Coverage Report

Created: 2025-04-14 16:24

/Users/mcomp/contrib/bitcoin/src/net.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8
#include <net.h>
9
10
#include <addrdb.h>
11
#include <addrman.h>
12
#include <banman.h>
13
#include <clientversion.h>
14
#include <common/args.h>
15
#include <common/netif.h>
16
#include <compat/compat.h>
17
#include <consensus/consensus.h>
18
#include <crypto/sha256.h>
19
#include <i2p.h>
20
#include <key.h>
21
#include <logging.h>
22
#include <memusage.h>
23
#include <net_permissions.h>
24
#include <netaddress.h>
25
#include <netbase.h>
26
#include <node/eviction.h>
27
#include <node/interface_ui.h>
28
#include <protocol.h>
29
#include <random.h>
30
#include <scheduler.h>
31
#include <util/fs.h>
32
#include <util/sock.h>
33
#include <util/strencodings.h>
34
#include <util/thread.h>
35
#include <util/threadinterrupt.h>
36
#include <util/trace.h>
37
#include <util/translation.h>
38
#include <util/vector.h>
39
40
#ifdef WIN32
41
#include <string.h>
42
#endif
43
44
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45
#include <ifaddrs.h>
46
#endif
47
48
#include <algorithm>
49
#include <array>
50
#include <cmath>
51
#include <cstdint>
52
#include <functional>
53
#include <optional>
54
#include <unordered_map>
55
56
TRACEPOINT_SEMAPHORE(net, closed_connection);
57
TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58
TRACEPOINT_SEMAPHORE(net, inbound_connection);
59
TRACEPOINT_SEMAPHORE(net, outbound_connection);
60
TRACEPOINT_SEMAPHORE(net, outbound_message);
61
62
/** Maximum number of block-relay-only anchor connections */
63
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
65
/** Anchor IP address database file name */
66
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67
68
// How often to dump addresses to peers.dat
69
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70
71
/** Number of DNS seeds to query when the number of connections is low. */
72
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73
74
/** Minimum number of outbound connections under which we will keep fetching our address seeds. */
75
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76
77
/** How long to delay before querying DNS seeds
78
 *
79
 * If we have more than THRESHOLD entries in addrman, then it's likely
80
 * that we got those addresses from having previously connected to the P2P
81
 * network, and that we'll be able to successfully reconnect to the P2P
82
 * network via contacting one of them. So if that's the case, spend a
83
 * little longer trying to connect to known peers before querying the
84
 * DNS seeds.
85
 */
86
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89
90
/** The default timeframe for -maxuploadtarget. 1 day. */
91
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92
93
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94
static constexpr auto FEELER_SLEEP_WINDOW{1s};
95
96
/** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
97
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98
99
/** Used to pass flags to the Bind() function */
100
enum BindFlags {
101
    BF_NONE         = 0,
102
    BF_REPORT_ERROR = (1U << 0),
103
    /**
104
     * Do not call AddLocal() for our special addresses, e.g., for incoming
105
     * Tor connections, to prevent gossiping them over the network.
106
     */
107
    BF_DONT_ADVERTISE = (1U << 1),
108
};
109
110
// The set of sockets cannot be modified while waiting
111
// The sleep time needs to be small to avoid new sockets stalling
112
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113
114
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115
116
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119
//
120
// Global state variables
121
//
122
bool fDiscover = true;
123
bool fListen = true;
124
GlobalMutex g_maplocalhost_mutex;
125
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126
std::string strSubVersion;
127
128
size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
129
0
{
130
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131
0
}
132
133
size_t CNetMessage::GetMemoryUsage() const noexcept
134
0
{
135
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136
0
}
137
138
void CConnman::AddAddrFetch(const std::string& strDest)
139
0
{
140
0
    LOCK(m_addr_fetches_mutex);
141
0
    m_addr_fetches.push_back(strDest);
142
0
}
143
144
uint16_t GetListenPort()
145
0
{
146
    // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147
0
    for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
148
0
        constexpr uint16_t dummy_port = 0;
149
150
0
        const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151
0
        if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
152
0
    }
153
154
    // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155
    // (-whitebind= is required to have ":port").
156
0
    for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
157
0
        NetWhitebindPermissions whitebind;
158
0
        bilingual_str error;
159
0
        if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
160
0
            if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
161
0
                return whitebind.m_service.GetPort();
162
0
            }
163
0
        }
164
0
    }
165
166
    // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167
0
    return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168
0
}
169
170
// Determine the "best" local address for a particular peer.
171
[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172
0
{
173
0
    if (!fListen) return std::nullopt;
174
175
0
    std::optional<CService> addr;
176
0
    int nBestScore = -1;
177
0
    int nBestReachability = -1;
178
0
    {
179
0
        LOCK(g_maplocalhost_mutex);
180
0
        for (const auto& [local_addr, local_service_info] : mapLocalHost) {
181
            // For privacy reasons, don't advertise our privacy-network address
182
            // to other networks and don't advertise our other-network address
183
            // to privacy networks.
184
0
            if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
185
0
                && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
186
0
                continue;
187
0
            }
188
0
            const int nScore{local_service_info.nScore};
189
0
            const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190
0
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
191
0
                addr.emplace(CService{local_addr, local_service_info.nPort});
192
0
                nBestReachability = nReachability;
193
0
                nBestScore = nScore;
194
0
            }
195
0
        }
196
0
    }
197
0
    return addr;
198
0
}
199
200
//! Convert the serialized seeds into usable address objects.
201
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202
0
{
203
    // It'll only connect to one or two seed nodes because once it connects,
204
    // it'll get a pile of addresses with newer timestamps.
205
    // Seed nodes are given a random 'last seen time' of between one and two
206
    // weeks ago.
207
0
    const auto one_week{7 * 24h};
208
0
    std::vector<CAddress> vSeedsOut;
209
0
    FastRandomContext rng;
210
0
    ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
211
0
    while (!s.eof()) {
212
0
        CService endpoint;
213
0
        s >> endpoint;
214
0
        CAddress addr{endpoint, SeedsServiceFlags()};
215
0
        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216
0
        LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
217
0
        vSeedsOut.push_back(addr);
218
0
    }
219
0
    return vSeedsOut;
220
0
}
221
222
// Determine the "best" local address for a particular peer.
223
// If none, return the unroutable 0.0.0.0 but filled in with
224
// the normal parameters, since the IP may be changed to a useful
225
// one by discovery.
226
CService GetLocalAddress(const CNode& peer)
227
0
{
228
0
    return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
229
0
}
230
231
static int GetnScore(const CService& addr)
232
0
{
233
0
    LOCK(g_maplocalhost_mutex);
234
0
    const auto it = mapLocalHost.find(addr);
235
0
    return (it != mapLocalHost.end()) ? it->second.nScore : 0;
236
0
}
237
238
// Is our peer's addrLocal potentially useful as an external IP source?
239
[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240
0
{
241
0
    CService addrLocal = pnode->GetAddrLocal();
242
0
    return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
243
0
           g_reachable_nets.Contains(addrLocal);
244
0
}
245
246
std::optional<CService> GetLocalAddrForPeer(CNode& node)
247
0
{
248
0
    CService addrLocal{GetLocalAddress(node)};
249
    // If discovery is enabled, sometimes give our peer the address it
250
    // tells us that it sees us as in case it has a better idea of our
251
    // address than we do.
252
0
    FastRandomContext rng;
253
0
    if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
254
0
         rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
255
0
    {
256
0
        if (node.IsInboundConn()) {
257
            // For inbound connections, assume both the address and the port
258
            // as seen from the peer.
259
0
            addrLocal = CService{node.GetAddrLocal()};
260
0
        } else {
261
            // For outbound connections, assume just the address as seen from
262
            // the peer and leave the port in `addrLocal` as returned by
263
            // `GetLocalAddress()` above. The peer has no way to observe our
264
            // listening port when we have initiated the connection.
265
0
            addrLocal.SetIP(node.GetAddrLocal());
266
0
        }
267
0
    }
268
0
    if (addrLocal.IsRoutable()) {
269
0
        LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
270
0
        return addrLocal;
271
0
    }
272
    // Address is unroutable. Don't advertise.
273
0
    return std::nullopt;
274
0
}
275
276
// learn a new local address
277
bool AddLocal(const CService& addr_, int nScore)
278
0
{
279
0
    CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280
281
0
    if (!addr.IsRoutable())
282
0
        return false;
283
284
0
    if (!fDiscover && nScore < LOCAL_MANUAL)
285
0
        return false;
286
287
0
    if (!g_reachable_nets.Contains(addr))
288
0
        return false;
289
290
0
    LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291
292
0
    {
293
0
        LOCK(g_maplocalhost_mutex);
294
0
        const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295
0
        LocalServiceInfo &info = it->second;
296
0
        if (is_newly_added || nScore >= info.nScore) {
297
0
            info.nScore = nScore + (is_newly_added ? 0 : 1);
298
0
            info.nPort = addr.GetPort();
299
0
        }
300
0
    }
301
302
0
    return true;
303
0
}
304
305
bool AddLocal(const CNetAddr &addr, int nScore)
306
0
{
307
0
    return AddLocal(CService(addr, GetListenPort()), nScore);
308
0
}
309
310
void RemoveLocal(const CService& addr)
311
0
{
312
0
    LOCK(g_maplocalhost_mutex);
313
0
    LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314
0
    mapLocalHost.erase(addr);
315
0
}
316
317
/** vote for a local address */
318
bool SeenLocal(const CService& addr)
319
0
{
320
0
    LOCK(g_maplocalhost_mutex);
321
0
    const auto it = mapLocalHost.find(addr);
322
0
    if (it == mapLocalHost.end()) return false;
323
0
    ++it->second.nScore;
324
0
    return true;
325
0
}
326
327
328
/** check whether a given address is potentially local */
329
bool IsLocal(const CService& addr)
330
0
{
331
0
    LOCK(g_maplocalhost_mutex);
332
0
    return mapLocalHost.count(addr) > 0;
333
0
}
334
335
CNode* CConnman::FindNode(const CNetAddr& ip)
336
0
{
337
0
    LOCK(m_nodes_mutex);
338
0
    for (CNode* pnode : m_nodes) {
339
0
      if (static_cast<CNetAddr>(pnode->addr) == ip) {
340
0
            return pnode;
341
0
        }
342
0
    }
343
0
    return nullptr;
344
0
}
345
346
CNode* CConnman::FindNode(const std::string& addrName)
347
0
{
348
0
    LOCK(m_nodes_mutex);
349
0
    for (CNode* pnode : m_nodes) {
350
0
        if (pnode->m_addr_name == addrName) {
351
0
            return pnode;
352
0
        }
353
0
    }
354
0
    return nullptr;
355
0
}
356
357
CNode* CConnman::FindNode(const CService& addr)
358
0
{
359
0
    LOCK(m_nodes_mutex);
360
0
    for (CNode* pnode : m_nodes) {
361
0
        if (static_cast<CService>(pnode->addr) == addr) {
362
0
            return pnode;
363
0
        }
364
0
    }
365
0
    return nullptr;
366
0
}
367
368
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
369
0
{
370
0
    return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
371
0
}
372
373
bool CConnman::CheckIncomingNonce(uint64_t nonce)
374
0
{
375
0
    LOCK(m_nodes_mutex);
376
0
    for (const CNode* pnode : m_nodes) {
377
0
        if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
378
0
            return false;
379
0
    }
380
0
    return true;
381
0
}
382
383
/** Get the bind address for a socket as CService. */
384
static CService GetBindAddress(const Sock& sock)
385
0
{
386
0
    CService addr_bind;
387
0
    struct sockaddr_storage sockaddr_bind;
388
0
    socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389
0
    if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
390
0
        addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
391
0
    } else {
392
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
393
0
    }
394
0
    return addr_bind;
395
0
}
396
397
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398
0
{
399
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
400
0
    assert(conn_type != ConnectionType::INBOUND);
401
402
0
    if (pszDest == nullptr) {
403
0
        if (IsLocal(addrConnect))
404
0
            return nullptr;
405
406
        // Look for an existing connection
407
0
        CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408
0
        if (pnode)
409
0
        {
410
0
            LogPrintf("Failed to open new connection, already connected\n");
411
0
            return nullptr;
412
0
        }
413
0
    }
414
415
0
    LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
416
0
        use_v2transport ? "v2" : "v1",
417
0
        pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418
0
        Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419
420
    // Resolve
421
0
    const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
422
0
                                                     m_params.GetDefaultPort()};
423
424
    // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425
0
    std::vector<CAddress> connect_to{};
426
0
    if (pszDest) {
427
0
        std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
428
0
        if (!resolved.empty()) {
429
0
            std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430
            // If the connection is made by name, it can be the case that the name resolves to more than one address.
431
            // We don't want to connect any more of them if we are already connected to one
432
0
            for (const auto& r : resolved) {
433
0
                addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434
0
                if (!addrConnect.IsValid()) {
435
0
                    LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
436
0
                    return nullptr;
437
0
                }
438
                // It is possible that we already have a connection to the IP/port pszDest resolved to.
439
                // In that case, drop the connection that was just created.
440
0
                LOCK(m_nodes_mutex);
441
0
                CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442
0
                if (pnode) {
443
0
                    LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444
0
                    return nullptr;
445
0
                }
446
                // Add the address to the resolved addresses vector so we can try to connect to it later on
447
0
                connect_to.push_back(addrConnect);
448
0
            }
449
0
        } else {
450
            // For resolution via proxy
451
0
            connect_to.push_back(addrConnect);
452
0
        }
453
0
    } else {
454
        // Connect via addrConnect directly
455
0
        connect_to.push_back(addrConnect);
456
0
    }
457
458
    // Connect
459
0
    std::unique_ptr<Sock> sock;
460
0
    Proxy proxy;
461
0
    CService addr_bind;
462
0
    assert(!addr_bind.IsValid());
463
0
    std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464
465
0
    for (auto& target_addr: connect_to) {
466
0
        if (target_addr.IsValid()) {
467
0
            const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468
0
            bool proxyConnectionFailed = false;
469
470
0
            if (target_addr.IsI2P() && use_proxy) {
471
0
                i2p::Connection conn;
472
0
                bool connected{false};
473
474
0
                if (m_i2p_sam_session) {
475
0
                    connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476
0
                } else {
477
0
                    {
478
0
                        LOCK(m_unused_i2p_sessions_mutex);
479
0
                        if (m_unused_i2p_sessions.empty()) {
480
0
                            i2p_transient_session =
481
0
                                std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482
0
                        } else {
483
0
                            i2p_transient_session.swap(m_unused_i2p_sessions.front());
484
0
                            m_unused_i2p_sessions.pop();
485
0
                        }
486
0
                    }
487
0
                    connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488
0
                    if (!connected) {
489
0
                        LOCK(m_unused_i2p_sessions_mutex);
490
0
                        if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
491
0
                            m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492
0
                        }
493
0
                    }
494
0
                }
495
496
0
                if (connected) {
497
0
                    sock = std::move(conn.sock);
498
0
                    addr_bind = conn.me;
499
0
                }
500
0
            } else if (use_proxy) {
501
0
                LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
502
0
                sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
503
0
            } else {
504
                // no proxy needed (none set for target network)
505
0
                sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506
0
            }
507
0
            if (!proxyConnectionFailed) {
508
                // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509
                // the proxy, mark this as an attempt.
