max_iterations;
1025
0
    std::vector<ClusterIndex> linearization;
1026
1027
0
    AncestorCandidateFinder anc_finder(depgraph);
1028
0
    std::optional<SearchCandidateFinder<SetType>> src_finder;
1029
0
    linearization.reserve(depgraph.TxCount());
1030
0
    bool optimal = true;
1031
1032
    // Treat the initialization of SearchCandidateFinder as taking N^2/64 (rounded up) iterations
1033
    // (largely due to the cost of constructing the internal sorted-by-feerate DepGraph inside
1034
    // SearchCandidateFinder), a rough approximation based on benchmark. If we don't have that
1035
    // many, don't start it.
1036
0
    uint64_t start_iterations = (uint64_t{depgraph.TxCount()} * depgraph.TxCount() + 63) / 64;
1037
0
    if (iterations_left > start_iterations) {
1038
0
        iterations_left -= start_iterations;
1039
0
        src_finder.emplace(depgraph, rng_seed);
1040
0
    }
1041
1042
    /** Chunking of what remains of the old linearization. */
1043
0
    LinearizationChunking old_chunking(depgraph, old_linearization);
1044
1045
0
    while (true) {
1046
        // Find the highest-feerate prefix of the remainder of old_linearization.
1047
0
        SetInfo<SetType> best_prefix;
1048
0
        if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
1049
1050
        // Then initialize best to be either the best remaining ancestor set, or the first chunk.
1051
0
        auto best = anc_finder.FindCandidateSet();
1052
0
        if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
1053
1054
0
        uint64_t iterations_done_now = 0;
1055
0
        uint64_t max_iterations_now = 0;
1056
0
        if (src_finder) {
1057
            // Treat the invocation of SearchCandidateFinder::FindCandidateSet() as costing N/4
1058
            // up-front (rounded up) iterations (largely due to the cost of connected-component
1059
            // splitting), a rough approximation based on benchmarks.
1060
0
            uint64_t base_iterations = (anc_finder.NumRemaining() + 3) / 4;
1061
0
            if (iterations_left > base_iterations) {
1062
                // Invoke bounded search to update best, with up to half of our remaining
1063
                // iterations as limit.
1064
0
                iterations_left -= base_iterations;
1065
0
                max_iterations_now = (iterations_left + 1) / 2;
1066
0
                std::tie(best, iterations_done_now) = src_finder->FindCandidateSet(max_iterations_now, best);
1067
0
                iterations_left -= iterations_done_now;
1068
0
            }
1069
0
        }
1070
1071
0
        if (iterations_done_now == max_iterations_now) {
1072
0
            optimal = false;
1073
            // If the search result is not (guaranteed to be) optimal, run intersections to make
1074
            // sure we don't pick something that makes us unable to reach further diagram points
1075
            // of the old linearization.
1076
0
            if (old_chunking.NumChunksLeft() > 0) {
1077
0
                best = old_chunking.IntersectPrefixes(best);
1078
0
            }
1079
0
        }
1080
1081
        // Add to output in topological order.
1082
0
        depgraph.AppendTopo(linearization, best.transactions);
1083
1084
        // Update state to reflect best is no longer to be linearized.
1085
0
        anc_finder.MarkDone(best.transactions);
1086
0
        if (anc_finder.AllDone()) break;
1087
0
        if (src_finder) src_finder->MarkDone(best.transactions);
1088
0
        if (old_chunking.NumChunksLeft() > 0) {
1089
0
            old_chunking.MarkDone(best.transactions);
1090
0
        }
1091
0
    }
1092
1093
0
    return {std::move(linearization), optimal};
1094
0
}
1095
1096
/** Improve a given linearization.
1097
 *
1098
 * @param[in]     depgraph       Dependency graph of the cluster being linearized.
1099
 * @param[in,out] linearization  On input, an existing linearization for depgraph. On output, a
1100
 *                               potentially better linearization for the same graph.
1101
 *
1102
 * Postlinearization guarantees:
1103
 * - The resulting chunks are connected.
1104
 * - If the input has a tree shape (either all transactions have at most one child, or all
1105
 *   transactions have at most one parent), the result is optimal.
