Coverage Report

Created: 2025-03-27 15:35

/root/bitcoin/src/netaddress.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <netaddress.h>
7
8
#include <crypto/common.h>
9
#include <crypto/sha3.h>
10
#include <hash.h>
11
#include <prevector.h>
12
#include <tinyformat.h>
13
#include <util/strencodings.h>
14
#include <util/string.h>
15
16
#include <algorithm>
17
#include <array>
18
#include <cstdint>
19
#include <ios>
20
#include <iterator>
21
#include <tuple>
22
23
using util::ContainsNoNUL;
24
using util::HasPrefix;
25
26
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
27
20.5M
{
28
20.5M
    switch (m_net) {
29
3.51M
    case NET_IPV4:
30
3.51M
        return BIP155Network::IPV4;
31
5.11M
    case NET_IPV6:
32
5.11M
        return BIP155Network::IPV6;
33
3.62M
    case NET_ONION:
34
3.62M
        return BIP155Network::TORV3;
35
4.67M
    case NET_I2P:
36
4.67M
        return BIP155Network::I2P;
37
3.62M
    case NET_CJDNS:
38
3.62M
        return BIP155Network::CJDNS;
39
0
    case NET_INTERNAL:   // should have been handled before calling this function
40
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
41
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
42
0
        assert(false);
43
20.5M
    } // no default case, so the compiler can warn about missing cases
44
45
0
    assert(false);
46
0
}
47
48
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
49
39.4M
{
50
39.4M
    switch (possible_bip155_net) {
51
5.64M
    case BIP155Network::IPV4:
52
5.64M
        if (address_size == ADDR_IPV4_SIZE) {
53
5.64M
            m_net = NET_IPV4;
54
5.64M
            return true;
55
5.64M
        }
56
283
        throw std::ios_base::failure(
57
283
            strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
58
283
                      ADDR_IPV4_SIZE));
59
11.8M
    case BIP155Network::IPV6:
60
11.8M
        if (address_size == ADDR_IPV6_SIZE) {
61
11.8M
            m_net = NET_IPV6;
62
11.8M
            return true;
63
11.8M
        }
64
278
        throw std::ios_base::failure(
65
278
            strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
66
278
                      ADDR_IPV6_SIZE));
67
5.68M
    case BIP155Network::TORV3:
68
5.68M
        if (address_size == ADDR_TORV3_SIZE) {
69
5.68M
            m_net = NET_ONION;
70
5.68M
            return true;
71
5.68M
        }
72
172
        throw std::ios_base::failure(
73
172
            strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
74
172
                      ADDR_TORV3_SIZE));
75
8.22M
    case BIP155Network::I2P:
76
8.22M
        if (address_size == ADDR_I2P_SIZE) {
77
8.22M
            m_net = NET_I2P;
78
8.22M
            return true;
79
8.22M
        }
80
176
        throw std::ios_base::failure(
81
176
            strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
82
176
                      ADDR_I2P_SIZE));
83
5.77M
    case BIP155Network::CJDNS:
84
5.77M
        if (address_size == ADDR_CJDNS_SIZE) {
85
5.77M
            m_net = NET_CJDNS;
86
5.77M
            return true;
87
5.77M
        }
88
129
        throw std::ios_base::failure(
89
129
            strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
90
129
                      ADDR_CJDNS_SIZE));
91
39.4M
    }
92
93
    // Don't throw on addresses with unknown network ids (maybe from the future).
94
    // Instead silently drop them and have the unserialization code consume
95
    // subsequent ones which may be known to us.
96
2.22M
    return false;
97
39.4M
}
98
99
/**
100
 * Construct an unspecified IPv6 network address (::/128).
101
 *
102
 * @note This address is considered invalid by CNetAddr::IsValid()
103
 */
104
98.7M
CNetAddr::CNetAddr() = default;
105
106
void CNetAddr::SetIP(const CNetAddr& ipIn)
107
817
{
108
    // Size check.
109
817
    switch (ipIn.m_net) {
110
274
    case NET_IPV4:
111
274
        assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
112
274
        break;
113
274
    case NET_IPV6:
114
242
        assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
115
242
        break;
116
242
    case NET_ONION:
117
91
        assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
118
91
        break;
119
91
    case NET_I2P:
120
23
        assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
121
23
        break;
122
26
    case NET_CJDNS:
123
26
        assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
124
26
        break;
125
161
    case NET_INTERNAL:
126
161
        assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
127
161
        break;
128
161
    case NET_UNROUTABLE:
129
0
    case NET_MAX:
130
0
        assert(false);
131
817
    } // no default case, so the compiler can warn about missing cases
132
133
817
    m_net = ipIn.m_net;
134
817
    m_addr = ipIn.m_addr;
135
817
}
136
137
void CNetAddr::SetLegacyIPv6(std::span<const uint8_t> ipv6)
138
1.25M
{
139
1.25M
    assert(ipv6.size() == ADDR_IPV6_SIZE);
140
141
1.25M
    size_t skip{0};
142
143
1.25M
    if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
144
        // IPv4-in-IPv6
145
3.96k
        m_net = NET_IPV4;
146
3.96k
        skip = sizeof(IPV4_IN_IPV6_PREFIX);
147
1.24M
    } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
148
        // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
149
        // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
150
        // will not be gossiped, but continue reading next addresses from the stream.