510
0
                addrman.Attempt(target_addr, fCountFailure);
511
0
            }
512
0
        } else if (pszDest && GetNameProxy(proxy)) {
513
0
            std::string host;
514
0
            uint16_t port{default_port};
515
0
            SplitHostPort(std::string(pszDest), port, host);
516
0
            bool proxyConnectionFailed;
517
0
            sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518
0
        }
519
        // Check any other resolved address (if any) if we fail to connect
520
0
        if (!sock) {
521
0
            continue;
522
0
        }
523
524
0
        NetPermissionFlags permission_flags = NetPermissionFlags::None;
525
0
        std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
526
0
        AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527
528
        // Add node
529
0
        NodeId id = GetNewNodeId();
530
0
        uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
531
0
        if (!addr_bind.IsValid()) {
532
0
            addr_bind = GetBindAddress(*sock);
533
0
        }
534
0
        CNode* pnode = new CNode(id,
535
0
                                std::move(sock),
536
0
                                target_addr,
537
0
                                CalculateKeyedNetGroup(target_addr),
538
0
                                nonce,
539
0
                                addr_bind,
540
0
                                pszDest ? pszDest : "",
541
0
                                conn_type,
542
0
                                /*inbound_onion=*/false,
543
0
                                CNodeOptions{
544
0
                                    .permission_flags = permission_flags,
545
0
                                    .i2p_sam_session = std::move(i2p_transient_session),
546
0
                                    .recv_flood_size = nReceiveFloodSize,
547
0
                                    .use_v2transport = use_v2transport,
548
0
                                });
549
0
        pnode->AddRef();
550
551
        // We're making a new connection, harvest entropy from the time (and our peer count)
552
0
        RandAddEvent((uint32_t)id);
553
554
0
        return pnode;
555
0
    }
556
557
0
    return nullptr;
558
0
}
559
560
void CNode::CloseSocketDisconnect()
561
0
{
562
0
    fDisconnect = true;
563
0
    LOCK(m_sock_mutex);
564
0
    if (m_sock) {
565
0
        LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
566
0
        m_sock.reset();
567
568
0
        TRACEPOINT(net, closed_connection,
569
0
            GetId(),
570
0
            m_addr_name.c_str(),
571
0
            ConnectionTypeAsString().c_str(),
572
0
            ConnectedThroughNetwork(),
573
0
            Ticks<std::chrono::seconds>(m_connected));
574
0
    }
575
0
    m_i2p_sam_session.reset();
576
0
}
577
578
0
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579
0
    for (const auto& subnet : ranges) {
580
0
        if (subnet.m_subnet.Match(addr)) {
581
0
            NetPermissions::AddFlag(flags, subnet.m_flags);
582
0
        }
583
0
    }
584
0
    if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
585
0
        NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
586
0
        if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
587
0
        if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
588
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
589
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
590
0
    }
591
0
}
592
593
CService CNode::GetAddrLocal() const
594
0
{
595
0
    AssertLockNotHeld(m_addr_local_mutex);
596
0
    LOCK(m_addr_local_mutex);
597
0
    return m_addr_local;
598
0
}
599
600
0
void CNode::SetAddrLocal(const CService& addrLocalIn) {
601
0
    AssertLockNotHeld(m_addr_local_mutex);
602
0
    LOCK(m_addr_local_mutex);
603
0
    if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
604
0
        m_addr_local = addrLocalIn;
605
0
    }
606
0
}
607
608
Network CNode::ConnectedThroughNetwork() const
609
0
{
610
0
    return m_inbound_onion ? NET_ONION : addr.GetNetClass();
611
0
}
612
613
bool CNode::IsConnectedThroughPrivacyNet() const
614
0
{
615
0
    return m_inbound_onion || addr.IsPrivacyNet();
616
0
}
617
618
#undef X
619
0
#define X(name) stats.name = name
620
void CNode::CopyStats(CNodeStats& stats)
621
0
{
622
0
    stats.nodeid = this->GetId();
623
0
    X(addr);
624
0
    X(addrBind);
625
0
    stats.m_network = ConnectedThroughNetwork();
626
0
    X(m_last_send);
627
0
    X(m_last_recv);
628
0
    X(m_last_tx_time);
629
0
    X(m_last_block_time);
630
0
    X(m_connected);
631
0
    X(m_addr_name);
632
0
    X(nVersion);
633
0
    {
634
0
        LOCK(m_subver_mutex);
635
0
        X(cleanSubVer);
636
0
    }
637
0
    stats.fInbound = IsInboundConn();
638
0
    X(m_bip152_highbandwidth_to);
639
0
    X(m_bip152_highbandwidth_from);
640
0
    {
641
0
        LOCK(cs_vSend);
642
0
        X(mapSendBytesPerMsgType);
643
0
        X(nSendBytes);
644
0
    }
645
0
    {
646
0
        LOCK(cs_vRecv);
647
0
        X(mapRecvBytesPerMsgType);
648
0
        X(nRecvBytes);
649
0
        Transport::Info info = m_transport->GetInfo();
650
0
        stats.m_transport_type = info.transport_type;
651
0
        if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
652
0
    }
653
0
    X(m_permission_flags);
654
655
0
    X(m_last_ping_time);
656
0
    X(m_min_ping_time);
657
658
    // Leave string empty if addrLocal invalid (not filled in yet)
659
0
    CService addrLocalUnlocked = GetAddrLocal();
660
0
    stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
661
662
0
    X(m_conn_type);
663
0
}
664
#undef X
665
666
bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
667
0
{
668
0
    complete = false;
669
0
    const auto time = GetTime<std::chrono::microseconds>();
670
0
    LOCK(cs_vRecv);
671
0
    m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672
0
    nRecvBytes += msg_bytes.size();
673
0
    while (msg_bytes.size() > 0) {
674
        // absorb network data
675
0
        if (!m_transport->ReceivedBytes(msg_bytes)) {
676
            // Serious transport problem, disconnect from the peer.
677
0
            return false;
678
0
        }
679
680
0
        if (m_transport->ReceivedMessageComplete()) {
681
            // decompose a transport agnostic CNetMessage from the deserializer
682
0
            bool reject_message{false};
683
0
            CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684
0
            if (reject_message) {
685
                // Message deserialization failed. Drop the message but don't disconnect the peer.
686
                // store the size of the corrupt message
687
0
                mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688
0
                continue;
689
0
            }
690
691
            // Store received bytes per message type.
692
            // To prevent a memory DOS, only allow known message types.
693
0
            auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694
0
            if (i == mapRecvBytesPerMsgType.end()) {
695
0
                i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696
0
            }
697
0
            assert(i != mapRecvBytesPerMsgType.end());
698
0
            i->second += msg.m_raw_message_size;
699
700
            // push the message to the process queue,
701
0
            vRecvMsg.push_back(std::move(msg));
702
703
0
            complete = true;
704
0
        }
705
0
    }
706
707
0
    return true;
708
0
}
709
710
std::string CNode::LogIP(bool log_ip) const
711
0
{
712
0
    return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
713
0
}
714
715
std::string CNode::DisconnectMsg(bool log_ip) const
716
0
{
717
0
    return strprintf("disconnecting peer=%d%s",
718
0
                     GetId(),
719
0
                     LogIP(log_ip));
720
0
}
721
722
V1Transport::V1Transport(const NodeId node_id) noexcept
723
0
    : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724
0
{
725
0
    LOCK(m_recv_mutex);
726
0
    Reset();
727
0
}
728
729
Transport::Info V1Transport::GetInfo() const noexcept
730
0
{
731
0
    return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732
0
}
733
734
int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
735
0
{
736
0
    AssertLockHeld(m_recv_mutex);
737
    // copy data to temporary parsing buffer
738
0
    unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740
741
0
    memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742
0
    nHdrPos += nCopy;
743
744
    // if header incomplete, exit
745
0
    if (nHdrPos < CMessageHeader::HEADER_SIZE)
746
0
        return nCopy;
747
748
    // deserialize to CMessageHeader
749
0
    try {
750
0
        hdrbuf >> hdr;
751
0
    }
752
0
    catch (const std::exception&) {
753
0
        LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
754
0
        return -1;
755
0
    }
756
757
    // Check start string, network magic
758
0
    if (hdr.pchMessageStart != m_magic_bytes) {
759
0
        LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760
0
        return -1;
761
0
    }
762
763
    // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764
    // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
765
    // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
766
0
    if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
767
0
        LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
768
0
        return -1;
769
0
    }
770
771
    // switch state to reading message data
772
0
    in_data = true;
773
774
0
    return nCopy;
775
0
}
776
777
int V1Transport::readData(std::span<const uint8_t> msg_bytes)
778
0
{
779
0
    AssertLockHeld(m_recv_mutex);
780
0
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
781
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
782
783
0
    if (vRecv.size() < nDataPos + nCopy) {
784
        // Allocate up to 256 KiB ahead, but never more than the total message size.
785
0
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
786
0
    }
787
788
0
    hasher.Write(msg_bytes.first(nCopy));
789
0
    memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
790
0
    nDataPos += nCopy;
791
792
0
    return nCopy;
793
0
}
794
795
const uint256& V1Transport::GetMessageHash() const
796
0
{
797
0
    AssertLockHeld(m_recv_mutex);
798
0
    assert(CompleteInternal());
799
0
    if (data_hash.IsNull())
800
0
        hasher.Finalize(data_hash);
801
0
    return data_hash;
802
0
}
803
804
CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
805
0
{
806
0
    AssertLockNotHeld(m_recv_mutex);
807
    // Initialize out parameter
808
0
    reject_message = false;
809
    // decompose a single CNetMessage from the TransportDeserializer
810
0
    LOCK(m_recv_mutex);
811
0
    CNetMessage msg(std::move(vRecv));
812
813
    // store message type string, time, and sizes
814
0
    msg.m_type = hdr.GetMessageType();
815
0
    msg.m_time = time;
816
0
    msg.m_message_size = hdr.nMessageSize;
817
0
    msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
818
819
0
    uint256 hash = GetMessageHash();
820
821
    // We just received a message off the wire, harvest entropy from the time (and the message checksum)
822
0
    RandAddEvent(ReadLE32(hash.begin()));
823
824
    // Check checksum and header message type string
825
0
    if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
826
0
        LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
827
0
                 SanitizeString(msg.m_type), msg.m_message_size,
828
0
                 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
829
0
                 HexStr(hdr.pchChecksum),
830
0
                 m_node_id);
831
0
        reject_message = true;
832
0
    } else if (!hdr.IsMessageTypeValid()) {
833
0
        LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
834
0
                 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
835
0
        reject_message = true;
836
0
    }
837
838
    // Always reset the network deserializer (prepare for the next message)
839
0
    Reset();
840
0
    return msg;
841
0
}
842
843
bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
844
0
{
845
0
    AssertLockNotHeld(m_send_mutex);
846
    // Determine whether a new message can be set.
847
0
    LOCK(m_send_mutex);
848
0
    if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
849
850
    // create dbl-sha256 checksum
851
0
    uint256 hash = Hash(msg.data);
852
853
    // create header
854
0
    CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
855
0
    memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
856
857
    // serialize header
858
0
    m_header_to_send.clear();
859
0
    VectorWriter{m_header_to_send, 0, hdr};
860
861
    // update state
862
0
    m_message_to_send = std::move(msg);
863
0
    m_sending_header = true;
864
0
    m_bytes_sent = 0;
865
0
    return true;
866
0
}
867
868
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
869
0
{
870
0
    AssertLockNotHeld(m_send_mutex);
871
0
    LOCK(m_send_mutex);
872
0
    if (m_sending_header) {
873
0
        return {std::span{m_header_to_send}.subspan(m_bytes_sent),
874
                // We have more to send after the header if the message has payload, or if there
875
                // is a next message after that.
876
0
                have_next_message || !m_message_to_send.data.empty(),
877
0
                m_message_to_send.m_type
878
0
               };
879
0
    } else {
880
0
        return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
881
                // We only have more to send after this message's payload if there is another
882
                // message.
883
0
                have_next_message,
884
0
                m_message_to_send.m_type
885
0
               };
886
0
    }
887
0
}
888
889
void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
890
0
{
891
0
    AssertLockNotHeld(m_send_mutex);
892
0
    LOCK(m_send_mutex);
893
0
    m_bytes_sent += bytes_sent;
894
0
    if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
895
        // We're done sending a message's header. Switch to sending its data bytes.
896
0
        m_sending_header = false;
897
0
        m_bytes_sent = 0;
898
0
    } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
899
        // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
900
0
        ClearShrink(m_message_to_send.data);
901
0
        m_bytes_sent = 0;
902
0
    }
903
0
}
904
905
size_t V1Transport::GetSendMemoryUsage() const noexcept
906
0
{
907
0
    AssertLockNotHeld(m_send_mutex);
908
0
    LOCK(m_send_mutex);
909
    // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
910
0
    return m_message_to_send.GetMemoryUsage();
911
0
}
912
913
namespace {
914
915
/** List of short messages as defined in BIP324, in order.
916
 *
917
 * Only message types that are actually implemented in this codebase need to be listed, as other
918
 * messages get ignored anyway - whether we know how to decode them or not.
919
 */
920
const std::array<std::string, 33> V2_MESSAGE_IDS = {
921
    "", // 12 bytes follow encoding the message type like in V1
922
    NetMsgType::ADDR,
923
    NetMsgType::BLOCK,
924
    NetMsgType::BLOCKTXN,
925
    NetMsgType::CMPCTBLOCK,
926
    NetMsgType::FEEFILTER,
927
    NetMsgType::FILTERADD,
928
    NetMsgType::FILTERCLEAR,
929
    NetMsgType::FILTERLOAD,
930
    NetMsgType::GETBLOCKS,
931
    NetMsgType::GETBLOCKTXN,
932
    NetMsgType::GETDATA,
933
    NetMsgType::GETHEADERS,
934
    NetMsgType::HEADERS,
935
    NetMsgType::INV,
936
    NetMsgType::MEMPOOL,
937
    NetMsgType::MERKLEBLOCK,
938
    NetMsgType::NOTFOUND,
939
    NetMsgType::PING,
940
    NetMsgType::PONG,
941
    NetMsgType::SENDCMPCT,
942
    NetMsgType::TX,
943
    NetMsgType::GETCFILTERS,
944
    NetMsgType::CFILTER,
945
    NetMsgType::GETCFHEADERS,
946
    NetMsgType::CFHEADERS,
947
    NetMsgType::GETCFCHECKPT,
948
    NetMsgType::CFCHECKPT,
949
    NetMsgType::ADDRV2,
950
    // Unimplemented message types that are assigned in BIP324:
951
    "",
952
    "",
953
    "",
954
    ""
955
};
956
957
class V2MessageMap
958
{
959
    std::unordered_map<std::string, uint8_t> m_map;
960
961
public:
962
    V2MessageMap() noexcept
963
0
    {
964
0
        for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
965
0
            m_map.emplace(V2_MESSAGE_IDS[i], i);
966
0
        }
967
0
    }
968
969
    std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
970
0
    {
971
0
        auto it = m_map.find(message_name);
972
0
        if (it == m_map.end()) return std::nullopt;
973
0
        return it->second;
974
0
    }
975
};
976
977
const V2MessageMap V2_MESSAGE_MAP;
978
979
std::vector<uint8_t> GenerateRandomGarbage() noexcept
980
0
{
981
0
    std::vector<uint8_t> ret;
982
0
    FastRandomContext rng;
983
0
    ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
984
0
    rng.fillrand(MakeWritableByteSpan(ret));
985
0
    return ret;
986
0
}
987
988
} // namespace
989
990
void V2Transport::StartSendingHandshake() noexcept
991
0
{
992
0
    AssertLockHeld(m_send_mutex);
993
0
    Assume(m_send_state == SendState::AWAITING_KEY);
994
0
    Assume(m_send_buffer.empty());
995
    // Initialize the send buffer with ellswift pubkey + provided garbage.
996
0
    m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
997
0
    std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
998
0
    std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
999
    // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
1000
0
}
1001
1002
V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1003
0
    : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1004
0
      m_v1_fallback{nodeid},
1005
0
      m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1006
0
      m_send_garbage{std::move(garbage)},
1007
0
      m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1008
0
{
1009
0
    Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1010
    // Start sending immediately if we're the initiator of the connection.
1011
0
    if (initiating) {
1012
0
        LOCK(m_send_mutex);
1013
0
        StartSendingHandshake();
1014
0
    }
1015
0
}
1016
1017
V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1018
0
    : V2Transport{nodeid, initiating, GenerateRandomKey(),
1019
0
                  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
Unexecuted instantiation: _ZN11V2TransportC2Exb
Unexecuted instantiation: _ZN11V2TransportC1Exb
1020
1021
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1022
0
{
1023
0
    AssertLockHeld(m_recv_mutex);
1024
    // Enforce allowed state transitions.
1025
0
    switch (m_recv_state) {
1026
0
    case RecvState::KEY_MAYBE_V1:
1027
0
        Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1028
0
        break;
1029
0
    case RecvState::KEY:
1030
0
        Assume(recv_state == RecvState::GARB_GARBTERM);
1031
0
        break;
1032
0
    case RecvState::GARB_GARBTERM:
1033
0
        Assume(recv_state == RecvState::VERSION);
1034
0
        break;
1035
0
    case RecvState::VERSION:
1036
0
        Assume(recv_state == RecvState::APP);
1037
0
        break;
1038
0
    case RecvState::APP:
1039
0
        Assume(recv_state == RecvState::APP_READY);
1040
0
        break;
1041
0
    case RecvState::APP_READY:
1042
0
        Assume(recv_state == RecvState::APP);
1043
0
        break;
1044
0
    case RecvState::V1:
1045
0
        Assume(false); // V1 state cannot be left
1046
0
        break;
1047
0
    }
1048
    // Change state.
1049
0
    m_recv_state = recv_state;
1050
0
}
1051
1052
void V2Transport::SetSendState(SendState send_state) noexcept
1053
0
{
1054
0
    AssertLockHeld(m_send_mutex);
1055
    // Enforce allowed state transitions.
