/root/bitcoin/src/bip324.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2023 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <bip324.h> |
6 | | |
7 | | #include <chainparams.h> |
8 | | #include <crypto/chacha20.h> |
9 | | #include <crypto/chacha20poly1305.h> |
10 | | #include <crypto/hkdf_sha256_32.h> |
11 | | #include <key.h> |
12 | | #include <pubkey.h> |
13 | | #include <random.h> |
14 | | #include <span.h> |
15 | | #include <support/cleanse.h> |
16 | | #include <uint256.h> |
17 | | |
18 | | #include <algorithm> |
19 | | #include <assert.h> |
20 | | #include <cstdint> |
21 | | #include <cstddef> |
22 | | #include <iterator> |
23 | | #include <string> |
24 | | |
25 | | BIP324Cipher::BIP324Cipher(const CKey& key, Span<const std::byte> ent32) noexcept : |
26 | 0 | m_key(key) |
27 | 0 | { |
28 | 0 | m_our_pubkey = m_key.EllSwiftCreate(ent32); |
29 | 0 | } |
30 | | |
31 | | BIP324Cipher::BIP324Cipher(const CKey& key, const EllSwiftPubKey& pubkey) noexcept : |
32 | 0 | m_key(key), m_our_pubkey(pubkey) {} |
33 | | |
34 | | void BIP324Cipher::Initialize(const EllSwiftPubKey& their_pubkey, bool initiator, bool self_decrypt) noexcept |
35 | 0 | { |
36 | | // Determine salt (fixed string + network magic bytes) |
37 | 0 | const auto& message_header = Params().MessageStart(); |
38 | 0 | std::string salt = std::string{"bitcoin_v2_shared_secret"} + std::string(std::begin(message_header), std::end(message_header)); |
39 | | |
40 | | // Perform ECDH to derive shared secret. |
41 | 0 | ECDHSecret ecdh_secret = m_key.ComputeBIP324ECDHSecret(their_pubkey, m_our_pubkey, initiator); |
42 | | |
43 | | // Derive encryption keys from shared secret, and initialize stream ciphers and AEADs. |
44 | 0 | bool side = (initiator != self_decrypt); |
45 | 0 | CHKDF_HMAC_SHA256_L32 hkdf(UCharCast(ecdh_secret.data()), ecdh_secret.size(), salt); |
46 | 0 | std::array<std::byte, 32> hkdf_32_okm; |
47 | 0 | hkdf.Expand32("initiator_L", UCharCast(hkdf_32_okm.data())); |
48 | 0 | (side ? m_send_l_cipher : m_recv_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); |
49 | 0 | hkdf.Expand32("initiator_P", UCharCast(hkdf_32_okm.data())); |
50 | 0 | (side ? m_send_p_cipher : m_recv_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); |
51 | 0 | hkdf.Expand32("responder_L", UCharCast(hkdf_32_okm.data())); |
52 | 0 | (side ? m_recv_l_cipher : m_send_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); |
53 | 0 | hkdf.Expand32("responder_P", UCharCast(hkdf_32_okm.data())); |
54 | 0 | (side ? m_recv_p_cipher : m_send_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL); |
55 | | |
56 | | // Derive garbage terminators from shared secret. |
57 | 0 | hkdf.Expand32("garbage_terminators", UCharCast(hkdf_32_okm.data())); |
58 | 0 | std::copy(std::begin(hkdf_32_okm), std::begin(hkdf_32_okm) + GARBAGE_TERMINATOR_LEN, |
59 | 0 | (initiator ? m_send_garbage_terminator : m_recv_garbage_terminator).begin()); |
60 | 0 | std::copy(std::end(hkdf_32_okm) - GARBAGE_TERMINATOR_LEN, std::end(hkdf_32_okm), |
61 | 0 | (initiator ? m_recv_garbage_terminator : m_send_garbage_terminator).begin()); |
62 | | |
63 | | // Derive session id from shared secret. |
64 | 0 | hkdf.Expand32("session_id", UCharCast(m_session_id.data())); |
65 | | |
66 | | // Wipe all variables that contain information which could be used to re-derive encryption keys. |
67 | 0 | memory_cleanse(ecdh_secret.data(), ecdh_secret.size()); |
68 | 0 | memory_cleanse(hkdf_32_okm.data(), sizeof(hkdf_32_okm)); |
69 | 0 | memory_cleanse(&hkdf, sizeof(hkdf)); |
70 | 0 | m_key = CKey(); |
71 | 0 | } |
72 | | |
73 | | void BIP324Cipher::Encrypt(Span<const std::byte> contents, Span<const std::byte> aad, bool ignore, Span<std::byte> output) noexcept |
74 | 0 | { |
75 | 0 | assert(output.size() == contents.size() + EXPANSION); |
76 | | |
77 | | // Encrypt length. |
78 | 0 | std::byte len[LENGTH_LEN]; |
79 | 0 | len[0] = std::byte{(uint8_t)(contents.size() & 0xFF)}; |
80 | 0 | len[1] = std::byte{(uint8_t)((contents.size() >> 8) & 0xFF)}; |
81 | 0 | len[2] = std::byte{(uint8_t)((contents.size() >> 16) & 0xFF)}; |
82 | 0 | m_send_l_cipher->Crypt(len, output.first(LENGTH_LEN)); |
83 | | |
84 | | // Encrypt plaintext. |
85 | 0 | std::byte header[HEADER_LEN] = {ignore ? IGNORE_BIT : std::byte{0}}; |
86 | 0 | m_send_p_cipher->Encrypt(header, contents, aad, output.subspan(LENGTH_LEN)); |
87 | 0 | } |
88 | | |
89 | | uint32_t BIP324Cipher::DecryptLength(Span<const std::byte> input) noexcept |
90 | 0 | { |
91 | 0 | assert(input.size() == LENGTH_LEN); |
92 | | |
93 | 0 | std::byte buf[LENGTH_LEN]; |
94 | | // Decrypt length |
95 | 0 | m_recv_l_cipher->Crypt(input, buf); |
96 | | // Convert to number. |
97 | 0 | return uint32_t(buf[0]) + (uint32_t(buf[1]) << 8) + (uint32_t(buf[2]) << 16); |
98 | 0 | } |
99 | | |
100 | | bool BIP324Cipher::Decrypt(Span<const std::byte> input, Span<const std::byte> aad, bool& ignore, Span<std::byte> contents) noexcept |
101 | 0 | { |
102 | 0 | assert(input.size() + LENGTH_LEN == contents.size() + EXPANSION); |
103 | | |
104 | 0 | std::byte header[HEADER_LEN]; |
105 | 0 | if (!m_recv_p_cipher->Decrypt(input, aad, header, contents)) return false; |
106 | | |
107 | 0 | ignore = (header[0] & IGNORE_BIT) == IGNORE_BIT; |
108 | 0 | return true; |
109 | 0 | } |