151
2.30k
        m_net = NET_IPV6;
152
2.30k
        m_addr.assign(ADDR_IPV6_SIZE, 0x0);
153
2.30k
        return;
154
1.24M
    } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
155
        // Internal-in-IPv6
156
1.84k
        m_net = NET_INTERNAL;
157
1.84k
        skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
158
1.24M
    } else {
159
        // IPv6
160
1.24M
        m_net = NET_IPV6;
161
1.24M
    }
162
163
1.25M
    m_addr.assign(ipv6.begin() + skip, ipv6.end());
164
1.25M
}
165
166
/**
167
 * Create an "internal" address that represents a name or FQDN. AddrMan uses
168
 * these fake addresses to keep track of which DNS seeds were used.
169
 * @returns Whether or not the operation was successful.
170
 * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
171
 */
172
bool CNetAddr::SetInternal(const std::string &name)
173
2.34M
{
174
2.34M
    if (name.empty()) {
175
76
        return false;
176
76
    }
177
2.34M
    m_net = NET_INTERNAL;
178
2.34M
    unsigned char hash[32] = {};
179
2.34M
    CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
180
2.34M
    m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
181
2.34M
    return true;
182
2.34M
}
183
184
namespace torv3 {
185
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175
186
static constexpr size_t CHECKSUM_LEN = 2;
187
static const unsigned char VERSION[] = {3};
188
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
189
190
static void Checksum(std::span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
191
307k
{
192
    // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
193
307k
    static const unsigned char prefix[] = ".onion checksum";
194
307k
    static constexpr size_t prefix_len = 15;
195
196
307k
    SHA3_256 hasher;
197
198
307k
    hasher.Write(std::span{prefix}.first(prefix_len));
199
307k
    hasher.Write(addr_pubkey);
200
307k
    hasher.Write(VERSION);
201
202
307k
    uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
203
204
307k
    hasher.Finalize(checksum_full);
205
206
307k
    memcpy(checksum, checksum_full, sizeof(checksum));
207
307k
}
208
209
}; // namespace torv3
210
211
bool CNetAddr::SetSpecial(const std::string& addr)
212
3.07M
{
213
3.07M
    if (!ContainsNoNUL(addr)) {
214
280k
        return false;
215
280k
    }
216
217
2.79M
    if (SetTor(addr)) {
218
13.1k
        return true;
219
13.1k
    }
220
221
2.78M
    if (SetI2P(addr)) {
222
70.3k
        return true;
223
70.3k
    }
224
225
2.71M
    return false;
226
2.78M
}
227
228
bool CNetAddr::SetTor(const std::string& addr)
229
2.79M
{
230
2.79M
    static const char* suffix{".onion"};
231
2.79M
    static constexpr size_t suffix_len{6};
232
233
2.79M
    if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
234
2.72M
        return false;
235
2.72M
    }
236
237
71.9k
    auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
238
239
71.9k
    if (!input) {
240
53.6k
        return false;
241
53.6k
    }
242
243
18.3k
    if (input->size() == torv3::TOTAL_LEN) {
244
17.5k
        std::span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
245
17.5k
        std::span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
246
17.5k
        std::span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
247
248
17.5k
        if (!std::ranges::equal(input_version, torv3::VERSION)) {
249
929
            return false;
250
929
        }
251
252
16.5k
        uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
253
16.5k
        torv3::Checksum(input_pubkey, calculated_checksum);
254
255
16.5k
        if (!std::ranges::equal(input_checksum, calculated_checksum)) {
256
3.40k
            return false;
257
3.40k
        }
258
259
13.1k
        m_net = NET_ONION;
260
13.1k
        m_addr.assign(input_pubkey.begin(), input_pubkey.end());
261
13.1k
        return true;
262
16.5k
    }
263
264
842
    return false;
265
18.3k
}
266
267
bool CNetAddr::SetI2P(const std::string& addr)
268
2.78M
{
269
    // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
270
2.78M
    static constexpr size_t b32_len{52};
271
2.78M
    static const char* suffix{".b32.i2p"};
272
2.78M
    static constexpr size_t suffix_len{8};
273
274
2.78M
    if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
275
2.67M
        return false;
276
2.67M
    }
277
278
    // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
279
    // can decode it.