1056
0
    switch (m_send_state) {
1057
0
    case SendState::MAYBE_V1:
1058
0
        Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1059
0
        break;
1060
0
    case SendState::AWAITING_KEY:
1061
0
        Assume(send_state == SendState::READY);
1062
0
        break;
1063
0
    case SendState::READY:
1064
0
    case SendState::V1:
1065
0
        Assume(false); // Final states
1066
0
        break;
1067
0
    }
1068
    // Change state.
1069
0
    m_send_state = send_state;
1070
0
}
1071
1072
bool V2Transport::ReceivedMessageComplete() const noexcept
1073
0
{
1074
0
    AssertLockNotHeld(m_recv_mutex);
1075
0
    LOCK(m_recv_mutex);
1076
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1077
1078
0
    return m_recv_state == RecvState::APP_READY;
1079
0
}
1080
1081
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1082
0
{
1083
0
    AssertLockHeld(m_recv_mutex);
1084
0
    AssertLockNotHeld(m_send_mutex);
1085
0
    Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1086
    // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1087
    // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1088
    // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1089
    // sending of the key.
1090
0
    std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1091
0
    std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1092
0
    Assume(m_recv_buffer.size() <= v1_prefix.size());
1093
0
    if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1094
        // Mismatch with v1 prefix, so we can assume a v2 connection.
1095
0
        SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1096
        // Transition the sender to AWAITING_KEY state and start sending.
1097
0
        LOCK(m_send_mutex);
1098
0
        SetSendState(SendState::AWAITING_KEY);
1099
0
        StartSendingHandshake();
1100
0
    } else if (m_recv_buffer.size() == v1_prefix.size()) {
1101
        // Full match with the v1 prefix, so fall back to v1 behavior.
1102
0
        LOCK(m_send_mutex);
1103
0
        std::span<const uint8_t> feedback{m_recv_buffer};
1104
        // Feed already received bytes to v1 transport. It should always accept these, because it's
1105
        // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1106
0
        bool ret = m_v1_fallback.ReceivedBytes(feedback);
1107
0
        Assume(feedback.empty());
1108
0
        Assume(ret);
1109
0
        SetReceiveState(RecvState::V1);
1110
0
        SetSendState(SendState::V1);
1111
        // Reset v2 transport buffers to save memory.
1112
0
        ClearShrink(m_recv_buffer);
1113
0
        ClearShrink(m_send_buffer);
1114
0
    } else {
1115
        // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1116
0
    }
1117
0
}
1118
1119
bool V2Transport::ProcessReceivedKeyBytes() noexcept
1120
0
{
1121
0
    AssertLockHeld(m_recv_mutex);
1122
0
    AssertLockNotHeld(m_send_mutex);
1123
0
    Assume(m_recv_state == RecvState::KEY);
1124
0
    Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1125
1126
    // As a special exception, if bytes 4-16 of the key on a responder connection match the
1127
    // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1128
    // (if they did, we'd have switched to V1 state already), assume this is a peer from
1129
    // another network, and disconnect them. They will almost certainly disconnect us too when
1130
    // they receive our uniformly random key and garbage, but detecting this case specially
1131
    // means we can log it.
1132
0
    static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1133
0
    static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1134
0
    if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1135
0
        if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1136
0
            LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1137
0
                     HexStr(std::span(m_recv_buffer).first(OFFSET)));
1138
0
            return false;
1139
0
        }
1140
0
    }
1141
1142
0
    if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1143
        // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1144
        // our key to initialize the encryption ciphers.
1145
1146
        // Initialize the ciphers.
1147
0
        EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1148
0
        LOCK(m_send_mutex);
1149
0
        m_cipher.Initialize(ellswift, m_initiating);
1150
1151
        // Switch receiver state to GARB_GARBTERM.
1152
0
        SetReceiveState(RecvState::GARB_GARBTERM);
1153
0
        m_recv_buffer.clear();
1154
1155
        // Switch sender state to READY.
1156
0
        SetSendState(SendState::READY);
1157
1158
        // Append the garbage terminator to the send buffer.
1159
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1160
0
        std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1161
0
                  m_cipher.GetSendGarbageTerminator().end(),
1162
0
                  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1163
1164
        // Construct version packet in the send buffer, with the sent garbage data as AAD.
1165
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1166
0
        m_cipher.Encrypt(
1167
0
            /*contents=*/VERSION_CONTENTS,
1168
0
            /*aad=*/MakeByteSpan(m_send_garbage),
1169
0
            /*ignore=*/false,
1170
0
            /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1171
        // We no longer need the garbage.
1172
0
        ClearShrink(m_send_garbage);
1173
0
    } else {
1174
        // We still have to receive more key bytes.
1175
0
    }
1176
0
    return true;
1177
0
}
1178
1179
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1180
0
{
1181
0
    AssertLockHeld(m_recv_mutex);
1182
0
    Assume(m_recv_state == RecvState::GARB_GARBTERM);
1183
0
    Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1184
0
    if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1185
0
        if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1186
            // Garbage terminator received. Store garbage to authenticate it as AAD later.
1187
0
            m_recv_aad = std::move(m_recv_buffer);
1188
0
            m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1189
0
            m_recv_buffer.clear();
1190
0
            SetReceiveState(RecvState::VERSION);
1191
0
        } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1192
            // We've reached the maximum length for garbage + garbage terminator, and the
1193
            // terminator still does not match. Abort.
1194
0
            LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1195
0
            return false;
1196
0
        } else {
1197
            // We still need to receive more garbage and/or garbage terminator bytes.
1198
0
        }
1199
0
    } else {
1200
        // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1201
        // more first.
1202
0
    }
1203
0
    return true;
1204
0
}
1205
1206
bool V2Transport::ProcessReceivedPacketBytes() noexcept
1207
0
{
1208
0
    AssertLockHeld(m_recv_mutex);
1209
0
    Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1210
1211
    // The maximum permitted contents length for a packet, consisting of:
1212
    // - 0x00 byte: indicating long message type encoding
1213
    // - 12 bytes of message type
1214
    // - payload
1215
0
    static constexpr size_t MAX_CONTENTS_LEN =
1216
0
        1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1217
0
        std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1218
1219
0
    if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1220
        // Length descriptor received.
1221
0
        m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1222
0
        if (m_recv_len > MAX_CONTENTS_LEN) {
1223
0
            LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1224
0
            return false;
1225
0
        }
1226
0
    } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1227
        // Ciphertext received, decrypt it into m_recv_decode_buffer.
1228
        // Note that it is impossible to reach this branch without hitting the branch above first,
1229
        // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1230
0
        m_recv_decode_buffer.resize(m_recv_len);
1231
0
        bool ignore{false};
1232
0
        bool ret = m_cipher.Decrypt(
1233
0
            /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1234
0
            /*aad=*/MakeByteSpan(m_recv_aad),
1235
0
            /*ignore=*/ignore,
1236
0
            /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1237
0
        if (!ret) {
1238
0
            LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1239
0
            return false;
1240
0
        }
1241
        // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1242
0
        ClearShrink(m_recv_aad);
1243
        // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1244
0
        RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1245
1246
        // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1247
        // decoy, which we simply ignore, use the current state to decide what to do with it.
1248
0
        if (!ignore) {
1249
0
            switch (m_recv_state) {
1250
0
            case RecvState::VERSION:
1251
                // Version message received; transition to application phase. The contents is
1252
                // ignored, but can be used for future extensions.
1253
0
                SetReceiveState(RecvState::APP);
1254
0
                break;
1255
0
            case RecvState::APP:
1256
                // Application message decrypted correctly. It can be extracted using GetMessage().
1257
0
                SetReceiveState(RecvState::APP_READY);
1258
0
                break;
1259
0
            default:
1260
                // Any other state is invalid (this function should not have been called).
1261
0
                Assume(false);
1262
0
            }
1263
0
        }
1264
        // Wipe the receive buffer where the next packet will be received into.
1265
0
        ClearShrink(m_recv_buffer);
1266
        // In all but APP_READY state, we can wipe the decoded contents.
1267
0
        if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1268
0
    } else {
1269
        // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1270
        // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1271
0
    }
1272
0
    return true;
1273
0
}
1274
1275
size_t V2Transport::GetMaxBytesToProcess() noexcept
1276
0
{
1277
0
    AssertLockHeld(m_recv_mutex);
1278
0
    switch (m_recv_state) {
1279
0
    case RecvState::KEY_MAYBE_V1:
1280
        // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1281
        // receive buffer.
1282
0
        Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1283
        // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1284
        // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1285
        // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1286
        // back into the m_v1_fallback V1 transport.
1287
0
        return V1_PREFIX_LEN - m_recv_buffer.size();
1288
0
    case RecvState::KEY:
1289
        // During the KEY state, we only allow the 64-byte key into the receive buffer.
1290
0
        Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1291
        // As long as we have not received the other side's public key, don't receive more than
1292
        // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1293
        // key exchange first.
1294
0
        return EllSwiftPubKey::size() - m_recv_buffer.size();
1295
0
    case RecvState::GARB_GARBTERM:
1296
        // Process garbage bytes one by one (because terminator may appear anywhere).
1297
0
        return 1;
1298
0
    case RecvState::VERSION:
1299
0
    case RecvState::APP:
1300
        // These three states all involve decoding a packet. Process the length descriptor first,
1301
        // so that we know where the current packet ends (and we don't process bytes from the next
1302
        // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1303
0
        if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1304
0
            return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1305
0
        } else {
1306
            // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1307
            // and encoded packet size, which includes the 3 bytes due to the packet length.
1308
            // When transitioning from receiving the packet length to receiving its ciphertext,
1309
            // the encrypted packet length is left in the receive buffer.
1310
0
            return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1311
0
        }
1312
0
    case RecvState::APP_READY:
1313
        // No bytes can be processed until GetMessage() is called.
1314
0
        return 0;
1315
0
    case RecvState::V1:
1316
        // Not allowed (must be dealt with by the caller).
1317
0
        Assume(false);
1318
0
        return 0;
1319
0
    }
1320
0
    Assume(false); // unreachable
1321
0
    return 0;
1322
0
}
1323
1324
bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1325
0
{
1326
0
    AssertLockNotHeld(m_recv_mutex);
1327
    /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1328
0
    static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1329
1330
0
    LOCK(m_recv_mutex);
1331
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1332
1333
    // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1334
    // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1335
    // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1336
    // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1337
0
    while (!msg_bytes.empty()) {
1338
        // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1339
0
        size_t max_read = GetMaxBytesToProcess();
1340
1341
        // Reserve space in the buffer if there is not enough.
1342
0
        if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1343
0
            switch (m_recv_state) {
1344
0
            case RecvState::KEY_MAYBE_V1:
1345
0
            case RecvState::KEY:
1346
0
            case RecvState::GARB_GARBTERM:
1347
                // During the initial states (key/garbage), allocate once to fit the maximum (4111
1348
                // bytes).
1349
0
                m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1350
0
                break;
1351
0
            case RecvState::VERSION:
1352
0
            case RecvState::APP: {
1353
                // During states where a packet is being received, as much as is expected but never
1354
                // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1355
                // This means attackers that want to cause us to waste allocated memory are limited
1356
                // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1357
                // MAX_RESERVE_AHEAD more than they've actually sent us.
1358
0
                size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1359
0
                m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1360
0
                break;
1361
0
            }
1362
0
            case RecvState::APP_READY:
1363
                // The buffer is empty in this state.
1364
0
                Assume(m_recv_buffer.empty());
1365
0
                break;
1366
0
            case RecvState::V1:
1367
                // Should have bailed out above.
1368
0
                Assume(false);
1369
0
                break;
1370
0
            }
1371
0
        }
1372
1373
        // Can't read more than provided input.
1374
0
        max_read = std::min(msg_bytes.size(), max_read);
1375
        // Copy data to buffer.
1376
0
        m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1377
0
        msg_bytes = msg_bytes.subspan(max_read);
1378
1379
        // Process data in the buffer.
1380
0
        switch (m_recv_state) {
1381
0
        case RecvState::KEY_MAYBE_V1:
1382
0
            ProcessReceivedMaybeV1Bytes();
1383
0
            if (m_recv_state == RecvState::V1) return true;
1384
0
            break;
1385
1386
0
        case RecvState::KEY:
1387
0
            if (!ProcessReceivedKeyBytes()) return false;
1388
0
            break;
1389
1390
0
        case RecvState::GARB_GARBTERM:
1391
0
            if (!ProcessReceivedGarbageBytes()) return false;
1392
0
            break;
1393
1394
0
        case RecvState::VERSION:
1395
0
        case RecvState::APP:
1396
0
            if (!ProcessReceivedPacketBytes()) return false;
1397
0
            break;
1398
1399
0
        case RecvState::APP_READY:
1400
0
            return true;
1401
1402
0
        case RecvState::V1:
1403
            // We should have bailed out before.
1404
0
            Assume(false);
1405
0
            break;
1406
0
        }
1407
        // Make sure we have made progress before continuing.
1408
0
        Assume(max_read > 0);
1409
0
    }
1410
1411
0
    return true;
1412
0
}
1413
1414
std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1415
0
{
1416
0
    if (contents.size() == 0) return std::nullopt; // Empty contents
1417
0
    uint8_t first_byte = contents[0];
1418
0
    contents = contents.subspan(1); // Strip first byte.
1419
1420
0
    if (first_byte != 0) {
1421
        // Short (1 byte) encoding.
1422
0
        if (first_byte < std::size(V2_MESSAGE_IDS)) {
1423
            // Valid short message id.
1424
0
            return V2_MESSAGE_IDS[first_byte];
1425
0
        } else {
1426
            // Unknown short message id.
1427
0
            return std::nullopt;
1428
0
        }
1429
0
    }
1430
1431
0
    if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1432
0
        return std::nullopt; // Long encoding needs 12 message type bytes.
1433
0
    }
1434
1435
0
    size_t msg_type_len{0};
1436
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1437
        // Verify that message type bytes before the first 0x00 are in range.
1438
0
        if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1439
0
            return {};
1440
0
        }
1441
0
        ++msg_type_len;
1442
0
    }
1443
0
    std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1444
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1445
        // Verify that message type bytes after the first 0x00 are also 0x00.
1446
0
        if (contents[msg_type_len] != 0) return {};
1447
0
        ++msg_type_len;
1448
0
    }
1449
    // Strip message type bytes of contents.
1450
0
    contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1451
0
    return ret;
1452
0
}
1453
1454
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1455
0
{
1456
0
    AssertLockNotHeld(m_recv_mutex);
1457
0
    LOCK(m_recv_mutex);
1458
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1459
1460
0
    Assume(m_recv_state == RecvState::APP_READY);
1461
0
    std::span<const uint8_t> contents{m_recv_decode_buffer};
1462
0
    auto msg_type = GetMessageType(contents);
1463
0
    CNetMessage msg{DataStream{}};
1464
    // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1465
0
    msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1466
0
    if (msg_type) {
1467
0
        reject_message = false;
1468
0
        msg.m_type = std::move(*msg_type);
1469
0
        msg.m_time = time;
1470
0
        msg.m_message_size = contents.size();
1471
0
        msg.m_recv.resize(contents.size());
1472
0
        std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1473
0
    } else {
1474
0
        LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1475
0
        reject_message = true;
1476
0
    }
1477
0
    ClearShrink(m_recv_decode_buffer);
1478
0
    SetReceiveState(RecvState::APP);
1479
1480
0
    return msg;
1481
0
}
1482
1483
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1484
0
{
1485
0
    AssertLockNotHeld(m_send_mutex);
1486
0
    LOCK(m_send_mutex);
1487
0
    if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1488
    // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1489
    // is available) and the send buffer is empty. This limits the number of messages in the send
1490
    // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1491
0
    if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1492
    // Construct contents (encoding message type + payload).
1493
0
    std::vector<uint8_t> contents;
1494
0
    auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1495
0
    if (short_message_id) {
1496
0
        contents.resize(1 + msg.data.size());
1497
0
        contents[0] = *short_message_id;
1498
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1499
0
    } else {
1500
        // Initialize with zeroes, and then write the message type string starting at offset 1.
1501
        // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1502
0
        contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1503
0
        std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1504
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1505
0
    }
1506
    // Construct ciphertext in send buffer.