1106
 * - Given a linearization L1 and a leaf transaction T in it. Let L2 be L1 with T moved to the end,
1107
 *   optionally with its fee increased. Let L3 be the postlinearization of L2. L3 will be at least
1108
 *   as good as L1. This means that replacing transactions with same-size higher-fee transactions
1109
 *   will not worsen linearizations through a "drop conflicts, append new transactions,
1110
 *   postlinearize" process.
1111
 */
1112
template<typename SetType>
1113
void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization)
1114
0
{
1115
    // This algorithm performs a number of passes (currently 2); the even ones operate from back to
1116
    // front, the odd ones from front to back. Each results in an equal-or-better linearization
1117
    // than the one started from.
1118
    // - One pass in either direction guarantees that the resulting chunks are connected.
1119
    // - Each direction corresponds to one shape of tree being linearized optimally (forward passes
1120
    //   guarantee this for graphs where each transaction has at most one child; backward passes
1121
    //   guarantee this for graphs where each transaction has at most one parent).
1122
    // - Starting with a backward pass guarantees the moved-tree property.
1123
    //
1124
    // During an odd (forward) pass, the high-level operation is:
1125
    // - Start with an empty list of groups L=[].
1126
    // - For every transaction i in the old linearization, from front to back:
1127
    //   - Append a new group C=[i], containing just i, to the back of L.
1128
    //   - While L has at least one group before C, and the group immediately before C has feerate
1129
    //     lower than C:
1130
    //     - If C depends on P:
1131
    //       - Merge P into C, making C the concatenation of P+C, continuing with the combined C.
1132
    //     - Otherwise:
1133
    //       - Swap P with C, continuing with the now-moved C.
1134
    // - The output linearization is the concatenation of the groups in L.
1135
    //
1136
    // During even (backward) passes, i iterates from the back to the front of the existing
1137
    // linearization, and new groups are prepended instead of appended to the list L. To enable
1138
    // more code reuse, both passes append groups, but during even passes the meanings of
1139
    // parent/child, and of high/low feerate are reversed, and the final concatenation is reversed
1140
    // on output.
1141
    //
1142
    // In the implementation below, the groups are represented by singly-linked lists (pointing
1143
    // from the back to the front), which are themselves organized in a singly-linked circular
1144
    // list (each group pointing to its predecessor, with a special sentinel group at the front
1145
    // that points back to the last group).
1146
    //
1147
    // Information about transaction t is stored in entries[t + 1], while the sentinel is in
1148
    // entries[0].
1149
1150
    /** Index of the sentinel in the entries array below. */
1151
0
    static constexpr ClusterIndex SENTINEL{0};
1152
    /** Indicator that a group has no previous transaction. */
1153
0
    static constexpr ClusterIndex NO_PREV_TX{0};
1154
1155
1156
    /** Data structure per transaction entry. */
1157
0
    struct TxEntry
1158
0
    {
1159
        /** The index of the previous transaction in this group; NO_PREV_TX if this is the first
1160
         *  entry of a group. */
1161
0
        ClusterIndex prev_tx;
1162
1163
        // The fields below are only used for transactions that are the last one in a group
1164
        // (referred to as tail transactions below).
1165
1166
        /** Index of the first transaction in this group, possibly itself. */
1167
0
        ClusterIndex first_tx;
1168
        /** Index of the last transaction in the previous group. The first group (the sentinel)
1169
         *  points back to the last group here, making it a singly-linked circular list. */
1170
0
        ClusterIndex prev_group;
1171
        /** All transactions in the group. Empty for the sentinel. */
1172
0
        SetType group;
1173
        /** All dependencies of the group (descendants in even passes; ancestors in odd ones). */
1174
0
        SetType deps;
1175
        /** The combined fee/size of transactions in the group. Fee is negated in even passes. */
1176
0
        FeeFrac feerate;
1177
0
    };
1178
1179
    // As an example, consider the state corresponding to the linearization [1,0,3,2], with
1180
    // groups [1,0,3] and [2], in an odd pass. The linked lists would be:
1181
    //
1182
    //                                        +-----+
1183
    //                                 0<-P-- | 0 S | ---\     Legend:
1184
    //                                        +-----+    |
1185
    //                                           ^       |     - digit in box: entries index
1186
    //             /--------------F---------+    G       |       (note: one more than tx value)
1187
    //             v                         \   |       |     - S: sentinel group
1188
    //          +-----+        +-----+        +-----+    |          (empty feerate)
1189
    //   0<-P-- | 2   | <--P-- | 1   | <--P-- | 4 T |    |     - T: tail transaction, contains
1190
    //          +-----+        +-----+        +-----+    |          fields beyond prev_tv.