280
106k
    const std::string b32_padded = addr.substr(0, b32_len) + "====";
281
282
106k
    auto address_bytes = DecodeBase32(b32_padded);
283
284
106k
    if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
285
35.7k
        return false;
286
35.7k
    }
287
288
70.3k
    m_net = NET_I2P;
289
70.3k
    m_addr.assign(address_bytes->begin(), address_bytes->end());
290
291
70.3k
    return true;
292
106k
}
293
294
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
295
82.4k
{
296
82.4k
    m_net = NET_IPV4;
297
82.4k
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
298
82.4k
    m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
299
82.4k
}
300
301
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
302
76.0k
{
303
76.0k
    SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
304
76.0k
    m_scope_id = scope;
305
76.0k
}
306
307
bool CNetAddr::IsBindAny() const
308
689
{
309
689
    if (!IsIPv4() && !IsIPv6()) {
310
301
        return false;
311
301
    }
312
960
    return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
313
689
}
314
315
bool CNetAddr::IsRFC1918() const
316
600M
{
317
600M
    return IsIPv4() && (
318
100M
        m_addr[0] == 10 ||
319
100M
        (m_addr[0] == 192 && m_addr[1] == 168) ||
320
100M
        (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
321
600M
}
322
323
bool CNetAddr::IsRFC2544() const
324
600M
{
325
600M
    return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
326
600M
}
327
328
bool CNetAddr::IsRFC3927() const
329
600M
{
330
600M
    return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
331
600M
}
332
333
bool CNetAddr::IsRFC6598() const
334
600M
{
335
600M
    return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
336
600M
}
337
338
bool CNetAddr::IsRFC5737() const
339
600M
{
340
600M
    return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
341
99.7M
                        HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
342
99.7M
                        HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
343
600M
}
344
345
bool CNetAddr::IsRFC3849() const
346
640M
{
347
640M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
348
640M
}
349
350
bool CNetAddr::IsRFC3964() const
351
201M
{
352
201M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
353
201M
}
354
355
bool CNetAddr::IsRFC6052() const
356
202M
{
357
202M
    return IsIPv6() &&
358
202M
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
359
80.4M
                                                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
360
202M
}
361
362
bool CNetAddr::IsRFC4380() const
363
220M
{
364
220M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
365
220M
}
366
367
bool CNetAddr::IsRFC4862() const
368
600M
{
369
600M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
370
212M
                                                                0x00, 0x00, 0x00, 0x00});
371
600M
}
372
373
bool CNetAddr::IsRFC4193() const
374
600M
{
375
600M
    return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
376
600M
}
377
378
bool CNetAddr::IsRFC6145() const
379
202M
{
380
202M
    return IsIPv6() &&
381
202M
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
382
80.4M
                                                     0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
383
202M
}
384
385
bool CNetAddr::IsRFC4843() const
386
600M
{
387
600M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
388
600M
           (m_addr[3] & 0xF0) == 0x10;
389
600M
}
390
391
bool CNetAddr::IsRFC7343() const
392
600M
{
393
600M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
394
600M
           (m_addr[3] & 0xF0) == 0x20;
395
600M
}
396
397
bool CNetAddr::IsHeNet() const
398
11.2M
{
399
11.2M
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
400
11.2M
}
401
402
bool CNetAddr::IsLocal() const
403
651M
{
404
    // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
405
651M
    if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
406
579k
        return true;
407
579k
    }
408
409
    // IPv6 loopback (::1/128)
410
650M
    static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
411
650M
    if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
412
221k
        return true;
413
221k
    }
414
415
650M
    return false;
416
650M
}
417
418
/**
419
 * @returns Whether or not this network address is a valid address that @a could
420
 *          be used to refer to an actual host.
421
 *
422
 * @note A valid address may or may not be publicly routable on the global
423
 *       internet. As in, the set of valid addresses is a superset of the set of
424
 *       publicly routable addresses.
425
 *
426
 * @see CNetAddr::IsRoutable()
427
 */
428
bool CNetAddr::IsValid() const
429
667M
{
430
    // unspecified IPv6 address (::/128)
431
667M
    unsigned char ipNone6[16] = {};
432
667M
    if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
433
27.3M
        return false;
434
27.3M
    }
435
436
640M
    if (IsCJDNS() && !HasCJDNSPrefix()) {
437
2.76k
        return false;
438
2.76k
    }
439
440
    // documentation IPv6 address
441
640M
    if (IsRFC3849())
442
15.6k
        return false;
443
444
640M
    if (IsInternal())
445
2.19M
        return false;
446
447
638M
    if (IsIPv4()) {
448
106M
        const uint32_t addr = ReadBE32(m_addr.data());
449
106M
        if (addr == INADDR_ANY || addr == INADDR_NONE) {
450
488k
            return false;
451
488k
        }
452
106M
    }
453
454
637M
    return true;
455
638M
}
456
457
/**
458
 * @returns Whether or not this network address is publicly routable on the
459
 *          global internet.