1507
0
    m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1508
0
    m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1509
0
    m_send_type = msg.m_type;
1510
    // Release memory
1511
0
    ClearShrink(msg.data);
1512
0
    return true;
1513
0
}
1514
1515
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1516
0
{
1517
0
    AssertLockNotHeld(m_send_mutex);
1518
0
    LOCK(m_send_mutex);
1519
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1520
1521
0
    if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1522
0
    Assume(m_send_pos <= m_send_buffer.size());
1523
0
    return {
1524
0
        std::span{m_send_buffer}.subspan(m_send_pos),
1525
        // We only have more to send after the current m_send_buffer if there is a (next)
1526
        // message to be sent, and we're capable of sending packets. */
1527
0
        have_next_message && m_send_state == SendState::READY,
1528
0
        m_send_type
1529
0
    };
1530
0
}
1531
1532
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1533
0
{
1534
0
    AssertLockNotHeld(m_send_mutex);
1535
0
    LOCK(m_send_mutex);
1536
0
    if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1537
1538
0
    if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1539
0
        LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1540
0
    }
1541
1542
0
    m_send_pos += bytes_sent;
1543
0
    Assume(m_send_pos <= m_send_buffer.size());
1544
0
    if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1545
0
        m_sent_v1_header_worth = true;
1546
0
    }
1547
    // Wipe the buffer when everything is sent.
1548
0
    if (m_send_pos == m_send_buffer.size()) {
1549
0
        m_send_pos = 0;
1550
0
        ClearShrink(m_send_buffer);
1551
0
    }
1552
0
}
1553
1554
bool V2Transport::ShouldReconnectV1() const noexcept
1555
0
{
1556
0
    AssertLockNotHeld(m_send_mutex);
1557
0
    AssertLockNotHeld(m_recv_mutex);
1558
    // Only outgoing connections need reconnection.
1559
0
    if (!m_initiating) return false;
1560
1561
0
    LOCK(m_recv_mutex);
1562
    // We only reconnect in the very first state and when the receive buffer is empty. Together
1563
    // these conditions imply nothing has been received so far.
1564
0
    if (m_recv_state != RecvState::KEY) return false;
1565
0
    if (!m_recv_buffer.empty()) return false;
1566
    // Check if we've sent enough for the other side to disconnect us (if it was V1).
1567
0
    LOCK(m_send_mutex);
1568
0
    return m_sent_v1_header_worth;
1569
0
}
1570
1571
size_t V2Transport::GetSendMemoryUsage() const noexcept
1572
0
{
1573
0
    AssertLockNotHeld(m_send_mutex);
1574
0
    LOCK(m_send_mutex);
1575
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1576
1577
0
    return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1578
0
}
1579
1580
Transport::Info V2Transport::GetInfo() const noexcept
1581
0
{
1582
0
    AssertLockNotHeld(m_recv_mutex);
1583
0
    LOCK(m_recv_mutex);
1584
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1585
1586
0
    Transport::Info info;
1587
1588
    // Do not report v2 and session ID until the version packet has been received
1589
    // and verified (confirming that the other side very likely has the same keys as us).
1590
0
    if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1591
0
        m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1592
0
        info.transport_type = TransportProtocolType::V2;
1593
0
        info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1594
0
    } else {
1595
0
        info.transport_type = TransportProtocolType::DETECTING;
1596
0
    }
1597
1598
0
    return info;
1599
0
}
1600
1601
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1602
0
{
1603
0
    auto it = node.vSendMsg.begin();
1604
0
    size_t nSentSize = 0;
1605
0
    bool data_left{false}; //!< second return value (whether unsent data remains)
1606
0
    std::optional<bool> expected_more;
1607
1608
0
    while (true) {
1609
0
        if (it != node.vSendMsg.end()) {
1610
            // If possible, move one message from the send queue to the transport. This fails when
1611
            // there is an existing message still being sent, or (for v2 transports) when the
1612
            // handshake has not yet completed.
1613
0
            size_t memusage = it->GetMemoryUsage();
1614
0
            if (node.m_transport->SetMessageToSend(*it)) {
1615
                // Update memory usage of send buffer (as *it will be deleted).
1616
0
                node.m_send_memusage -= memusage;
1617
0
                ++it;
1618
0
            }
1619
0
        }
1620
0
        const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1621
        // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1622
        // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1623
        // verify that the previously returned 'more' was correct.
1624
0
        if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1625
0
        expected_more = more;
1626
0
        data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1627
0
        int nBytes = 0;
1628
0
        if (!data.empty()) {
1629
0
            LOCK(node.m_sock_mutex);
1630
            // There is no socket in case we've already disconnected, or in test cases without
1631
            // real connections. In these cases, we bail out immediately and just leave things
1632
            // in the send queue and transport.
1633
0
            if (!node.m_sock) {
1634
0
                break;
1635
0
            }
1636
0
            int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1637
#ifdef MSG_MORE
1638
            if (more) {
1639
                flags |= MSG_MORE;
1640
            }
1641
#endif
1642
0
            nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1643
0
        }
1644
0
        if (nBytes > 0) {
1645
0
            node.m_last_send = GetTime<std::chrono::seconds>();
1646
0
            node.nSendBytes += nBytes;
1647
            // Notify transport that bytes have been processed.
1648
0
            node.m_transport->MarkBytesSent(nBytes);
1649
            // Update statistics per message type.
1650
0
            if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1651
0
                node.AccountForSentBytes(msg_type, nBytes);
1652
0
            }
1653
0
            nSentSize += nBytes;
1654
0
            if ((size_t)nBytes != data.size()) {
1655
                // could not send full message; stop sending more
1656
0
                break;
1657
0
            }
1658
0
        } else {
1659
0
            if (nBytes < 0) {
1660
                // error
1661
0
                int nErr = WSAGetLastError();
1662
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1663
0
                    LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1664
0
                    node.CloseSocketDisconnect();
1665
0
                }
1666
0
            }
1667
0
            break;
1668
0
        }
1669
0
    }
1670
1671
0
    node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1672
1673
0
    if (it == node.vSendMsg.end()) {
1674
0
        assert(node.m_send_memusage == 0);
1675
0
    }
1676
0
    node.vSendMsg.erase(node.vSendMsg.begin(), it);
1677
0
    return {nSentSize, data_left};
1678
0
}
1679
1680
/** Try to find a connection to evict when the node is full.
1681
 *  Extreme care must be taken to avoid opening the node to attacker
1682
 *   triggered network partitioning.
1683
 *  The strategy used here is to protect a small number of peers
1684
 *   for each of several distinct characteristics which are difficult
1685
 *   to forge.  In order to partition a node the attacker must be
1686
 *   simultaneously better at all of them than honest peers.
1687
 */
1688
bool CConnman::AttemptToEvictConnection()
1689
0
{
1690
0
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
1691
0
    {
1692
1693
0
        LOCK(m_nodes_mutex);
1694
0
        for (const CNode* node : m_nodes) {
1695
0
            if (node->fDisconnect)
1696
0
                continue;
1697
0
            NodeEvictionCandidate candidate{
1698
0
                .id = node->GetId(),
1699
0
                .m_connected = node->m_connected,
1700
0
                .m_min_ping_time = node->m_min_ping_time,
1701
0
                .m_last_block_time = node->m_last_block_time,
1702
0
                .m_last_tx_time = node->m_last_tx_time,
1703
0
                .fRelevantServices = node->m_has_all_wanted_services,
1704
0
                .m_relay_txs = node->m_relays_txs.load(),
1705
0
                .fBloomFilter = node->m_bloom_filter_loaded.load(),
1706
0
                .nKeyedNetGroup = node->nKeyedNetGroup,
1707
0
                .prefer_evict = node->m_prefer_evict,
1708
0
                .m_is_local = node->addr.IsLocal(),
1709
0
                .m_network = node->ConnectedThroughNetwork(),
1710
0
                .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1711
0
                .m_conn_type = node->m_conn_type,
1712
0
            };
1713
0
            vEvictionCandidates.push_back(candidate);
1714
0
        }
1715
0
    }
1716
0
    const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1717
0
    if (!node_id_to_evict) {
1718
0
        return false;
1719
0
    }
1720
0
    LOCK(m_nodes_mutex);
1721
0
    for (CNode* pnode : m_nodes) {
1722
0
        if (pnode->GetId() == *node_id_to_evict) {
1723
0
            LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1724
0
            TRACEPOINT(net, evicted_inbound_connection,
1725
0
                pnode->GetId(),
1726
0
                pnode->m_addr_name.c_str(),
1727
0
                pnode->ConnectionTypeAsString().c_str(),
1728
0
                pnode->ConnectedThroughNetwork(),
1729
0
                Ticks<std::chrono::seconds>(pnode->m_connected));
1730
0
            pnode->fDisconnect = true;
1731
0
            return true;
1732
0
        }
1733
0
    }
1734
0
    return false;
1735
0
}
1736
1737
0
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1738
0
    struct sockaddr_storage sockaddr;
1739
0
    socklen_t len = sizeof(sockaddr);
1740
0
    auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1741
1742
0
    if (!sock) {
1743
0
        const int nErr = WSAGetLastError();
1744
0
        if (nErr != WSAEWOULDBLOCK) {
1745
0
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1746
0
        }
1747
0
        return;
1748
0
    }
1749
1750
0
    CService addr;
1751
0
    if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1752
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1753
0
    } else {
1754
0
        addr = MaybeFlipIPv6toCJDNS(addr);
1755
0
    }
1756
1757
0
    const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1758
1759
0
    NetPermissionFlags permission_flags = NetPermissionFlags::None;
1760
0
    hListenSocket.AddSocketPermissionFlags(permission_flags);
1761
1762
0
    CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1763
0
}
1764
1765
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1766
                                            NetPermissionFlags permission_flags,
1767
                                            const CService& addr_bind,
1768
                                            const CService& addr)
1769
0
{
1770
0
    int nInbound = 0;
1771
1772
0
    AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1773
1774
0
    {
1775
0
        LOCK(m_nodes_mutex);
1776
0
        for (const CNode* pnode : m_nodes) {
1777
0
            if (pnode->IsInboundConn()) nInbound++;
1778
0
        }
1779
0
    }
1780
1781
0
    if (!fNetworkActive) {
1782
0
        LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1783
0
        return;
1784
0
    }
1785
1786
0
    if (!sock->IsSelectable()) {
1787
0
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1788
0
        return;
1789
0
    }
1790
1791
    // According to the internet TCP_NODELAY is not carried into accepted sockets
1792
    // on all platforms.  Set it again here just to be sure.
1793
0
    const int on{1};
1794
0
    if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1795
0
        LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1796
0
                 addr.ToStringAddrPort());
1797
0
    }
1798
1799
    // Don't accept connections from banned peers.
1800
0
    bool banned = m_banman && m_banman->IsBanned(addr);
1801
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1802
0
    {
1803
0
        LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1804
0
        return;
1805
0
    }
1806
1807
    // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1808
0
    bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1809
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1810
0
    {
1811
0
        LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1812
0
        return;
1813
0
    }
1814
1815
0
    if (nInbound >= m_max_inbound)
1816
0
    {
1817
0
        if (!AttemptToEvictConnection()) {
1818
            // No connection to evict, disconnect the new connection
1819
0
            LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1820
0
            return;
1821
0
        }
1822
0
    }
1823
1824
0
    NodeId id = GetNewNodeId();
1825
0
    uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1826
1827
0
    const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1828
    // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1829
    // detected, so use it whenever we signal NODE_P2P_V2.
1830
0
    ServiceFlags local_services = GetLocalServices();
1831
0
    const bool use_v2transport(local_services & NODE_P2P_V2);
1832
1833
0
    CNode* pnode = new CNode(id,
1834
0
                             std::move(sock),
1835
0
                             CAddress{addr, NODE_NONE},
1836
0
                             CalculateKeyedNetGroup(addr),
1837
0
                             nonce,
1838
0
                             addr_bind,
1839
0
                             /*addrNameIn=*/"",
1840
0
                             ConnectionType::INBOUND,
1841
0
                             inbound_onion,
1842
0
                             CNodeOptions{
1843
0
                                 .permission_flags = permission_flags,
1844
0
                                 .prefer_evict = discouraged,
1845
0
                                 .recv_flood_size = nReceiveFloodSize,
1846
0
                                 .use_v2transport = use_v2transport,
1847
0
                             });
1848
0
    pnode->AddRef();
1849
0
    m_msgproc->InitializeNode(*pnode, local_services);
1850
0
    {
1851
0
        LOCK(m_nodes_mutex);
1852
0
        m_nodes.push_back(pnode);
1853
0
    }
1854
0
    LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1855
0
    TRACEPOINT(net, inbound_connection,
1856
0
        pnode->GetId(),
1857
0
        pnode->m_addr_name.c_str(),
1858
0
        pnode->ConnectionTypeAsString().c_str(),
1859
0
        pnode->ConnectedThroughNetwork(),
1860
0
        GetNodeCount(ConnectionDirection::In));
1861
1862
    // We received a new connection, harvest entropy from the time (and our peer count)
1863
0
    RandAddEvent((uint32_t)id);
1864
0
}
1865
1866
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1867
0
{
1868
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1869
0
    std::optional<int> max_connections;
1870
0
    switch (conn_type) {
1871
0
    case ConnectionType::INBOUND:
1872
0
    case ConnectionType::MANUAL:
1873
0
        return false;
1874
0
    case ConnectionType::OUTBOUND_FULL_RELAY:
1875
0
        max_connections = m_max_outbound_full_relay;
1876
0
        break;
1877
0
    case ConnectionType::BLOCK_RELAY:
1878
0
        max_connections = m_max_outbound_block_relay;
1879
0
        break;
1880
    // no limit for ADDR_FETCH because -seednode has no limit either
1881
0
    case ConnectionType::ADDR_FETCH:
1882
0
        break;
1883
    // no limit for FEELER connections since they're short-lived
1884
0
    case ConnectionType::FEELER:
1885
0
        break;
1886
0
    } // no default case, so the compiler can warn about missing cases
1887
1888
    // Count existing connections
1889
0
    int existing_connections = WITH_LOCK(m_nodes_mutex,
1890
0
                                         return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1891
1892
    // Max connections of specified type already exist
1893
0
    if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1894
1895
    // Max total outbound connections already exist
1896
0
    CSemaphoreGrant grant(*semOutbound, true);
1897
0
    if (!grant) return false;
1898
1899
0
    OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1900
0
    return true;
1901
0
}
1902
1903
void CConnman::DisconnectNodes()
1904
0
{
1905
0
    AssertLockNotHeld(m_nodes_mutex);
1906
0
    AssertLockNotHeld(m_reconnections_mutex);
1907
1908
    // Use a temporary variable to accumulate desired reconnections, so we don't need
1909
    // m_reconnections_mutex while holding m_nodes_mutex.
1910
0
    decltype(m_reconnections) reconnections_to_add;
1911
1912
0
    {
1913
0
        LOCK(m_nodes_mutex);
1914
1915
0
        const bool network_active{fNetworkActive};
1916
0
        if (!network_active) {
1917
            // Disconnect any connected nodes
1918
0
            for (CNode* pnode : m_nodes) {
1919
0
                if (!pnode->fDisconnect) {
1920
0
                    LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1921
0
                    pnode->fDisconnect = true;
1922
0
                }
1923
0
            }
1924
0
        }
1925
1926
        // Disconnect unused nodes
1927
0
        std::vector<CNode*> nodes_copy = m_nodes;
1928
0
        for (CNode* pnode : nodes_copy)
1929
0
        {
1930
0
            if (pnode->fDisconnect)
1931
0
            {
1932
                // remove from m_nodes
1933
0
                m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1934
1935
                // Add to reconnection list if appropriate. We don't reconnect right here, because
1936
                // the creation of a connection is a blocking operation (up to several seconds),
1937
                // and we don't want to hold up the socket handler thread for that long.
1938
0
                if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1939
0
                    reconnections_to_add.push_back({
1940
0
                        .addr_connect = pnode->addr,
1941
0
                        .grant = std::move(pnode->grantOutbound),
1942
0
                        .destination = pnode->m_dest,
1943
0
                        .conn_type = pnode->m_conn_type,
1944
0
                        .use_v2transport = false});
1945
0
                    LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1946
0
                }
1947
1948
                // release outbound grant (if any)
1949
0
                pnode->grantOutbound.Release();
1950
1951
                // close socket and cleanup
1952
0
                pnode->CloseSocketDisconnect();
1953
1954
                // update connection count by network
1955
0
                if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1956
1957
                // hold in disconnected pool until all refs are released
1958
0
                pnode->Release();
1959
0
                m_nodes_disconnected.push_back(pnode);
1960
0
            }
1961
0
        }
1962
0
    }
1963
0
    {
1964
        // Delete disconnected nodes
1965
0
        std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1966
0
        for (CNode* pnode : nodes_disconnected_copy)
1967
0
        {
1968
            // Destroy the object only after other threads have stopped using it.
1969
0
            if (pnode->GetRefCount() <= 0) {
1970
0
                m_nodes_disconnected.remove(pnode);
1971
0
                DeleteNode(pnode);
1972
0
            }
1973
0
        }
1974
0
    }
1975
0
    {
1976
        // Move entries from reconnections_to_add to m_reconnections.