1191
    //                                           ^       |     - P: prev_tx reference
1192
    //                                           G       G     - F: first_tx reference
1193
    //                                           |       |     - G: prev_group reference
1194
    //                                        +-----+    |
1195
    //                                 0<-P-- | 3 T | <--/
1196
    //                                        +-----+
1197
    //                                         ^   |
1198
    //                                         \-F-/
1199
    //
1200
    // During an even pass, the diagram above would correspond to linearization [2,3,0,1], with
1201
    // groups [2] and [3,0,1].
1202
1203
0
    std::vector<TxEntry> entries(depgraph.PositionRange() + 1);
1204
1205
    // Perform two passes over the linearization.
1206
0
    for (int pass = 0; pass < 2; ++pass) {
1207
0
        int rev = !(pass & 1);
1208
        // Construct a sentinel group, identifying the start of the list.
1209
0
        entries[SENTINEL].prev_group = SENTINEL;
1210
0
        Assume(entries[SENTINEL].feerate.IsEmpty());
1211
1212
        // Iterate over all elements in the existing linearization.
1213
0
        for (ClusterIndex i = 0; i < linearization.size(); ++i) {
1214
            // Even passes are from back to front; odd passes from front to back.
1215
0
            ClusterIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
1216
            // Construct a new group containing just idx. In even passes, the meaning of
1217
            // parent/child and high/low feerate are swapped.
1218
0
            ClusterIndex cur_group = idx + 1;
1219
0
            entries[cur_group].group = SetType::Singleton(idx);
1220
0
            entries[cur_group].deps = rev ? depgraph.Descendants(idx): depgraph.Ancestors(idx);
1221
0
            entries[cur_group].feerate = depgraph.FeeRate(idx);
1222
0
            if (rev) entries[cur_group].feerate.fee = -entries[cur_group].feerate.fee;
1223
0
            entries[cur_group].prev_tx = NO_PREV_TX; // No previous transaction in group.
1224
0
            entries[cur_group].first_tx = cur_group; // Transaction itself is first of group.
1225
            // Insert the new group at the back of the groups linked list.
1226
0
            entries[cur_group].prev_group = entries[SENTINEL].prev_group;
1227
0
            entries[SENTINEL].prev_group = cur_group;
1228
1229
            // Start merge/swap cycle.
1230
0
            ClusterIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
1231
0
            ClusterIndex prev_group = entries[cur_group].prev_group;
1232
            // Continue as long as the current group has higher feerate than the previous one.
1233
0
            while (entries[cur_group].feerate >> entries[prev_group].feerate) {
1234
                // prev_group/cur_group/next_group refer to (the last transactions of) 3
1235
                // consecutive entries in groups list.
1236
0
                Assume(cur_group == entries[next_group].prev_group);
1237
0
                Assume(prev_group == entries[cur_group].prev_group);
1238
                // The sentinel has empty feerate, which is neither higher or lower than other
1239
                // feerates. Thus, the while loop we are in here guarantees that cur_group and
1240
                // prev_group are not the sentinel.
1241
0
                Assume(cur_group != SENTINEL);
1242
0
                Assume(prev_group != SENTINEL);
1243
0
                if (entries[cur_group].deps.Overlaps(entries[prev_group].group)) {
1244
                    // There is a dependency between cur_group and prev_group; merge prev_group
1245
                    // into cur_group. The group/deps/feerate fields of prev_group remain unchanged
1246
                    // but become unused.
1247
0
                    entries[cur_group].group |= entries[prev_group].group;
1248
0
                    entries[cur_group].deps |= entries[prev_group].deps;
1249
0
                    entries[cur_group].feerate += entries[prev_group].feerate;
1250
                    // Make the first of the current group point to the tail of the previous group.
1251
0
                    entries[entries[cur_group].first_tx].prev_tx = prev_group;
1252
                    // The first of the previous group becomes the first of the newly-merged group.
1253
0
                    entries[cur_group].first_tx = entries[prev_group].first_tx;
1254
                    // The previous group becomes whatever group was before the former one.
1255
0
                    prev_group = entries[prev_group].prev_group;
1256
0
                    entries[cur_group].prev_group = prev_group;
1257
0
                } else {
1258
                    // There is no dependency between cur_group and prev_group; swap them.
