Coverage Report

Created: 2025-04-14 16:24

/Users/mcomp/contrib/bitcoin/src/crypto/sha3.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2020-present The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
// Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
6
// by Markku-Juhani O. Saarinen <mjos@iki.fi>
7
8
#include <crypto/sha3.h>
9
#include <crypto/common.h>
10
#include <span.h>
11
12
#include <algorithm>
13
#include <array> // For std::begin and std::end.
14
#include <bit>
15
16
#include <stdint.h>
17
18
void KeccakF(uint64_t (&st)[25])
19
0
{
20
0
    static constexpr uint64_t RNDC[24] = {
21
0
        0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
22
0
        0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
23
0
        0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
24
0
        0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
25
0
        0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
26
0
        0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
27
0
    };
28
0
    static constexpr int ROUNDS = 24;
29
30
0
    for (int round = 0; round < ROUNDS; ++round) {
31
0
        uint64_t bc0, bc1, bc2, bc3, bc4, t;
32
33
        // Theta
34
0
        bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
35
0
        bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
36
0
        bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
37
0
        bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
38
0
        bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
39
0
        t = bc4 ^ std::rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t;
40
0
        t = bc0 ^ std::rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t;
41
0
        t = bc1 ^ std::rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t;
42
0
        t = bc2 ^ std::rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t;
43
0
        t = bc3 ^ std::rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t;
44
45
        // Rho Pi
46
0
        t = st[1];
47
0
        bc0 = st[10]; st[10] = std::rotl(t, 1); t = bc0;
48
0
        bc0 = st[7]; st[7] = std::rotl(t, 3); t = bc0;
49
0
        bc0 = st[11]; st[11] = std::rotl(t, 6); t = bc0;
50
0
        bc0 = st[17]; st[17] = std::rotl(t, 10); t = bc0;
51
0
        bc0 = st[18]; st[18] = std::rotl(t, 15); t = bc0;
52
0
        bc0 = st[3]; st[3] = std::rotl(t, 21); t = bc0;
53
0
        bc0 = st[5]; st[5] = std::rotl(t, 28); t = bc0;
54
0
        bc0 = st[16]; st[16] = std::rotl(t, 36); t = bc0;
55
0
        bc0 = st[8]; st[8] = std::rotl(t, 45); t = bc0;
56
0
        bc0 = st[21]; st[21] = std::rotl(t, 55); t = bc0;
57
0
        bc0 = st[24]; st[24] = std::rotl(t, 2); t = bc0;
58
0
        bc0 = st[4]; st[4] = std::rotl(t, 14); t = bc0;
59
0
        bc0 = st[15]; st[15] = std::rotl(t, 27); t = bc0;
60
0
        bc0 = st[23]; st[23] = std::rotl(t, 41); t = bc0;
61
0
        bc0 = st[19]; st[19] = std::rotl(t, 56); t = bc0;
62
0
        bc0 = st[13]; st[13] = std::rotl(t, 8); t = bc0;
63
0
        bc0 = st[12]; st[12] = std::rotl(t, 25); t = bc0;
64
0
        bc0 = st[2]; st[2] = std::rotl(t, 43); t = bc0;
65
0
        bc0 = st[20]; st[20] = std::rotl(t, 62); t = bc0;
66
0
        bc0 = st[14]; st[14] = std::rotl(t, 18); t = bc0;
67
0
        bc0 = st[22]; st[22] = std::rotl(t, 39); t = bc0;
68
0
        bc0 = st[9]; st[9] = std::rotl(t, 61); t = bc0;
69
0