460
 *
461
 * @note A routable address is always valid. As in, the set of routable addresses
462
 *       is a subset of the set of valid addresses.
463
 *
464
 * @see CNetAddr::IsValid()
465
 */
466
bool CNetAddr::IsRoutable() const
467
603M
{
468
603M
    return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
469
603M
}
470
471
/**
472
 * @returns Whether or not this is a dummy address that represents a name.
473
 *
474
 * @see CNetAddr::SetInternal(const std::string &)
475
 */
476
bool CNetAddr::IsInternal() const
477
1.63G
{
478
1.63G
   return m_net == NET_INTERNAL;
479
1.63G
}
480
481
bool CNetAddr::IsAddrV1Compatible() const
482
170M
{
483
170M
    switch (m_net) {
484
17.8M
    case NET_IPV4:
485
70.3M
    case NET_IPV6:
486
70.8M
    case NET_INTERNAL:
487
70.8M
        return true;
488
29.4M
    case NET_ONION:
489
70.4M
    case NET_I2P:
490
100M
    case NET_CJDNS:
491
100M
        return false;
492
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
493
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
494
0
        assert(false);
495
170M
    } // no default case, so the compiler can warn about missing cases
496
497
0
    assert(false);
498
0
}
499
500
enum Network CNetAddr::GetNetwork() const
501
146M
{
502
146M
    if (IsInternal())
503
2.06M
        return NET_INTERNAL;
504
505
144M
    if (!IsRoutable())
506
1.20M
        return NET_UNROUTABLE;
507
508
143M
    return m_net;
509
144M
}
510
511
static std::string IPv4ToString(std::span<const uint8_t> a)
512
247k
{
513
247k
    return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
514
247k
}
515
516
// Return an IPv6 address text representation with zero compression as described in RFC 5952
517
// ("A Recommendation for IPv6 Address Text Representation").
518
static std::string IPv6ToString(std::span<const uint8_t> a, uint32_t scope_id)
519
899k
{
520
899k
    assert(a.size() == ADDR_IPV6_SIZE);
521
899k
    const std::array groups{
522
899k
        ReadBE16(&a[0]),
523
899k
        ReadBE16(&a[2]),
524
899k
        ReadBE16(&a[4]),
525
899k
        ReadBE16(&a[6]),
526
899k
        ReadBE16(&a[8]),
527
899k
        ReadBE16(&a[10]),
528
899k
        ReadBE16(&a[12]),
529
899k
        ReadBE16(&a[14]),
530
899k
    };
531
532
    // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
533
    // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
534
899k
    struct ZeroSpan {
535
899k
        size_t start_index{0};
536
899k
        size_t len{0};
537
899k
    };
538
539
    // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
540
    // zero sequences of equal length are found.
541
899k
    ZeroSpan longest, current;
542
8.09M
    for (size_t i{0}; i < groups.size(); ++i) {
543
7.19M
        if (groups[i] != 0) {
544
5.79M
            current = {i + 1, 0};
545
5.79M
            continue;
546
5.79M
        }
547
1.40M
        current.len += 1;
548
1.40M
        if (current.len > longest.len) {
549
1.28M
            longest = current;
550
1.28M
        }
551
1.40M
    }
552
553
899k
    std::string r;
554
899k
    r.reserve(39);
555
8.09M
    for (size_t i{0}; i < groups.size(); ++i) {
556
        // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
557
7.19M
        if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
558
1.19M
            if (i == longest.start_index) {
559
233k
                r += "::";
560
233k
            }
561
1.19M
            continue;
562
1.19M
        }
563
5.99M
        r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
564
5.99M
    }
565
566
899k
    if (scope_id != 0) {
567
22
        r += strprintf("%%%u", scope_id);
568
22
    }
569
570
899k
    return r;
571
899k
}
572
573
std::string OnionToString(std::span<const uint8_t> addr)
574
290k
{
575
290k
    uint8_t checksum[torv3::CHECKSUM_LEN];
576
290k
    torv3::Checksum(addr, checksum);
577
    // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
578
290k
    prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
579
290k
    address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
580
290k
    address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
581
290k
    return EncodeBase32(address) + ".onion";
582
290k
}
583
584
std::string CNetAddr::ToStringAddr() const
585
1.60M
{
586
1.60M
    switch (m_net) {
587
247k
    case NET_IPV4:
588
247k
        return IPv4ToString(m_addr);
589
824k
    case NET_IPV6:
590
824k
        return IPv6ToString(m_addr, m_scope_id);
591
290k
    case NET_ONION:
592
290k
        return OnionToString(m_addr);
593
165k
    case NET_I2P:
594
165k
        return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
595
74.4k
    case NET_CJDNS:
596
74.4k
        return IPv6ToString(m_addr, 0);
597
4.11k
    case NET_INTERNAL:
598
4.11k
        return EncodeBase32(m_addr) + ".internal";
599
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
600
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
601
0
        assert(false);
602
1.60M
    } // no default case, so the compiler can warn about missing cases
603
604
0
    assert(false);
605
0
}
606
607
bool operator==(const CNetAddr& a, const CNetAddr& b)
608
95.1M
{
609
95.1M
    return a.m_net == b.m_net && a.m_addr == b.m_addr;
610
95.1M
}
611
612
bool operator<(const CNetAddr& a, const CNetAddr& b)
613
6.29M
{
614
6.29M
    return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
615
6.29M
}
616
617
/**
618
 * Try to get our IPv4 address.