1259
0
                    ClusterIndex preprev_group = entries[prev_group].prev_group;
1260
                    // If PP, P, C, N were the old preprev, prev, cur, next groups, then the new
1261
                    // layout becomes [PP, C, P, N]. Update prev_groups to reflect that order.
1262
0
                    entries[next_group].prev_group = prev_group;
1263
0
                    entries[prev_group].prev_group = cur_group;
1264
0
                    entries[cur_group].prev_group = preprev_group;
1265
                    // The current group remains the same, but the groups before/after it have
1266
                    // changed.
1267
0
                    next_group = prev_group;
1268
0
                    prev_group = preprev_group;
1269
0
                }
1270
0
            }
1271
0
        }
1272
1273
        // Convert the entries back to linearization (overwriting the existing one).
1274
0
        ClusterIndex cur_group = entries[0].prev_group;
1275
0
        ClusterIndex done = 0;
1276
0
        while (cur_group != SENTINEL) {
1277
0
            ClusterIndex cur_tx = cur_group;
1278
            // Traverse the transactions of cur_group (from back to front), and write them in the
1279
            // same order during odd passes, and reversed (front to back) in even passes.
1280
0
            if (rev) {
1281
0
                do {
1282
0
                    *(linearization.begin() + (done++)) = cur_tx - 1;
1283
0
                    cur_tx = entries[cur_tx].prev_tx;
1284
0
                } while (cur_tx != NO_PREV_TX);
1285
0
            } else {
1286
0
                do {
1287
0
                    *(linearization.end() - (++done)) = cur_tx - 1;
1288
0
                    cur_tx = entries[cur_tx].prev_tx;
1289
0
                } while (cur_tx != NO_PREV_TX);
1290
0
            }
1291
0
            cur_group = entries[cur_group].prev_group;
1292
0
        }
1293
0
        Assume(done == linearization.size());
1294
0
    }
1295
0
}
1296
1297
/** Merge two linearizations for the same cluster into one that is as good as both.
1298
 *
1299
 * Complexity: O(N^2) where N=depgraph.TxCount(); O(N) if both inputs are identical.
1300
 */
1301
template<typename SetType>
1302
std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> lin1, Span<const ClusterIndex> lin2)
1303
0
{
1304
0
    Assume(lin1.size() == depgraph.TxCount());
1305
0
    Assume(lin2.size() == depgraph.TxCount());
1306
1307
    /** Chunkings of what remains of both input linearizations. */
1308
0
    LinearizationChunking chunking1(depgraph, lin1), chunking2(depgraph, lin2);
1309
    /** Output linearization. */
1310
0
    std::vector<ClusterIndex> ret;
1311
0
    if (depgraph.TxCount() == 0) return ret;
1312
0
    ret.reserve(depgraph.TxCount());
1313
1314
0
    while (true) {
1315
        // As long as we are not done, both linearizations must have chunks left.
1316
0
        Assume(chunking1.NumChunksLeft() > 0);
1317
0
        Assume(chunking2.NumChunksLeft() > 0);
1318
        // Find the set to output by taking the best remaining chunk, and then intersecting it with
1319
        // prefixes of remaining chunks of the other linearization.
1320
0
        SetInfo<SetType> best;
1321
0
        const auto& lin1_firstchunk = chunking1.GetChunk(0);
1322
0
        const auto& lin2_firstchunk = chunking2.GetChunk(0);
1323
0
        if (lin2_firstchunk.feerate >> lin1_firstchunk.feerate) {
1324
0
            best = chunking1.IntersectPrefixes(lin2_firstchunk);
1325
0
        } else {
1326
0
            best = chunking2.IntersectPrefixes(lin1_firstchunk);
1327
0
        }
1328
        // Append the result to the output and mark it as done.
1329
0
        depgraph.AppendTopo(ret, best.transactions);
1330
0
        chunking1.MarkDone(best.transactions);
1331
0
        if (chunking1.NumChunksLeft() == 0) break;
1332
0
        chunking2.MarkDone(best.transactions);
1333
0
    }
1334
1335
0
    Assume(ret.size() == depgraph.TxCount());
1336
0
    return ret;
1337
0
}
1338
1339
} // namespace cluster_linearize
1340
1341
#endif // BITCOIN_CLUSTER_LINEARIZE_H