        bc0 = st[6]; st[6] = std::rotl(t, 20); t = bc0;
70
0
        st[1] = std::rotl(t, 44);
71
72
        // Chi Iota
73
0
        bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
74
0
        st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
75
0
        st[1] = bc1 ^ (~bc2 & bc3);
76
0
        st[2] = bc2 ^ (~bc3 & bc4);
77
0
        st[3] = bc3 ^ (~bc4 & bc0);
78
0
        st[4] = bc4 ^ (~bc0 & bc1);
79
0
        bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
80
0
        st[5] = bc0 ^ (~bc1 & bc2);
81
0
        st[6] = bc1 ^ (~bc2 & bc3);
82
0
        st[7] = bc2 ^ (~bc3 & bc4);
83
0
        st[8] = bc3 ^ (~bc4 & bc0);
84
0
        st[9] = bc4 ^ (~bc0 & bc1);
85
0
        bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
86
0
        st[10] = bc0 ^ (~bc1 & bc2);
87
0
        st[11] = bc1 ^ (~bc2 & bc3);
88
0
        st[12] = bc2 ^ (~bc3 & bc4);
89
0
        st[13] = bc3 ^ (~bc4 & bc0);
90
0
        st[14] = bc4 ^ (~bc0 & bc1);
91
0
        bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
92
0
        st[15] = bc0 ^ (~bc1 & bc2);
93
0
        st[16] = bc1 ^ (~bc2 & bc3);
94
0
        st[17] = bc2 ^ (~bc3 & bc4);
95
0
        st[18] = bc3 ^ (~bc4 & bc0);
96
0
        st[19] = bc4 ^ (~bc0 & bc1);
97
0
        bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
98
0
        st[20] = bc0 ^ (~bc1 & bc2);
99
0
        st[21] = bc1 ^ (~bc2 & bc3);
100
0
        st[22] = bc2 ^ (~bc3 & bc4);
101
0
        st[23] = bc3 ^ (~bc4 & bc0);
102
0
        st[24] = bc4 ^ (~bc0 & bc1);
103
0
    }
104
0
}
105
106
SHA3_256& SHA3_256::Write(std::span<const unsigned char> data)
107
0
{
108
0
    if (m_bufsize && data.size() >= sizeof(m_buffer) - m_bufsize) {
109
        // Fill the buffer and process it.
110
0
        std::copy(data.begin(), data.begin() + (sizeof(m_buffer) - m_bufsize), m_buffer + m_bufsize);
111
0
        data = data.subspan(sizeof(m_buffer) - m_bufsize);
112
0
        m_state[m_pos++] ^= ReadLE64(m_buffer);
113
0
        m_bufsize = 0;
114
0
        if (m_pos == RATE_BUFFERS) {
115
0
            KeccakF(m_state);
116
0
            m_pos = 0;
117
0
        }
118
0
    }
119
0
    while (data.size() >= sizeof(m_buffer)) {
120
        // Process chunks directly from the buffer.
121
0
        m_state[m_pos++] ^= ReadLE64(data.data());
122
0
        data = data.subspan(8);
123
0
        if (m_pos == RATE_BUFFERS) {
124
0
            KeccakF(m_state);
125
0
            m_pos = 0;
126
0
        }
127
0
    }
128
0
    if (data.size()) {
129
        // Keep the remainder in the buffer.
130
0
        std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
131
0
        m_bufsize += data.size();
132
0
    }
133
0
    return *this;
134
0
}
135
136
SHA3_256& SHA3_256::Finalize(std::span<unsigned char> output)
137
0
{
138
0
    assert(output.size() == OUTPUT_SIZE);
139
0
    std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
140
0
    m_buffer[m_bufsize] ^= 0x06;
141
0
    m_state[m_pos] ^= ReadLE64(m_buffer);
142
0
    m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
143
0
    KeccakF(m_state);
144
0
    for (unsigned i = 0; i < 4; ++i) {
145
0
        WriteLE64(output.data() + 8 * i, m_state[i]);
146
0
    }
147
0
    return *this;
148
0
}
149
150
SHA3_256& SHA3_256::Reset()
151
0
{
152
0
    m_bufsize = 0;
153
0
    m_pos = 0;
154
0
    std::fill(std::begin(m_state), std::end(m_state), 0);
155
0
    return *this;
156
0
}