619
 *
620
 * @param[out] pipv4Addr The in_addr struct to which to copy.
621
 *
622
 * @returns Whether or not the operation was successful, in particular, whether
623
 *          or not our address was an IPv4 address.
624
 *
625
 * @see CNetAddr::IsIPv4()
626
 */
627
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
628
593
{
629
593
    if (!IsIPv4())
630
0
        return false;
631
593
    assert(sizeof(*pipv4Addr) == m_addr.size());
632
593
    memcpy(pipv4Addr, m_addr.data(), m_addr.size());
633
593
    return true;
634
593
}
635
636
/**
637
 * Try to get our IPv6 (or CJDNS) address.
638
 *
639
 * @param[out] pipv6Addr The in6_addr struct to which to copy.
640
 *
641
 * @returns Whether or not the operation was successful, in particular, whether
642
 *          or not our address was an IPv6 address.
643
 *
644
 * @see CNetAddr::IsIPv6()
645
 */
646
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
647
2.24k
{
648
2.24k
    if (!IsIPv6() && !IsCJDNS()) {
649
0
        return false;
650
0
    }
651
2.24k
    assert(sizeof(*pipv6Addr) == m_addr.size());
652
2.24k
    memcpy(pipv6Addr, m_addr.data(), m_addr.size());
653
2.24k
    return true;
654
2.24k
}
655
656
bool CNetAddr::HasLinkedIPv4() const
657
216M
{
658
216M
    return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
659
216M
}
660
661
uint32_t CNetAddr::GetLinkedIPv4() const
662
12.0M
{
663
12.0M
    if (IsIPv4()) {
664
11.9M
        return ReadBE32(m_addr.data());
665
11.9M
    } else if (IsRFC6052() || IsRFC6145()) {
666
        // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
667
30.8k
        return ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
668
30.8k
    } else if (IsRFC3964()) {
669
        // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
670
13.9k
        return ReadBE32(std::span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
671
15.6k
    } else if (IsRFC4380()) {
672
        // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
673
15.6k
        return ~ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
674
15.6k
    }
675
0
    assert(false);
676
0
}
677
678
Network CNetAddr::GetNetClass() const
679
156M
{
680
    // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
681
682
    // Check for "internal" first because such addresses are also !IsRoutable()
683
    // and we don't want to return NET_UNROUTABLE in that case.