1977
0
        LOCK(m_reconnections_mutex);
1978
0
        m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1979
0
    }
1980
0
}
1981
1982
void CConnman::NotifyNumConnectionsChanged()
1983
0
{
1984
0
    size_t nodes_size;
1985
0
    {
1986
0
        LOCK(m_nodes_mutex);
1987
0
        nodes_size = m_nodes.size();
1988
0
    }
1989
0
    if(nodes_size != nPrevNodeCount) {
1990
0
        nPrevNodeCount = nodes_size;
1991
0
        if (m_client_interface) {
1992
0
            m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1993
0
        }
1994
0
    }
1995
0
}
1996
1997
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1998
0
{
1999
0
    return node.m_connected + m_peer_connect_timeout < now;
2000
0
}
2001
2002
bool CConnman::InactivityCheck(const CNode& node) const
2003
0
{
2004
    // Tests that see disconnects after using mocktime can start nodes with a
2005
    // large timeout. For example, -peertimeout=999999999.
2006
0
    const auto now{GetTime<std::chrono::seconds>()};
2007
0
    const auto last_send{node.m_last_send.load()};
2008
0
    const auto last_recv{node.m_last_recv.load()};
2009
2010
0
    if (!ShouldRunInactivityChecks(node, now)) return false;
2011
2012
0
    bool has_received{last_recv.count() != 0};
2013
0
    bool has_sent{last_send.count() != 0};
2014
2015
0
    if (!has_received || !has_sent) {
2016
0
        std::string has_never;
2017
0
        if (!has_received) has_never += ", never received from peer";
2018
0
        if (!has_sent) has_never += ", never sent to peer";
2019
0
        LogDebug(BCLog::NET,
2020
0
            "socket no message in first %i seconds%s, %s\n",
2021
0
            count_seconds(m_peer_connect_timeout),
2022
0
            has_never,
2023
0
            node.DisconnectMsg(fLogIPs)
2024
0
        );
2025
0
        return true;
2026
0
    }
2027
2028
0
    if (now > last_send + TIMEOUT_INTERVAL) {
2029
0
        LogDebug(BCLog::NET,
2030
0
            "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2031
0
            node.DisconnectMsg(fLogIPs)
2032
0
        );
2033
0
        return true;
2034
0
    }
2035
2036
0
    if (now > last_recv + TIMEOUT_INTERVAL) {
2037
0
        LogDebug(BCLog::NET,
2038
0
            "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2039
0
            node.DisconnectMsg(fLogIPs)
2040
0
        );
2041
0
        return true;
2042
0
    }
2043
2044
0
    if (!node.fSuccessfullyConnected) {
2045
0
        if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2046
0
            LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2047
0
        } else {
2048
0
            LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2049
0
        }
2050
0
        return true;
2051
0
    }
2052
2053
0
    return false;
2054
0
}
2055
2056
Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2057
0
{
2058
0
    Sock::EventsPerSock events_per_sock;
2059
2060
0
    for (const ListenSocket& hListenSocket : vhListenSocket) {
2061
0
        events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2062
0
    }
2063
2064
0
    for (CNode* pnode : nodes) {
2065
0
        bool select_recv = !pnode->fPauseRecv;
2066
0
        bool select_send;
2067
0
        {
2068
0
            LOCK(pnode->cs_vSend);
2069
            // Sending is possible if either there are bytes to send right now, or if there will be
2070
            // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2071
            // determines both of these in a single call.
2072
0
            const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2073
0
            select_send = !to_send.empty() || more;
2074
0
        }
2075
0
        if (!select_recv && !select_send) continue;
2076
2077
0
        LOCK(pnode->m_sock_mutex);
2078
0
        if (pnode->m_sock) {
2079
0
            Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2080
0
            events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2081
0
        }
2082
0
    }
2083
2084
0
    return events_per_sock;
2085
0
}
2086
2087
void CConnman::SocketHandler()
2088
0
{
2089
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2090
2091
0
    Sock::EventsPerSock events_per_sock;
2092
2093
0
    {
2094
0
        const NodesSnapshot snap{*this, /*shuffle=*/false};
2095
2096
0
        const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2097
2098
        // Check for the readiness of the already connected sockets and the
2099
        // listening sockets in one call ("readiness" as in poll(2) or
2100
        // select(2)). If none are ready, wait for a short while and return
2101
        // empty sets.
2102
0
        events_per_sock = GenerateWaitSockets(snap.Nodes());
2103
0
        if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2104
0
            interruptNet.sleep_for(timeout);
2105
0
        }
2106
2107
        // Service (send/receive) each of the already connected nodes.
2108
0
        SocketHandlerConnected(snap.Nodes(), events_per_sock);
2109
0
    }
2110
2111
    // Accept new connections from listening sockets.
2112
0
    SocketHandlerListening(events_per_sock);
2113
0
}
2114
2115
void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2116
                                      const Sock::EventsPerSock& events_per_sock)
2117
0
{
2118
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2119
2120
0
    for (CNode* pnode : nodes) {
2121
0
        if (interruptNet)
2122
0
            return;
2123
2124
        //
2125
        // Receive
2126
        //
2127
0
        bool recvSet = false;
2128
0
        bool sendSet = false;
2129
0
        bool errorSet = false;
2130
0
        {
2131
0
            LOCK(pnode->m_sock_mutex);
2132
0
            if (!pnode->m_sock) {
2133
0
                continue;
2134
0
            }
2135
0
            const auto it = events_per_sock.find(pnode->m_sock);
2136
0
            if (it != events_per_sock.end()) {
2137
0
                recvSet = it->second.occurred & Sock::RECV;
2138
0
                sendSet = it->second.occurred & Sock::SEND;
2139
0
                errorSet = it->second.occurred & Sock::ERR;
2140
0
            }
2141
0
        }
2142
2143
0
        if (sendSet) {
2144
            // Send data
2145
0
            auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2146
0
            if (bytes_sent) {
2147
0
                RecordBytesSent(bytes_sent);
2148
2149
                // If both receiving and (non-optimistic) sending were possible, we first attempt
2150
                // sending. If that succeeds, but does not fully drain the send queue, do not
2151
                // attempt to receive. This avoids needlessly queueing data if the remote peer
2152
                // is slow at receiving data, by means of TCP flow control. We only do this when
2153
                // sending actually succeeded to make sure progress is always made; otherwise a
2154
                // deadlock would be possible when both sides have data to send, but neither is
2155
                // receiving.
2156
0
                if (data_left) recvSet = false;
2157
0
            }
2158
0
        }
2159
2160
0
        if (recvSet || errorSet)
2161
0
        {
2162
            // typical socket buffer is 8K-64K
2163
0
            uint8_t pchBuf[0x10000];
2164
0
            int nBytes = 0;
2165
0
            {
2166
0
                LOCK(pnode->m_sock_mutex);
2167
0
                if (!pnode->m_sock) {
2168
0
                    continue;
2169
0
                }
2170
0
                nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2171
0
            }
2172
0
            if (nBytes > 0)
2173
0
            {
2174
0
                bool notify = false;
2175
0
                if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2176
0
                    LogDebug(BCLog::NET,
2177
0
                        "receiving message bytes failed, %s\n",
2178
0
                        pnode->DisconnectMsg(fLogIPs)
2179
0
                    );
2180
0
                    pnode->CloseSocketDisconnect();
2181
0
                }
2182
0
                RecordBytesRecv(nBytes);
2183
0
                if (notify) {
2184
0
                    pnode->MarkReceivedMsgsForProcessing();
2185
0
                    WakeMessageHandler();
2186
0
                }
2187
0
            }
2188
0
            else if (nBytes == 0)
2189
0
            {
2190
                // socket closed gracefully
2191
0
                if (!pnode->fDisconnect) {
2192
0
                    LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2193
0
                }
2194
0
                pnode->CloseSocketDisconnect();
2195
0
            }
2196
0
            else if (nBytes < 0)
2197
0
            {
2198
                // error
2199
0
                int nErr = WSAGetLastError();
2200
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2201
0
                {
2202
0
                    if (!pnode->fDisconnect) {
2203
0
                        LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2204
0
                    }
2205
0
                    pnode->CloseSocketDisconnect();
2206
0
                }
2207
0
            }
2208
0
        }
2209
2210
0
        if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2211
0
    }
2212
0
}
2213
2214
void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2215
0
{
2216
0
    for (const ListenSocket& listen_socket : vhListenSocket) {
2217
0
        if (interruptNet) {
2218
0
            return;
2219
0
        }
2220
0
        const auto it = events_per_sock.find(listen_socket.sock);
2221
0
        if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2222
0
            AcceptConnection(listen_socket);
2223
0
        }
2224
0
    }
2225
0
}
2226
2227
void CConnman::ThreadSocketHandler()
2228
0
{
2229
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2230
2231
0
    while (!interruptNet)
2232
0
    {
2233
0
        DisconnectNodes();
2234
0
        NotifyNumConnectionsChanged();
2235
0
        SocketHandler();
2236
0
    }
2237
0
}
2238
2239
void CConnman::WakeMessageHandler()
2240
0
{
2241
0
    {
2242
0
        LOCK(mutexMsgProc);
2243
0
        fMsgProcWake = true;
2244
0
    }
2245
0
    condMsgProc.notify_one();
2246
0
}
2247
2248
void CConnman::ThreadDNSAddressSeed()
2249
0
{
2250
0
    int outbound_connection_count = 0;
2251
2252
0
    if (!gArgs.GetArgs("-seednode").empty()) {
2253
0
        auto start = NodeClock::now();
2254
0
        constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2255
0
        LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2256
0
        while (!interruptNet) {
2257
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2258
0
                return;
2259
2260
            // Abort if we have spent enough time without reaching our target.
2261
            // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2262
0
            if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2263
0
                LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2264
0
                break;
2265
0
            }
2266
2267
0
            outbound_connection_count = GetFullOutboundConnCount();
2268
0
            if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2269
0
                LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2270
0
                break;
2271
0
            }
2272
0
        }
2273
0
    }
2274
2275
0
    FastRandomContext rng;
2276
0
    std::vector<std::string> seeds = m_params.DNSSeeds();
2277
0
    std::shuffle(seeds.begin(), seeds.end(), rng);
2278
0
    int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2279
2280
0
    if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2281
        // When -forcednsseed is provided, query all.
2282
0
        seeds_right_now = seeds.size();
2283
0
    } else if (addrman.Size() == 0) {
2284
        // If we have no known peers, query all.
2285
        // This will occur on the first run, or if peers.dat has been
2286
        // deleted.
2287
0
        seeds_right_now = seeds.size();
2288
0
    }
2289
2290
    // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2291
0
    if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2292
        // goal: only query DNS seed if address need is acute
2293
        // * If we have a reasonable number of peers in addrman, spend
2294
        //   some time trying them first. This improves user privacy by
2295
        //   creating fewer identifying DNS requests, reduces trust by
2296
        //   giving seeds less influence on the network topology, and
2297
        //   reduces traffic to the seeds.
2298
        // * When querying DNS seeds query a few at once, this ensures
2299
        //   that we don't give DNS seeds the ability to eclipse nodes
2300
        //   that query them.
2301
        // * If we continue having problems, eventually query all the
2302
        //   DNS seeds, and if that fails too, also try the fixed seeds.
2303
        //   (done in ThreadOpenConnections)
2304
0
        int found = 0;
2305
0
        const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2306
2307
0
        for (const std::string& seed : seeds) {
2308
0
            if (seeds_right_now == 0) {
2309
0
                seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2310
2311
0
                if (addrman.Size() > 0) {
2312
0
                    LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2313
0
                    std::chrono::seconds to_wait = seeds_wait_time;
2314
0
                    while (to_wait.count() > 0) {
2315
                        // if sleeping for the MANY_PEERS interval, wake up
2316
                        // early to see if we have enough peers and can stop
2317
                        // this thread entirely freeing up its resources
2318
0
                        std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2319
0
                        if (!interruptNet.sleep_for(w)) return;
2320
0
                        to_wait -= w;
2321
2322
0
                        if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2323
0
                            if (found > 0) {
2324
0
                                LogPrintf("%d addresses found from DNS seeds\n", found);
2325
0
                                LogPrintf("P2P peers available. Finished DNS seeding.\n");
2326
0
                            } else {
2327
0
                                LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2328
0
                            }
2329
0
                            return;
2330
0
                        }
2331
0
                    }
2332
0
                }
2333
0
            }
2334
2335
0
            if (interruptNet) return;
2336
2337
            // hold off on querying seeds if P2P network deactivated
2338
0
            if (!fNetworkActive) {
2339
0
                LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2340
0
                do {
2341
0
                    if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2342
0
                } while (!fNetworkActive);
2343
0
            }
2344
2345
0
            LogPrintf("Loading addresses from DNS seed %s\n", seed);
2346
            // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2347
            // for the base dns seed domain in chainparams
2348
0
            if (HaveNameProxy()) {
2349
0
                AddAddrFetch(seed);
2350
0
            } else {
2351
0
                std::vector<CAddress> vAdd;
2352
0
                constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2353
0
                std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2354
0
                CNetAddr resolveSource;
2355
0
                if (!resolveSource.SetInternal(host)) {
2356
0
                    continue;
2357
0
                }
2358
                // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2359
                // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2360
                // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2361
                // returned.
2362
0
                unsigned int nMaxIPs = 32;
2363
0
                const auto addresses{LookupHost(host, nMaxIPs, true)};
2364
0
                if (!addresses.empty()) {
2365
0
                    for (const CNetAddr& ip : addresses) {
2366
0
                        CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2367
0
                        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2368
0
                        vAdd.push_back(addr);
2369
0
                        found++;
2370
0
                    }
2371
0
                    addrman.Add(vAdd, resolveSource);
2372
0
                } else {
2373
                    // If the seed does not support a subdomain with our desired service bits,
2374
                    // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2375
                    // base dns seed domain in chainparams
2376
0
                    AddAddrFetch(seed);
2377
0
                }
2378
0
            }
2379
0
            --seeds_right_now;
2380
0
        }
2381
0
        LogPrintf("%d addresses found from DNS seeds\n", found);
2382
0
    } else {
2383
0
        LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2384
0
    }
2385
0
}
2386
2387
void CConnman::DumpAddresses()
2388
0
{
2389
0
    const auto start{SteadyClock::now()};
2390
2391
0
    DumpPeerAddresses(::gArgs, addrman);
2392
2393
0
    LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
2394
0
             addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2395
0
}
2396
2397
void CConnman::ProcessAddrFetch()
2398
0
{
2399
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2400
0
    std::string strDest;
2401
0
    {
2402
0
        LOCK(m_addr_fetches_mutex);
2403
0
        if (m_addr_fetches.empty())
2404
0
            return;
2405
0
        strDest = m_addr_fetches.front();
2406
0
        m_addr_fetches.pop_front();
2407
0
    }
2408
    // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2409
    // peer doesn't support it or immediately disconnects us for another reason.
2410
0
    const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2411
0
    CAddress addr;
2412
0
    CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2413
0
    if (grant) {
2414
0
        OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2415
0
    }
2416
0
}
2417
2418
bool CConnman::GetTryNewOutboundPeer() const
2419
0
{
2420
0
    return m_try_another_outbound_peer;
2421
0
}
2422
2423
void CConnman::SetTryNewOutboundPeer(bool flag)
2424
0
{
2425
0
    m_try_another_outbound_peer = flag;
2426
0
    LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2427
0
}
2428
2429
void CConnman::StartExtraBlockRelayPeers()
2430
0
{
2431
0
    LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2432
0
    m_start_extra_block_relay_peers = true;
2433
0
}
2434
2435
// Return the number of outbound connections that are full relay (not blocks only)
2436
int CConnman::GetFullOutboundConnCount() const
2437
0
{
2438
0
    int nRelevant = 0;
2439
0
    {
2440
0
        LOCK(m_nodes_mutex);
2441
0
        for (const CNode* pnode : m_nodes) {
2442
0
            if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2443
0
        }
2444
0
    }
2445
0
    return nRelevant;
2446
0
}
2447
2448
// Return the number of peers we have over our outbound connection limit
2449
// Exclude peers that are marked for disconnect, or are going to be
2450
// disconnected soon (eg ADDR_FETCH and FEELER)
2451
// Also exclude peers that haven't finished initial connection handshake yet
2452
// (so that we don't decide we're over our desired connection limit, and then
2453
// evict some peer that has finished the handshake)
2454
int CConnman::GetExtraFullOutboundCount() const
2455
0
{
2456
0
    int full_outbound_peers = 0;
2457
0
    {
2458
0
        LOCK(m_nodes_mutex);
2459
0
        for (const CNode* pnode : m_nodes) {
2460
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2461
0
                ++full_outbound_peers;
2462
0
            }
2463
0
        }
2464
0
    }
2465
0
    return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2466
0
}
2467
2468
int CConnman::GetExtraBlockRelayCount() const
2469
0
{
2470
0
    int block_relay_peers = 0;
2471
0
    {
2472
0
        LOCK(m_nodes_mutex);
2473
0
        for (const CNode* pnode : m_nodes) {
2474
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2475
0
                ++block_relay_peers;
2476
0
            }
2477
0
        }
2478
0
    }
2479
0
    return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2480
0
}
2481
2482
std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2483
0
{
2484
0
    std::unordered_set<Network> networks{};
2485
0
    for (int n = 0; n < NET_MAX; n++) {
2486
0
        enum Network net = (enum Network)n;
2487
0
        if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2488
0
        if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2489
0
            networks.insert(net);
2490
0
        }
2491
0
    }
2492
0
    return networks;
2493
0
}
2494
2495
bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2496
0
{
2497
0
    AssertLockHeld(m_nodes_mutex);
2498
0
    return m_network_conn_counts[net] > 1;
2499
0
}
2500
2501
bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2502
0
{
2503
0
    std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2504
0
    std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2505
2506
0
    LOCK(m_nodes_mutex);
2507
0
    for (const auto net : nets) {
2508
0
        if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2509
0
            network = net;
2510
0
            return true;
2511
0
        }
2512
0
    }
2513
2514
0
    return false;
2515
0
}
2516
2517
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2518
0
{
2519
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2520
0
    AssertLockNotHeld(m_reconnections_mutex);
2521
0
    FastRandomContext rng;
2522
    // Connect to specific addresses
2523
0
    if (!connect.empty())
2524
0
    {
2525
        // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2526
        // peer doesn't support it or immediately disconnects us for another reason.