684
156M
    if (IsInternal()) {
685
3.16M
        return NET_INTERNAL;
686
3.16M
    }
687
153M
    if (!IsRoutable()) {
688
1.59M
        return NET_UNROUTABLE;
689
1.59M
    }
690
152M
    if (HasLinkedIPv4()) {
691
21.2M
        return NET_IPV4;
692
21.2M
    }
693
130M
    return m_net;
694
152M
}
695
696
std::vector<unsigned char> CNetAddr::GetAddrBytes() const
697
170M
{
698
170M
    if (IsAddrV1Compatible()) {
699
70.7M
        uint8_t serialized[V1_SERIALIZATION_SIZE];
700
70.7M
        SerializeV1Array(serialized);
701
70.7M
        return {std::begin(serialized), std::end(serialized)};
702
70.7M
    }
703
100M
    return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
704
170M
}
705
706
// private extensions to enum Network, only returned by GetExtNetwork,
707
// and only used in GetReachabilityFrom
708
static const int NET_TEREDO = NET_MAX;
709
int static GetExtNetwork(const CNetAddr& addr)
710
36.3M
{
711
36.3M
    if (addr.IsRFC4380())
712
3.17k
        return NET_TEREDO;
713
36.3M
    return addr.GetNetwork();
714
36.3M
}
715
716
/** Calculates a metric for how reachable (*this) is from a given partner */
717
int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
718
18.1M
{
719
18.1M
    enum Reachability {
720
18.1M
        REACH_UNREACHABLE,
721
18.1M
        REACH_DEFAULT,
722
18.1M
        REACH_TEREDO,
723
18.1M
        REACH_IPV6_WEAK,
724
18.1M
        REACH_IPV4,
725
18.1M
        REACH_IPV6_STRONG,
726
18.1M
        REACH_PRIVATE
727
18.1M
    };
728
729
18.1M
    if (!IsRoutable() || IsInternal())
730
278
        return REACH_UNREACHABLE;
731
732
18.1M
    int ourNet = GetExtNetwork(*this);
733
18.1M
    int theirNet = GetExtNetwork(paddrPartner);
734
18.1M
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
735
736
18.1M
    switch(theirNet) {
737
2.00M
    case NET_IPV4:
738
2.00M
        switch(ourNet) {
739
1.34M
        default:       return REACH_DEFAULT;
740
662k
        case NET_IPV4: return REACH_IPV4;
741
2.00M
        }
742
13.8M
    case NET_IPV6:
743
13.8M
        switch(ourNet) {
744
129k
        default:         return REACH_DEFAULT;
745
2.44k
        case NET_TEREDO: return REACH_TEREDO;
746
4.23M
        case NET_IPV4:   return REACH_IPV4;
747
9.49M
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
748
13.8M
        }
749
1.19k
    case NET_ONION:
750
1.19k
        switch(ourNet) {
751
3
        default:         return REACH_DEFAULT;
752
2
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
753
1.18k
        case NET_ONION:    return REACH_PRIVATE;
754
1.19k
        }
755
30.4k
    case NET_I2P:
756
30.4k
        switch (ourNet) {
757
29.2k
        case NET_I2P: return REACH_PRIVATE;
758
1.24k
        default: return REACH_DEFAULT;
759
30.4k
        }
760
76.9k
    case NET_CJDNS:
761
76.9k
        switch (ourNet) {
762
396
        case NET_CJDNS: return REACH_PRIVATE;
763
76.5k
        default: return REACH_DEFAULT;
764
76.9k
        }
765
684
    case NET_TEREDO:
766
684
        switch(ourNet) {
767
119
        default:          return REACH_DEFAULT;
768
4
        case NET_TEREDO:  return REACH_TEREDO;
769
210
        case NET_IPV6:    return REACH_IPV6_WEAK;
770
351
        case NET_IPV4:    return REACH_IPV4;
771
684
        }
772
138k
    case NET_UNROUTABLE:
773
2.20M
    default:
774
2.20M
        switch(ourNet) {
775
69.1k
        default:          return REACH_DEFAULT;
776
1
        case NET_TEREDO:  return REACH_TEREDO;
777
1.15M
        case NET_IPV6:    return REACH_IPV6_WEAK;
778
976k
        case NET_IPV4:    return REACH_IPV4;
779
442
        case NET_ONION:     return REACH_PRIVATE; // either from Tor, or don't care about our address
780
2.20M
        }
781
18.1M
    }
782
18.1M
}
783
784
33.0M
CService::CService() : port(0)
785
33.0M
{
786
33.0M
}
787
788
18.8M
CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
789
18.8M
{
790
18.8M
}
791
792
20
CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
793
20
{
794
20
}
795
796
818
CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
797
818
{
798
818
}
799
800
82
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
801
82
{
802
82
    assert(addr.sin_family == AF_INET);
803
82
}
804
805
47
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
806
47
{
807
47
   assert(addr.sin6_family == AF_INET6);
808
47
}
809
810
bool CService::SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
811
134
{
812
134
    switch (paddr->sa_family) {
813
84
    case AF_INET:
814
84
        if (addrlen != sizeof(struct sockaddr_in)) return false;
815
82
        *this = CService(*(const struct sockaddr_in*)paddr);
816
82
        return true;
817
49
    case AF_INET6:
818
49
        if (addrlen != sizeof(struct sockaddr_in6)) return false;
819
47
        *this = CService(*(const struct sockaddr_in6*)paddr);
820
47
        return true;
821
1
    default:
822
1
        return false;
823
134
    }
824
134
}
825
826
sa_family_t CService::GetSAFamily() const
827
2.02k
{
828
2.02k
    switch (m_net) {
829
0
    case NET_IPV4:
830
0
        return AF_INET;
831
2.02k
    case NET_IPV6:
832
2.02k
    case NET_CJDNS:
833
2.02k
        return AF_INET6;
834
0
    default:
835
0
        return AF_UNSPEC;
836
2.02k
    }
837
2.02k
}
838
839
uint16_t CService::GetPort() const
840
74.6k
{
841
74.6k
    return port;
842
74.6k
}
843
844
bool operator==(const CService& a, const CService& b)
845
76.4M
{
846
76.4M
    return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
847
76.4M
}
848
849
bool operator<(const CService& a, const CService& b)
850
237k
{
851
237k
    return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
852
237k
}
853
854
/**
855
 * Obtain the IPv4/6 socket address this represents.
856
 *
857
 * @param[out] paddr The obtained socket address.
858
 * @param[in,out] addrlen The size, in bytes, of the address structure pointed
859
 *                        to by paddr. The value that's pointed to by this
860
 *                        parameter might change after calling this function if
861
 *                        the size of the corresponding address structure
862
 *                        changed.
863
 *
864
 * @returns Whether or not the operation was successful.
865
 */
866
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
867
2.61k
{
868
2.61k
    if (IsIPv4()) {
869
392
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
870
0
            return false;
871
392
        *addrlen = sizeof(struct sockaddr_in);
872
392
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
873
392
        memset(paddrin, 0, *addrlen);
874
392
        if (!GetInAddr(&paddrin->sin_addr))
875
0
            return false;
876
392
        paddrin->sin_family = AF_INET;
877
392
        paddrin->sin_port = htons(port);
878
392
        return true;
879
392
    }
880
2.22k
    if (IsIPv6() || IsCJDNS()) {
881
2.19k
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
882
0
            return false;
883
2.19k
        *addrlen = sizeof(struct sockaddr_in6);
884
2.19k
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
885
2.19k
        memset(paddrin6, 0, *addrlen);
886
2.19k
        if (!GetIn6Addr(&paddrin6->sin6_addr))
887
0
            return false;
888
2.19k
        paddrin6->sin6_scope_id = m_scope_id;
889
2.19k
        paddrin6->sin6_family = AF_INET6;
890
2.19k
        paddrin6->sin6_port = htons(port);
891
2.19k
        return true;
892
2.19k
    }
893
30
    return false;
894
2.22k
}
895
896
/**
897
 * @returns An identifier unique to this service's address and port number.
898
 */
899
std::vector<unsigned char> CService::GetKey() const
900
98.5M
{
901
98.5M
    auto key = GetAddrBytes();
902
98.5M
    key.push_back(port / 0x100); // most significant byte of our port
903
98.5M
    key.push_back(port & 0x0FF); // least significant byte of our port
904
98.5M
    return key;
905
98.5M
}
906
907
std::string CService::ToStringAddrPort() const
908
403k
{
909
403k
    const auto port_str = strprintf("%u", port);
910
911
403k
    if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
912
223k
        return ToStringAddr() + ":" + port_str;
913
223k
    } else {
914
180k
        return "[" + ToStringAddr() + "]:" + port_str;
915
180k
    }
916
403k
}
917
918
CSubNet::CSubNet():
919
411k
    valid(false)
920
411k
{
921
411k
    memset(netmask, 0, sizeof(netmask));
922
411k
}
923
924
249k
CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
925
249k
{
926
249k
    valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
927
249k
            (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
928
249k
    if (!valid) {
929
112k
        return;
930
112k
    }
931
932
136k
    assert(mask <= sizeof(netmask) * 8);
933
934
136k
    network = addr;
935
936
136k
    uint8_t n = mask;
937
2.00M
    for (size_t i = 0; i < network.m_addr.size(); ++i) {
938
1.86M
        const uint8_t bits = n < 8 ? n : 8;
939
1.86M
        netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
940
1.86M
        network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
941
1.86M
        n -= bits;
942
1.86M
    }
943
136k
}
944
945
/**
946
 * @returns The number of 1-bits in the prefix of the specified subnet mask. If
947
 *          the specified subnet mask is not a valid one, -1.