2527
0
        const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2528
0
        for (int64_t nLoop = 0;; nLoop++)
2529
0
        {
2530
0
            for (const std::string& strAddr : connect)
2531
0
            {
2532
0
                CAddress addr(CService(), NODE_NONE);
2533
0
                OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2534
0
                for (int i = 0; i < 10 && i < nLoop; i++)
2535
0
                {
2536
0
                    if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2537
0
                        return;
2538
0
                }
2539
0
            }
2540
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2541
0
                return;
2542
0
            PerformReconnections();
2543
0
        }
2544
0
    }
2545
2546
    // Initiate network connections
2547
0
    auto start = GetTime<std::chrono::microseconds>();
2548
2549
    // Minimum time before next feeler connection (in microseconds).
2550
0
    auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2551
0
    auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2552
0
    auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2553
0
    const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2554
0
    bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2555
0
    const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2556
2557
0
    auto seed_node_timer = NodeClock::now();
2558
0
    bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2559
0
    constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2560
2561
0
    if (!add_fixed_seeds) {
2562
0
        LogPrintf("Fixed seeds are disabled\n");
2563
0
    }
2564
2565
0
    while (!interruptNet)
2566
0
    {
2567
0
        if (add_addr_fetch) {
2568
0
            add_addr_fetch = false;
2569
0
            const auto& seed{SpanPopBack(seed_nodes)};
2570
0
            AddAddrFetch(seed);
2571
2572
0
            if (addrman.Size() == 0) {
2573
0
                LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2574
0
            } else {
2575
0
                LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2576
0
            }
2577
0
        }
2578
2579
0
        ProcessAddrFetch();
2580
2581
0
        if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2582
0
            return;
2583
2584
0
        PerformReconnections();
2585
2586
0
        CSemaphoreGrant grant(*semOutbound);
2587
0
        if (interruptNet)
2588
0
            return;
2589
2590
0
        const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2591
0
        if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2592
            // When the node starts with an empty peers.dat, there are a few other sources of peers before
2593
            // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2594
            // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2595
            // 60 seconds for any of those sources to populate addrman.
2596
0
            bool add_fixed_seeds_now = false;
2597
            // It is cheapest to check if enough time has passed first.
2598
0
            if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2599
0
                add_fixed_seeds_now = true;
2600
0
                LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2601
0
            }
2602
2603
            // Perform cheap checks before locking a mutex.
2604
0
            else if (!dnsseed && !use_seednodes) {
2605
0
                LOCK(m_added_nodes_mutex);
2606
0
                if (m_added_node_params.empty()) {
2607
0
                    add_fixed_seeds_now = true;
2608
0
                    LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2609
0
                }
2610
0
            }
2611
2612
0
            if (add_fixed_seeds_now) {
2613
0
                std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2614
                // We will not make outgoing connections to peers that are unreachable
2615
                // (e.g. because of -onlynet configuration).
2616
                // Therefore, we do not add them to addrman in the first place.
2617
                // In case previously unreachable networks become reachable
2618
                // (e.g. in case of -onlynet changes by the user), fixed seeds will
2619
                // be loaded only for networks for which we have no addresses.
2620
0
                seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2621
0
                                                [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2622
0
                                 seed_addrs.end());
2623
0
                CNetAddr local;
2624
0
                local.SetInternal("fixedseeds");
2625
0
                addrman.Add(seed_addrs, local);
2626
0
                add_fixed_seeds = false;
2627
0
                LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2628
0
            }
2629
0
        }
2630
2631
        //
2632
        // Choose an address to connect to based on most recently seen
2633
        //
2634
0
        CAddress addrConnect;
2635
2636
        // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2637
0
        int nOutboundFullRelay = 0;
2638
0
        int nOutboundBlockRelay = 0;
2639
0
        int outbound_privacy_network_peers = 0;
2640
0
        std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2641
2642
0
        {
2643
0
            LOCK(m_nodes_mutex);
2644
0
            for (const CNode* pnode : m_nodes) {
2645
0
                if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2646
0
                if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2647
2648
                // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2649
0
                switch (pnode->m_conn_type) {
2650
                    // We currently don't take inbound connections into account. Since they are
2651
                    // free to make, an attacker could make them to prevent us from connecting to
2652
                    // certain peers.
2653
0
                    case ConnectionType::INBOUND:
2654
                    // Short-lived outbound connections should not affect how we select outbound
2655
                    // peers from addrman.
2656
0
                    case ConnectionType::ADDR_FETCH:
2657
0
                    case ConnectionType::FEELER:
2658
0
                        break;
2659
0
                    case ConnectionType::MANUAL:
2660
0
                    case ConnectionType::OUTBOUND_FULL_RELAY:
2661
0
                    case ConnectionType::BLOCK_RELAY:
2662
0
                        const CAddress address{pnode->addr};
2663
0
                        if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2664
                            // Since our addrman-groups for these networks are
2665
                            // random, without relation to the route we
2666
                            // take to connect to these peers or to the
2667
                            // difficulty in obtaining addresses with diverse
2668
                            // groups, we don't worry about diversity with
2669
                            // respect to our addrman groups when connecting to
2670
                            // these networks.
2671
0
                            ++outbound_privacy_network_peers;
2672
0
                        } else {
2673
0
                            outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2674
0
                        }
2675
0
                } // no default case, so the compiler can warn about missing cases
2676
0
            }
2677
0
        }
2678
2679
0
        if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2680
0
            if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2681
0
                seed_node_timer = NodeClock::now();
2682
0
                add_addr_fetch = true;
2683
0
            }
2684
0
        }
2685
2686
0
        ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2687
0
        auto now = GetTime<std::chrono::microseconds>();
2688
0
        bool anchor = false;
2689
0
        bool fFeeler = false;
2690
0
        std::optional<Network> preferred_net;
2691
2692
        // Determine what type of connection to open. Opening
2693
        // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2694
        // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2695
        // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2696
        // until we hit our block-relay-only peer limit.
2697
        // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2698
        // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2699
        // these conditions are met, check to see if it's time to try an extra
2700
        // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2701
        // timer to decide if we should open a FEELER.
2702
2703
0
        if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2704
0
            conn_type = ConnectionType::BLOCK_RELAY;
2705
0
            anchor = true;
2706
0
        } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2707
            // OUTBOUND_FULL_RELAY
2708
0
        } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2709
0
            conn_type = ConnectionType::BLOCK_RELAY;
2710
0
        } else if (GetTryNewOutboundPeer()) {
2711
            // OUTBOUND_FULL_RELAY
2712
0
        } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2713
            // Periodically connect to a peer (using regular outbound selection
2714
            // methodology from addrman) and stay connected long enough to sync
2715
            // headers, but not much else.
2716
            //
2717
            // Then disconnect the peer, if we haven't learned anything new.
2718
            //
2719
            // The idea is to make eclipse attacks very difficult to pull off,
2720
            // because every few minutes we're finding a new peer to learn headers
2721
            // from.
2722
            //
2723
            // This is similar to the logic for trying extra outbound (full-relay)
2724
            // peers, except:
2725
            // - we do this all the time on an exponential timer, rather than just when
2726
            //   our tip is stale
2727
            // - we potentially disconnect our next-youngest block-relay-only peer, if our
2728
            //   newest block-relay-only peer delivers a block more recently.
2729
            //   See the eviction logic in net_processing.cpp.
2730
            //
2731
            // Because we can promote these connections to block-relay-only
2732
            // connections, they do not get their own ConnectionType enum
2733
            // (similar to how we deal with extra outbound peers).
2734
0
            next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2735
0
            conn_type = ConnectionType::BLOCK_RELAY;
2736
0
        } else if (now > next_feeler) {
2737
0
            next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2738
0
            conn_type = ConnectionType::FEELER;
2739
0
            fFeeler = true;
2740
0
        } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2741
0
                   m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2742
0
                   now > next_extra_network_peer &&
2743
0
                   MaybePickPreferredNetwork(preferred_net)) {
2744
            // Full outbound connection management: Attempt to get at least one
2745
            // outbound peer from each reachable network by making extra connections
2746
            // and then protecting "only" peers from a network during outbound eviction.
2747
            // This is not attempted if the user changed -maxconnections to a value
2748
            // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2749
            // to prevent interactions with otherwise protected outbound peers.
2750
0
            next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2751
0
        } else {
2752
            // skip to next iteration of while loop
2753
0
            continue;
2754
0
        }
2755
2756
0
        addrman.ResolveCollisions();
2757
2758
0
        const auto current_time{NodeClock::now()};
2759
0
        int nTries = 0;
2760
0
        const auto reachable_nets{g_reachable_nets.All()};
2761
2762
0
        while (!interruptNet)
2763
0
        {
2764
0
            if (anchor && !m_anchors.empty()) {
2765
0
                const CAddress addr = m_anchors.back();
2766
0
                m_anchors.pop_back();
2767
0
                if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2768
0
                    !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2769
0
                    outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2770
0
                addrConnect = addr;
2771
0
                LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2772
0
                break;
2773
0
            }
2774
2775
            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2776
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2777
            // already-connected network ranges, ...) before trying new addrman addresses.
2778
0
            nTries++;
2779
0
            if (nTries > 100)
2780
0
                break;
2781
2782
0
            CAddress addr;
2783
0
            NodeSeconds addr_last_try{0s};
2784
2785
0
            if (fFeeler) {
2786
                // First, try to get a tried table collision address. This returns
2787
                // an empty (invalid) address if there are no collisions to try.
2788
0
                std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2789
2790
0
                if (!addr.IsValid()) {
2791
                    // No tried table collisions. Select a new table address
2792
                    // for our feeler.
2793
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2794
0
                } else if (AlreadyConnectedToAddress(addr)) {
2795
                    // If test-before-evict logic would have us connect to a
2796
                    // peer that we're already connected to, just mark that
2797
                    // address as Good(). We won't be able to initiate the
2798
                    // connection anyway, so this avoids inadvertently evicting
2799
                    // a currently-connected peer.
2800
0
                    addrman.Good(addr);
2801
                    // Select a new table address for our feeler instead.
2802
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2803
0
                }
2804
0
            } else {
2805
                // Not a feeler
2806
                // If preferred_net has a value set, pick an extra outbound
2807
                // peer from that network. The eviction logic in net_processing
2808
                // ensures that a peer from another network will be evicted.
2809
0
                std::tie(addr, addr_last_try) = preferred_net.has_value()
2810
0
                    ? addrman.Select(false, {*preferred_net})
2811
0
                    : addrman.Select(false, reachable_nets);
2812
0
            }
2813
2814
            // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2815
0
            if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2816
0
                continue;
2817
0
            }
2818
2819
            // if we selected an invalid or local address, restart
2820
0
            if (!addr.IsValid() || IsLocal(addr)) {
2821
0
                break;
2822
0
            }
2823
2824
0
            if (!g_reachable_nets.Contains(addr)) {
2825
0
                continue;
2826
0
            }
2827
2828
            // only consider very recently tried nodes after 30 failed attempts
2829
0
            if (current_time - addr_last_try < 10min && nTries < 30) {
2830
0
                continue;
2831
0
            }
2832
2833
            // for non-feelers, require all the services we'll want,
2834
            // for feelers, only require they be a full node (only because most
2835
            // SPV clients don't have a good address DB available)
2836
0
            if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2837
0
                continue;
2838
0
            } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2839
0
                continue;
2840
0
            }
2841
2842
            // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2843
0
            if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2844
0
                continue;
2845
0
            }
2846
2847
            // Do not make automatic outbound connections to addnode peers, to
2848
            // not use our limited outbound slots for them and to ensure
2849
            // addnode connections benefit from their intended protections.
2850
0
            if (AddedNodesContain(addr)) {
2851
0
                LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2852
0
                              preferred_net.has_value() ? "network-specific " : "",
2853
0
                              ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2854
0
                              fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2855
0
                continue;
2856
0
            }
2857
2858
0
            addrConnect = addr;
2859
0
            break;
2860
0
        }
2861
2862
0
        if (addrConnect.IsValid()) {
2863
0
            if (fFeeler) {
2864
                // Add small amount of random noise before connection to avoid synchronization.
2865
0
                if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2866
0
                    return;
2867
0
                }
2868
0
                LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2869
0
            }
2870
2871
0
            if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2872
2873
            // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2874
            // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2875
            // Don't record addrman failure attempts when node is offline. This can be identified since all local
2876
            // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2877
0
            const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2878
            // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2879
0
            const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2880
0
            OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2881
0
        }
2882
0
    }
2883
0
}
2884
2885
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2886
0
{
2887
0
    std::vector<CAddress> ret;
2888
0
    LOCK(m_nodes_mutex);
2889
0
    for (const CNode* pnode : m_nodes) {
2890
0
        if (pnode->IsBlockOnlyConn()) {
2891
0
            ret.push_back(pnode->addr);
2892
0
        }
2893
0
    }
2894
2895
0
    return ret;
2896
0
}
2897
2898
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2899
0
{
2900
0
    std::vector<AddedNodeInfo> ret;
2901
2902
0
    std::list<AddedNodeParams> lAddresses(0);
2903
0
    {
2904
0
        LOCK(m_added_nodes_mutex);
2905
0
        ret.reserve(m_added_node_params.size());
2906
0
        std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2907
0
    }
2908
2909
2910
    // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2911
0
    std::map<CService, bool> mapConnected;
2912
0
    std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2913
0
    {
2914
0
        LOCK(m_nodes_mutex);
2915
0
        for (const CNode* pnode : m_nodes) {
2916
0
            if (pnode->addr.IsValid()) {
2917
0
                mapConnected[pnode->addr] = pnode->IsInboundConn();
2918
0
            }
2919
0
            std::string addrName{pnode->m_addr_name};
2920
0
            if (!addrName.empty()) {
2921
0
                mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2922
0
            }
2923
0
        }
2924
0
    }
2925
2926
0
    for (const auto& addr : lAddresses) {
2927
0
        CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2928
0
        AddedNodeInfo addedNode{addr, CService(), false, false};
2929
0
        if (service.IsValid()) {
2930
            // strAddNode is an IP:port
2931
0
            auto it = mapConnected.find(service);
2932
0
            if (it != mapConnected.end()) {
2933
0
                if (!include_connected) {
2934
0
                    continue;
2935
0
                }
2936
0
                addedNode.resolvedAddress = service;
2937
0
                addedNode.fConnected = true;
2938
0
                addedNode.fInbound = it->second;
2939
0
            }
2940
0
        } else {
2941
            // strAddNode is a name
2942
0
            auto it = mapConnectedByName.find(addr.m_added_node);
2943
0
            if (it != mapConnectedByName.end()) {
2944
0
                if (!include_connected) {
2945
0
                    continue;
2946
0
                }
2947
0
                addedNode.resolvedAddress = it->second.second;
2948
0
                addedNode.fConnected = true;
2949
0
                addedNode.fInbound = it->second.first;
2950
0
            }
2951
0
        }
2952
0
        ret.emplace_back(std::move(addedNode));
2953
0
    }
2954
2955
0
    return ret;
2956
0
}
2957
2958
void CConnman::ThreadOpenAddedConnections()
2959
0
{
2960
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2961
0
    AssertLockNotHeld(m_reconnections_mutex);
2962
0
    while (true)
2963
0
    {
2964
0
        CSemaphoreGrant grant(*semAddnode);
2965
0
        std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2966
0
        bool tried = false;
2967
0
        for (const AddedNodeInfo& info : vInfo) {
2968
0
            if (!grant) {
2969
                // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2970
                // the addednodeinfo state might change.