948
 */
949
static inline int NetmaskBits(uint8_t x)
950
10.2M
{
951
10.2M
    switch(x) {
952
2.69k
    case 0x00: return 0;
953
558k
    case 0x80: return 1;
954
3.24k
    case 0xc0: return 2;
955
42.2k
    case 0xe0: return 3;
956
1.15k
    case 0xf0: return 4;
957
7.89k
    case 0xf8: return 5;
958
2.07k
    case 0xfc: return 6;
959
1.93k
    case 0xfe: return 7;
960
9.64M
    case 0xff: return 8;
961
351
    default: return -1;
962
10.2M
    }
963
10.2M
}
964
965
2.03k
CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
966
2.03k
{
967
2.03k
    valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
968
2.03k
    if (!valid) {
969
515
        return;
970
515
    }
971
    // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
972
1.51k
    bool zeros_found = false;
973
5.43k
    for (auto b : mask.m_addr) {
974
5.43k
        const int num_bits = NetmaskBits(b);
975
5.43k
        if (num_bits == -1 || (zeros_found && num_bits != 0)) {
976
1.08k
            valid = false;
977
1.08k
            return;
978
1.08k
        }
979
4.34k
        if (num_bits < 8) {
980
2.87k
            zeros_found = true;
981
2.87k
        }
982
4.34k
    }
983
984
434
    assert(mask.m_addr.size() <= sizeof(netmask));
985
986
434
    memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
987
988
434
    network = addr;
989
990
    // Normalize network according to netmask
991
2.81k
    for (size_t x = 0; x < network.m_addr.size(); ++x) {
992
2.38k
        network.m_addr[x] &= netmask[x];
993
2.38k
    }
994
434
}
995
996
102k
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
997
102k
{
998
102k
    switch (addr.m_net) {
999
25.3k
    case NET_IPV4:
1000
70.4k
    case NET_IPV6:
1001
70.4k
        valid = true;
1002
70.4k
        assert(addr.m_addr.size() <= sizeof(netmask));
1003
70.4k
        memset(netmask, 0xFF, addr.m_addr.size());
1004
70.4k
        break;
1005
9.02k
    case NET_ONION:
1006
19.4k
    case NET_I2P:
1007
26.9k
    case NET_CJDNS:
1008
26.9k
        valid = true;
1009
26.9k
        break;
1010
4.95k
    case NET_INTERNAL:
1011
4.95k
    case NET_UNROUTABLE:
1012
4.95k
    case NET_MAX:
1013
4.95k
        return;
1014
102k
    }
1015
1016
97.3k
    network = addr;
1017
97.3k
}
1018
1019
/**
1020
 * @returns True if this subnet is valid, the specified address is valid, and
1021
 *          the specified address belongs in this subnet.
1022
 */
1023
bool CSubNet::Match(const CNetAddr &addr) const
1024
1.12M
{
1025
1.12M
    if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1026
786k
        return false;
1027
1028
340k
    switch (network.m_net) {
1029
5.59k
    case NET_IPV4:
1030
323k
    case NET_IPV6:
1031
323k
        break;
1032
2.94k
    case NET_ONION:
1033
12.7k
    case NET_I2P:
1034
16.7k
    case NET_CJDNS:
1035
16.7k
    case NET_INTERNAL:
1036
16.7k
        return addr == network;
1037
0
    case NET_UNROUTABLE:
1038
0
    case NET_MAX:
1039
0
        return false;
1040
340k
    }
1041
1042
323k
    assert(network.m_addr.size() == addr.m_addr.size());
1043
418k
    for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1044
415k
        if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1045
320k
            return false;
1046
320k
        }
1047
415k
    }
1048
3.26k
    return true;
1049
323k
}
1050
1051
std::string CSubNet::ToString() const
1052
1.18M
{
1053
1.18M
    std::string suffix;
1054
1055
1.18M
    switch (network.m_net) {
1056
124k
    case NET_IPV4:
1057
773k
    case NET_IPV6: {
1058
773k
        assert(network.m_addr.size() <= sizeof(netmask));
1059
1060
773k
        uint8_t cidr = 0;
1061
1062
11.0M
        for (size_t i = 0; i < network.m_addr.size(); ++i) {
1063
10.3M
            if (netmask[i] == 0x00) {
1064
78.7k
                break;
1065
78.7k
            }
1066
10.2M
            cidr += NetmaskBits(netmask[i]);
1067
10.2M
        }
1068
1069
773k
        suffix = strprintf("/%u", cidr);
1070
773k
        break;
1071
773k
    }
1072
223k
    case NET_ONION:
1073
343k
    case NET_I2P:
1074
412k
    case NET_CJDNS:
1075
412k
    case NET_INTERNAL:
1076
412k
    case NET_UNROUTABLE:
1077
412k
    case NET_MAX:
1078
412k
        break;
1079
1.18M
    }
1080
1081
1.18M
    return network.ToStringAddr() + suffix;
1082
1.18M
}
1083
1084
bool CSubNet::IsValid() const
1085
1.63M
{
1086
1.63M
    return valid;
1087
1.63M
}
1088
1089
bool operator==(const CSubNet& a, const CSubNet& b)
1090
10.9k
{
1091
10.9k
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1092
10.9k
}
1093
1094
bool operator<(const CSubNet& a, const CSubNet& b)
1095
642k
{
1096
642k
    return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1097
642k
}