2971
0
                break;
2972
0
            }
2973
0
            tried = true;
2974
0
            CAddress addr(CService(), NODE_NONE);
2975
0
            OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2976
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2977
0
            grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2978
0
        }
2979
        // See if any reconnections are desired.
2980
0
        PerformReconnections();
2981
        // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2982
0
        if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2983
0
            return;
2984
0
    }
2985
0
}
2986
2987
// if successful, this moves the passed grant to the constructed node
2988
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2989
0
{
2990
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2991
0
    assert(conn_type != ConnectionType::INBOUND);
2992
2993
    //
2994
    // Initiate outbound network connection
2995
    //
2996
0
    if (interruptNet) {
2997
0
        return;
2998
0
    }
2999
0
    if (!fNetworkActive) {
3000
0
        return;
3001
0
    }
3002
0
    if (!pszDest) {
3003
0
        bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3004
0
        if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3005
0
            return;
3006
0
        }
3007
0
    } else if (FindNode(std::string(pszDest)))
3008
0
        return;
3009
3010
0
    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3011
3012
0
    if (!pnode)
3013
0
        return;
3014
0
    pnode->grantOutbound = std::move(grant_outbound);
3015
3016
0
    m_msgproc->InitializeNode(*pnode, m_local_services);
3017
0
    {
3018
0
        LOCK(m_nodes_mutex);
3019
0
        m_nodes.push_back(pnode);
3020
3021
        // update connection count by network
3022
0
        if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3023
0
    }
3024
3025
0
    TRACEPOINT(net, outbound_connection,
3026
0
        pnode->GetId(),
3027
0
        pnode->m_addr_name.c_str(),
3028
0
        pnode->ConnectionTypeAsString().c_str(),
3029
0
        pnode->ConnectedThroughNetwork(),
3030
0
        GetNodeCount(ConnectionDirection::Out));
3031
0
}
3032
3033
Mutex NetEventsInterface::g_msgproc_mutex;
3034
3035
void CConnman::ThreadMessageHandler()
3036
0
{
3037
0
    LOCK(NetEventsInterface::g_msgproc_mutex);
3038
3039
0
    while (!flagInterruptMsgProc)
3040
0
    {
3041
0
        bool fMoreWork = false;
3042
3043
0
        {
3044
            // Randomize the order in which we process messages from/to our peers.
3045
            // This prevents attacks in which an attacker exploits having multiple
3046
            // consecutive connections in the m_nodes list.
3047
0
            const NodesSnapshot snap{*this, /*shuffle=*/true};
3048
3049
0
            for (CNode* pnode : snap.Nodes()) {
3050
0
                if (pnode->fDisconnect)
3051
0
                    continue;
3052
3053
                // Receive messages
3054
0
                bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3055
0
                fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3056
0
                if (flagInterruptMsgProc)
3057
0
                    return;
3058
                // Send messages
3059
0
                m_msgproc->SendMessages(pnode);
3060
3061
0
                if (flagInterruptMsgProc)
3062
0
                    return;
3063
0
            }
3064
0
        }
3065
3066
0
        WAIT_LOCK(mutexMsgProc, lock);
3067
0
        if (!fMoreWork) {
3068
0
            condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3069
0
        }
3070
0
        fMsgProcWake = false;
3071
0
    }
3072
0
}
3073
3074
void CConnman::ThreadI2PAcceptIncoming()
3075
0
{
3076
0
    static constexpr auto err_wait_begin = 1s;
3077
0
    static constexpr auto err_wait_cap = 5min;
3078
0
    auto err_wait = err_wait_begin;
3079
3080
0
    bool advertising_listen_addr = false;
3081
0
    i2p::Connection conn;
3082
3083
0
    auto SleepOnFailure = [&]() {
3084
0
        interruptNet.sleep_for(err_wait);
3085
0
        if (err_wait < err_wait_cap) {
3086
0
            err_wait += 1s;
3087
0
        }
3088
0
    };
3089
3090
0
    while (!interruptNet) {
3091
3092
0
        if (!m_i2p_sam_session->Listen(conn)) {
3093
0
            if (advertising_listen_addr && conn.me.IsValid()) {
3094
0
                RemoveLocal(conn.me);
3095
0
                advertising_listen_addr = false;
3096
0
            }
3097
0
            SleepOnFailure();
3098
0
            continue;
3099
0
        }
3100
3101
0
        if (!advertising_listen_addr) {
3102
0
            AddLocal(conn.me, LOCAL_MANUAL);
3103
0
            advertising_listen_addr = true;
3104
0
        }
3105
3106
0
        if (!m_i2p_sam_session->Accept(conn)) {
3107
0
            SleepOnFailure();
3108
0
            continue;
3109
0
        }
3110
3111
0
        CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3112
3113
0
        err_wait = err_wait_begin;
3114
0
    }
3115
0
}
3116
3117
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3118
0
{
3119
0
    int nOne = 1;
3120
3121
    // Create socket for listening for incoming connections
3122
0
    struct sockaddr_storage sockaddr;
3123
0
    socklen_t len = sizeof(sockaddr);
3124
0
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3125
0
    {
3126
0
        strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3127
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3128
0
        return false;
3129
0
    }
3130
3131
0
    std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3132
0
    if (!sock) {
3133
0
        strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3134
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3135
0
        return false;
3136
0
    }
3137
3138
    // Allow binding if the port is still in TIME_WAIT state after
3139
    // the program was closed and restarted.
3140
0
    if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3141
0
        strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3142
0
        LogPrintf("%s\n", strError.original);
3143
0
    }
3144
3145
    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3146
    // and enable it by default or not. Try to enable it, if possible.
3147
0
    if (addrBind.IsIPv6()) {
3148
0
#ifdef IPV6_V6ONLY
3149
0
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3150
0
            strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3151
0
            LogPrintf("%s\n", strError.original);
3152
0
        }
3153
0
#endif
3154
#ifdef WIN32
3155
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3156
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3157
            strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3158
            LogPrintf("%s\n", strError.original);
3159
        }
3160
#endif
3161
0
    }
3162
3163
0
    if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3164
0
        int nErr = WSAGetLastError();
3165
0
        if (nErr == WSAEADDRINUSE)
3166
0
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3167
0
        else
3168
0
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3169
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3170
0
        return false;
3171
0
    }
3172
0
    LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3173
3174
    // Listen for incoming connections
3175
0
    if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3176
0
    {
3177
0
        strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3178
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3179
0
        return false;
3180
0
    }
3181
3182
0
    vhListenSocket.emplace_back(std::move(sock), permissions);
3183
0
    return true;
3184
0
}
3185
3186
void Discover()
3187
0
{
3188
0
    if (!fDiscover)
3189
0
        return;
3190
3191
0
    for (const CNetAddr &addr: GetLocalAddresses()) {
3192
0
        if (AddLocal(addr, LOCAL_IF))
3193
0
            LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3194
0
    }
3195
0
}
3196
3197
void CConnman::SetNetworkActive(bool active)
3198
0
{
3199
0
    LogPrintf("%s: %s\n", __func__, active);
3200
3201
0
    if (fNetworkActive == active) {
3202
0
        return;
3203
0
    }
3204
3205
0
    fNetworkActive = active;
3206
3207
0
    if (m_client_interface) {
3208
0
        m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3209
0
    }
3210
0
}
3211
3212
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3213
                   const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3214
0
    : addrman(addrman_in)
3215
0
    , m_netgroupman{netgroupman}
3216
0
    , nSeed0(nSeed0In)
3217
0
    , nSeed1(nSeed1In)
3218
0
    , m_params(params)
3219
0
{
3220
0
    SetTryNewOutboundPeer(false);
3221
3222
0
    Options connOptions;
3223
0
    Init(connOptions);
3224
0
    SetNetworkActive(network_active);
3225
0
}
3226
3227
NodeId CConnman::GetNewNodeId()
3228
0
{
3229
0
    return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3230
0
}
3231
3232
uint16_t CConnman::GetDefaultPort(Network net) const
3233
0
{
3234
0
    return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3235
0
}
3236
3237
uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3238
0
{
3239
0
    CNetAddr a;
3240
0
    return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
3241
0
}
3242
3243
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3244
0
{
3245
0
    const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3246
3247
0
    bilingual_str strError;
3248
0
    if (!BindListenPort(addr, strError, permissions)) {
3249
0
        if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3250
0
            m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3251
0
        }
3252
0
        return false;
3253
0
    }
3254
3255
0
    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3256
0
        AddLocal(addr, LOCAL_BIND);
3257
0
    }
3258
3259
0
    return true;
3260
0
}
3261
3262
bool CConnman::InitBinds(const Options& options)
3263
0
{
3264
0
    for (const auto& addrBind : options.vBinds) {
3265
0
        if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3266
0
            return false;
3267
0
        }
3268
0
    }
3269
0
    for (const auto& addrBind : options.vWhiteBinds) {
3270
0
        if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3271
0
            return false;
3272
0
        }
3273
0
    }
3274
0
    for (const auto& addr_bind : options.onion_binds) {
3275
0
        if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3276
0
            return false;
3277
0
        }
3278
0
    }
3279
0
    if (options.bind_on_any) {
3280
        // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3281
        // may not have IPv6 support and the user did not explicitly ask us to
3282
        // bind on that.
3283
0
        const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3284
0
        Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3285
3286
0
        struct in_addr inaddr_any;
3287
0
        inaddr_any.s_addr = htonl(INADDR_ANY);
3288
0
        const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3289
0
        if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3290
0
            return false;
3291
0
        }
3292
0
    }
3293
0
    return true;
3294
0
}
3295
3296
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3297
0
{
3298
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3299
0
    Init(connOptions);
3300
3301
0
    if (fListen && !InitBinds(connOptions)) {
3302
0
        if (m_client_interface) {
3303
0
            m_client_interface->ThreadSafeMessageBox(
3304
0
                _("Failed to listen on any port. Use -listen=0 if you want this."),
3305
0
                "", CClientUIInterface::MSG_ERROR);
3306
0
        }
3307
0
        return false;
3308
0
    }
3309
3310
0
    Proxy i2p_sam;
3311
0
    if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3312
0
        m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3313
0
                                                                i2p_sam, &interruptNet);
3314
0
    }
3315
3316
    // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3317
0
    std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3318
0
    if (!seed_nodes.empty()) {
3319
0
        std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3320
0
    }
3321
3322
0
    if (m_use_addrman_outgoing) {
3323
        // Load addresses from anchors.dat
3324
0
        m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
3325
0
        if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3326
0
            m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3327
0
        }
3328
0
        LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3329
0
    }
3330
3331
0
    if (m_client_interface) {
3332
0
        m_client_interface->InitMessage(_("Starting network threads…"));
3333
0
    }
3334
3335
0
    fAddressesInitialized = true;
3336
3337
0
    if (semOutbound == nullptr) {
3338
        // initialize semaphore
3339
0
        semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3340
0
    }
3341
0
    if (semAddnode == nullptr) {
3342
        // initialize semaphore
3343
0
        semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3344
0
    }
3345
3346
    //
3347
    // Start threads
3348
    //
3349
0
    assert(m_msgproc);
3350
0
    interruptNet.reset();
3351
0
    flagInterruptMsgProc = false;
3352
3353
0
    {
3354
0
        LOCK(mutexMsgProc);
3355
0
        fMsgProcWake = false;
3356
0
    }
3357
3358
    // Send and receive from sockets, accept connections
3359
0
    threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3360
3361
0
    if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3362
0
        LogPrintf("DNS seeding disabled\n");
3363
0
    else
3364
0
        threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3365
3366
    // Initiate manual connections
3367
0
    threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3368
3369
0
    if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3370
0
        if (m_client_interface) {
3371
0
            m_client_interface->ThreadSafeMessageBox(
3372
0
                _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3373
0
                "", CClientUIInterface::MSG_ERROR);
3374
0
        }
3375
0
        return false;
3376
0
    }
3377
0
    if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3378
0
        threadOpenConnections = std::thread(
3379
0
            &util::TraceThread, "opencon",
3380
0
            [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3381
0
    }
3382
3383
    // Process messages
3384
0
    threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3385
3386
0
    if (m_i2p_sam_session) {
3387
0
        threadI2PAcceptIncoming =
3388
0
            std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3389
0
    }
3390
3391
    // Dump network addresses
3392
0
    scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3393
3394
    // Run the ASMap Health check once and then schedule it to run every 24h.
3395
0
    if (m_netgroupman.UsingASMap()) {
3396
0
        ASMapHealthCheck();
3397
0
        scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3398
0
    }
3399
3400
0
    return true;
3401
0
}
3402
3403
class CNetCleanup
3404
{
3405
public:
3406
    CNetCleanup() = default;
3407
3408
    ~CNetCleanup()
3409
0
    {
3410
#ifdef WIN32
3411
        // Shutdown Windows Sockets
3412
        WSACleanup();
3413
#endif
3414
0
    }
3415
};
3416
static CNetCleanup instance_of_cnetcleanup;
3417
3418
void CConnman::Interrupt()
3419
0
{
3420
0
    {
3421
0
        LOCK(mutexMsgProc);
3422
0
        flagInterruptMsgProc = true;
3423
0
    }
3424
0
    condMsgProc.notify_all();
3425
3426
0
    interruptNet();
3427
0
    g_socks5_interrupt();
3428
3429
0
    if (semOutbound) {
3430
0
        for (int i=0; i<m_max_automatic_outbound; i++) {
3431
0
            semOutbound->post();
3432
0
        }
3433
0
    }
3434
3435
0
    if (semAddnode) {
3436
0
        for (int i=0; i<m_max_addnode; i++) {
3437
0
            semAddnode->post();
3438
0
        }
3439
0
    }
3440
0
}
3441
3442
void CConnman::StopThreads()
3443
0
{
3444
0
    if (threadI2PAcceptIncoming.joinable()) {
3445
0
        threadI2PAcceptIncoming.join();
3446
0
    }
3447
0
    if (threadMessageHandler.joinable())
3448
0
        threadMessageHandler.join();
3449
0
    if (threadOpenConnections.joinable())
3450
0
        threadOpenConnections.join();
3451
0
    if (threadOpenAddedConnections.joinable())
3452
0
        threadOpenAddedConnections.join();
3453
0
    if (threadDNSAddressSeed.joinable())
3454
0
        threadDNSAddressSeed.join();
3455
0
    if (threadSocketHandler.joinable())
3456
0
        threadSocketHandler.join();
3457
0
}
3458
3459
void CConnman::StopNodes()
3460
0
{
3461
0
    if (fAddressesInitialized) {
3462
0
        DumpAddresses();
3463
0
        fAddressesInitialized = false;
3464
3465
0
        if (m_use_addrman_outgoing) {
3466
            // Anchor connections are only dumped during clean shutdown.
3467
0
            std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3468
0
            if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3469
0
                anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3470
0
            }
3471
0
            DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
3472
0
        }
3473
0
    }
3474
3475
    // Delete peer connections.
3476
0
    std::vector<CNode*> nodes;
3477
0
    WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3478
0
    for (CNode* pnode : nodes) {
3479
0
        LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3480
0
        pnode->CloseSocketDisconnect();
3481
0
        DeleteNode(pnode);
3482
0
    }
3483
3484
0
    for (CNode* pnode : m_nodes_disconnected) {
3485
0
        DeleteNode(pnode);
3486
0
    }
3487
0
    m_nodes_disconnected.clear();
3488
0
    vhListenSocket.clear();
3489
0
    semOutbound.reset();
3490
0
    semAddnode.reset();
3491
0
}
3492
3493
void CConnman::DeleteNode(CNode* pnode)
3494
0
{
3495
0
    assert(pnode);
3496
0
    m_msgproc->FinalizeNode(*pnode);
3497
0
    delete pnode;
3498
0
}
3499
3500
CConnman::~CConnman()
3501
0
{
3502
0
    Interrupt();
3503
0
    Stop();
3504
0
}
3505
3506
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3507
0
{
3508
0
    std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3509
0
    if (m_banman) {
3510
0
        addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3511
0
                        [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3512
0
                        addresses.end());
3513
0
    }
3514
0
    return addresses;
3515
0
}
3516
3517
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3518
0
{
3519
0
    auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3520
0
    uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3521
0
        .Write(requestor.ConnectedThroughNetwork())
3522
0
        .Write(local_socket_bytes)
3523
        // For outbound connections, the port of the bound address is randomly
3524
        // assigned by the OS and would therefore not be useful for seeding.
3525
0
        .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3526
0
        .Finalize();
3527
0
    const auto current_time = GetTime<std::chrono::microseconds>();
3528
0
    auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3529
0
    CachedAddrResponse& cache_entry = r.first->second;
3530
0
    if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3531
0
        cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3532
        // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3533
        // and the usefulness of ADDR responses to honest users.
3534
        //
3535
        // Longer cache lifetime makes it more difficult for an attacker to scrape
3536
        // enough AddrMan data to maliciously infer something useful.
3537
        // By the time an attacker scraped enough AddrMan records, most of
3538
        // the records should be old enough to not leak topology info by
3539
        // e.g. analyzing real-time changes in timestamps.
3540
        //
3541
        // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3542
        // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3543
        // most of it could be scraped (considering that timestamps are updated via
3544
        // ADDR self-announcements and when nodes communicate).
3545
        // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3546
        // (because even several timestamps of the same handful of nodes may leak privacy).
3547
        //
3548
        // On the other hand, longer cache lifetime makes ADDR responses
3549
        // outdated and less useful for an honest requestor, e.g. if most nodes
3550
        // in the ADDR response are no longer active.
3551
        //
3552
        // However, the churn in the network is known to be rather low. Since we consider
3553
        // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3554
        // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3555
        // in terms of the freshness of the response.
3556
0
        cache_entry.m_cache_entry_expiration = current_time +
3557
0
            21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3558
0
    }
3559
0
    return cache_entry.m_addrs_response_cache;
3560
0
}
3561
3562
bool CConnman::AddNode(const AddedNodeParams& add)
3563
0
{
3564
0
    const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3565
0
    const bool resolved_is_valid{resolved.IsValid()};
3566
3567
0
    LOCK(m_added_nodes_mutex);
3568
0
    for (const auto& it : m_added_node_params) {
3569
0
        if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3570
0
    }
3571
3572
0
    m_added_node_params.push_back(add);
3573
0
    return true;
3574
0
}
3575
3576
bool CConnman::RemoveAddedNode(const std::string& strNode)
3577
0
{
3578
0
    LOCK(m_added_nodes_mutex);
3579
0
    for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3580
0
        if (strNode == it->m_added_node) {
3581
0
            m_added_node_params.erase(it);
3582
0
            return true;
3583
0
        }
3584
0
    }
3585
0
    return false;
3586
0
}
3587
3588
bool CConnman::AddedNodesContain(const CAddress& addr) const
3589
0
{
3590
0
    AssertLockNotHeld(m_added_nodes_mutex);
3591
0
    const std::string addr_str{addr.ToStringAddr()};
3592
0
    const std::string addr_port_str{addr.ToStringAddrPort()};
3593
0
    LOCK(m_added_nodes_mutex);
3594
0
    return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3595
0
            && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3596
0
                           [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3597
0
}
3598
3599
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3600
0
{
3601
0
    LOCK(m_nodes_mutex);
3602
0
    if (flags == ConnectionDirection::Both) // Shortcut if we want total
3603
0
        return m_nodes.size();
3604
3605
0
    int nNum = 0;
3606
0
    for (const auto& pnode : m_nodes) {
3607
0
        if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3608
0
            nNum++;
3609
0
        }
3610
0
    }
3611
3612
0
    return nNum;
3613
0
}
3614
3615
3616
std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3617
0
{
3618
0
    LOCK(g_maplocalhost_mutex);
3619
0
    return mapLocalHost;
3620
0
}
3621
3622
uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3623
0
{
3624
0
    return m_netgroupman.GetMappedAS(addr);
3625
0
}
3626
3627
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3628
0
{
3629
0
    vstats.clear();
3630
0
    LOCK(m_nodes_mutex);
3631
0
    vstats.reserve(m_nodes.size());
3632
0
    for (CNode* pnode : m_nodes) {
3633
0
        vstats.emplace_back();
3634
0
        pnode->CopyStats(vstats.back());
3635
0
        vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3636
0
    }
3637
0
}
3638
3639
bool CConnman::DisconnectNode(const std::string& strNode)
3640
0
{
3641
0
    LOCK(m_nodes_mutex);
3642
0
    if (CNode* pnode = FindNode(strNode)) {
3643
0
        LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3644
0
        pnode->fDisconnect = true;
3645
0
        return true;
3646
0
    }
3647
0
    return false;
3648
0
}
3649
3650
bool CConnman::DisconnectNode(const CSubNet& subnet)
3651
0
{
3652
0
    bool disconnected = false;
3653
0
    LOCK(m_nodes_mutex);
3654
0
    for (CNode* pnode : m_nodes) {
3655
0
        if (subnet.Match(pnode->addr)) {
3656
0
            LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3657
0
            pnode->fDisconnect = true;
3658
0
            disconnected = true;
3659
0
        }
3660
0
    }
3661
0
    return disconnected;
3662
0
}
3663
3664
bool CConnman::DisconnectNode(const CNetAddr& addr)
3665
0
{
3666
0
    return DisconnectNode(CSubNet(addr));
3667
0
}
3668
3669
bool CConnman::DisconnectNode(NodeId id)
3670
0
{
3671
0
    LOCK(m_nodes_mutex);
3672
0
    for(CNode* pnode : m_nodes) {
3673
0
        if (id == pnode->GetId()) {
3674
0
            LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3675
0
            pnode->fDisconnect = true;
3676
0
            return true;
3677
0
        }
3678
0
    }
3679
0
    return false;
3680
0
}
3681
3682
void CConnman::RecordBytesRecv(uint64_t bytes)
3683
0
{
3684
0
    nTotalBytesRecv += bytes;
3685
0
}
3686
3687
void CConnman::RecordBytesSent(uint64_t bytes)
3688
0
{
3689
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3690
0
    LOCK(m_total_bytes_sent_mutex);
3691
3692
0
    nTotalBytesSent += bytes;
3693
3694
0
    const auto now = GetTime<std::chrono::seconds>();
3695
0
    if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3696
0
    {
3697
        // timeframe expired, reset cycle
3698
0
        nMaxOutboundCycleStartTime = now;
3699
0
        nMaxOutboundTotalBytesSentInCycle = 0;
3700
0
    }
3701
3702
0
    nMaxOutboundTotalBytesSentInCycle += bytes;
3703
0
}
3704
3705
uint64_t CConnman::GetMaxOutboundTarget() const
3706
0
{
3707
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3708
0
    LOCK(m_total_bytes_sent_mutex);
3709
0
    return nMaxOutboundLimit;
3710
0
}
3711
3712
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3713
0
{
3714
0
    return MAX_UPLOAD_TIMEFRAME;
3715
0
}
3716
3717
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3718
0
{
3719
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3720
0
    LOCK(m_total_bytes_sent_mutex);
3721
0
    return GetMaxOutboundTimeLeftInCycle_();
3722
0
}
3723
3724
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3725
0
{
3726
0
    AssertLockHeld(m_total_bytes_sent_mutex);
3727
3728
0
    if (nMaxOutboundLimit == 0)
3729
0
        return 0s;
3730
3731
0
    if (nMaxOutboundCycleStartTime.count() == 0)
3732
0
        return MAX_UPLOAD_TIMEFRAME;
3733
3734
0
    const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3735
0
    const auto now = GetTime<std::chrono::seconds>();
3736
0
    return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3737
0
}
3738
3739
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3740
0
{
3741
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3742
0
    LOCK(m_total_bytes_sent_mutex);
3743
0
    if (nMaxOutboundLimit == 0)
3744
0
        return false;
3745
3746
0
    if (historicalBlockServingLimit)
3747
0
    {
3748
        // keep a large enough buffer to at least relay each block once
3749
0
        const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3750
0
        const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3751
0
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3752
0
            return true;
3753
0
    }
3754
0
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3755
0
        return true;
3756
3757
0
    return false;
3758
0
}
3759
3760
uint64_t CConnman::GetOutboundTargetBytesLeft() const
3761
0
{
3762
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3763
0
    LOCK(m_total_bytes_sent_mutex);
3764
0
    if (nMaxOutboundLimit == 0)
3765
0
        return 0;
3766
3767
0
    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3768
0
}
3769
3770
uint64_t CConnman::GetTotalBytesRecv() const
3771
0
{
3772
0
    return nTotalBytesRecv;
3773
0
}
3774
3775
uint64_t CConnman::GetTotalBytesSent() const
3776
0
{
3777
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3778
0
    LOCK(m_total_bytes_sent_mutex);
3779
0
    return nTotalBytesSent;
3780
0
}
3781
3782
ServiceFlags CConnman::GetLocalServices() const
3783
0
{
3784
0
    return m_local_services;
3785
0
}
3786
3787
static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3788
0
{
3789
0
    if (use_v2transport) {
3790
0
        return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3791
0
    } else {
3792
0
        return std::make_unique<V1Transport>(id);
3793
0
    }
3794
0
}
3795
3796
CNode::CNode(NodeId idIn,
3797
             std::shared_ptr<Sock> sock,
3798
             const CAddress& addrIn,
3799
             uint64_t nKeyedNetGroupIn,
3800
             uint64_t nLocalHostNonceIn,
3801
             const CService& addrBindIn,
3802
             const std::string& addrNameIn,
3803
             ConnectionType conn_type_in,
3804
             bool inbound_onion,
3805
             CNodeOptions&& node_opts)
3806
0
    : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3807
0
      m_permission_flags{node_opts.permission_flags},
3808
0
      m_sock{sock},
3809
0
      m_connected{GetTime<std::chrono::seconds>()},
3810
0
      addr{addrIn},
3811
0
      addrBind{addrBindIn},
3812
0
      m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3813
0
      m_dest(addrNameIn),
3814
0
      m_inbound_onion{inbound_onion},
3815
0
      m_prefer_evict{node_opts.prefer_evict},
3816
0
      nKeyedNetGroup{nKeyedNetGroupIn},
3817
0
      m_conn_type{conn_type_in},
3818
0
      id{idIn},
3819
0
      nLocalHostNonce{nLocalHostNonceIn},
3820
0
      m_recv_flood_size{node_opts.recv_flood_size},
3821
0
      m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3822
0
{
3823
0
    if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3824
3825
0
    for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3826
0
        mapRecvBytesPerMsgType[msg] = 0;
3827
0
    }
3828
0
    mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3829
3830
0
    if (fLogIPs) {
3831
0
        LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3832
0
    } else {
3833
0
        LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3834
0
    }
3835
0
}
3836
3837
void CNode::MarkReceivedMsgsForProcessing()
3838
0
{
3839
0
    AssertLockNotHeld(m_msg_process_queue_mutex);
3840
3841
0
    size_t nSizeAdded = 0;
3842
0
    for (const auto& msg : vRecvMsg) {
3843
        // vRecvMsg contains only completed CNetMessage
3844
        // the single possible partially deserialized message are held by TransportDeserializer
3845
0
        nSizeAdded += msg.GetMemoryUsage();
3846
0
    }
3847
3848
0
    LOCK(m_msg_process_queue_mutex);
3849
0
    m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3850
0
    m_msg_process_queue_size += nSizeAdded;
3851
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3852
0
}
3853
3854
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3855
0
{
3856
0
    LOCK(m_msg_process_queue_mutex);
3857
0
    if (m_msg_process_queue.empty()) return std::nullopt;
3858
3859
0
    std::list<CNetMessage> msgs;
3860
    // Just take one message
3861
0
    msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3862
0
    m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3863
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3864
3865
0
    return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3866
0
}
3867
3868
bool CConnman::NodeFullyConnected(const CNode* pnode)
3869
0
{
3870
0
    return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3871
0
}
3872
3873
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3874
0
{
3875
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3876
0
    size_t nMessageSize = msg.data.size();
3877
0
    LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3878
0
    if (gArgs.GetBoolArg("-capturemessages", false)) {
3879
0
        CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3880
0
    }
3881
3882
0
    TRACEPOINT(net, outbound_message,
3883
0
        pnode->GetId(),
3884
0
        pnode->m_addr_name.c_str(),
3885
0
        pnode->ConnectionTypeAsString().c_str(),
3886
0
        msg.m_type.c_str(),
3887
0
        msg.data.size(),
3888
0
        msg.data.data()
3889
0
    );
3890
3891
0
    size_t nBytesSent = 0;
3892
0
    {
3893
0
        LOCK(pnode->cs_vSend);
3894
        // Check if the transport still has unsent bytes, and indicate to it that we're about to
3895
        // give it a message to send.
3896
0
        const auto& [to_send, more, _msg_type] =
3897
0
            pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3898
0
        const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3899
3900
        // Update memory usage of send buffer.
3901
0
        pnode->m_send_memusage += msg.GetMemoryUsage();
3902
0
        if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3903
        // Move message to vSendMsg queue.
3904
0
        pnode->vSendMsg.push_back(std::move(msg));
3905
3906
        // If there was nothing to send before, and there is now (predicted by the "more" value
3907
        // returned by the GetBytesToSend call above), attempt "optimistic write":
3908
        // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3909
        // doing a send, try sending from the calling thread if the queue was empty before.
3910
        // With a V1Transport, more will always be true here, because adding a message always
3911
        // results in sendable bytes there, but with V2Transport this is not the case (it may
3912
        // still be in the handshake).
3913
0
        if (queue_was_empty && more) {
3914
0
            std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3915
0
        }
3916
0
    }
3917
0
    if (nBytesSent) RecordBytesSent(nBytesSent);
3918
0
}
3919
3920
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3921
0
{
3922
0
    CNode* found = nullptr;
3923
0
    LOCK(m_nodes_mutex);
3924
0
    for (auto&& pnode : m_nodes) {
3925
0
        if(pnode->GetId() == id) {
3926
0
            found = pnode;
3927
0
            break;
3928
0
        }
3929
0
    }
3930
0
    return found != nullptr && NodeFullyConnected(found) && func(found);
3931
0
}
3932
3933
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3934
0
{
3935
0
    return CSipHasher(nSeed0, nSeed1).Write(id);
3936
0
}
3937
3938
uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3939
0
{
3940
0
    std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3941
3942
0
    return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
3943
0
}
3944
3945
void CConnman::PerformReconnections()
3946
0
{
3947
0
    AssertLockNotHeld(m_reconnections_mutex);
3948
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3949
0
    while (true) {
3950
        // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3951
0
        decltype(m_reconnections) todo;
3952
0
        {
3953
0
            LOCK(m_reconnections_mutex);
3954
0
            if (m_reconnections.empty()) break;
3955
0
            todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3956
0
        }
3957
3958
0
        auto& item = *todo.begin();
3959
0
        OpenNetworkConnection(item.addr_connect,
3960
                              // We only reconnect if the first attempt to connect succeeded at
3961
                              // connection time, but then failed after the CNode object was
3962
                              // created. Since we already know connecting is possible, do not
3963
                              // count failure to reconnect.
3964
0
                              /*fCountFailure=*/false,
3965
0
                              std::move(item.grant),
3966
0
                              item.destination.empty() ? nullptr : item.destination.c_str(),
3967
0
                              item.conn_type,
3968
0
                              item.use_v2transport);
3969
0
    }
3970
0
}
3971
3972
void CConnman::ASMapHealthCheck()
3973
0
{
3974
0
    const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3975
0
    const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3976
0
    std::vector<CNetAddr> clearnet_addrs;
3977
0
    clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3978
0
    std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3979
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3980
0
    std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3981
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3982
0
    m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3983
0
}
3984
3985
// Dump binary message to file, with timestamp.
3986
static void CaptureMessageToFile(const CAddress& addr,
3987
                                 const std::string& msg_type,
3988
                                 std::span<const unsigned char> data,
3989
                                 bool is_incoming)
3990
0
{
3991
    // Note: This function captures the message at the time of processing,
3992
    // not at socket receive/send time.
3993
    // This ensures that the messages are always in order from an application
3994
    // layer (processing) perspective.
3995
0
    auto now = GetTime<std::chrono::microseconds>();
3996
3997
    // Windows folder names cannot include a colon
3998
0
    std::string clean_addr = addr.ToStringAddrPort();
3999
0
    std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4000
4001
0
    fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
4002
0
    fs::create_directories(base_path);
4003
4004
0
    fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4005
0
    AutoFile f{fsbridge::fopen(path, "ab")};
4006
4007
0
    ser_writedata64(f, now.count());
4008
0
    f << std::span{msg_type};
4009
0
    for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4010
0
        f << uint8_t{'\0'};
4011
0
    }
4012
0
    uint32_t size = data.size();
4013
0
    ser_writedata32(f, size);
4014
0
    f << data;
4015
0
}
4016
4017
std::function<void(const CAddress& addr,
4018
                   const std::string& msg_type,
4019
                   std::span<const unsigned char> data,
4020
                   bool is_incoming)>
4021
    CaptureMessage = CaptureMessageToFile;