Coverage Report

Created: 2025-09-19 18:31

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/bitcoin/src/txgraph.cpp
Line
Count
Source
1
// Copyright (c) The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <txgraph.h>
6
7
#include <cluster_linearize.h>
8
#include <random.h>
9
#include <util/bitset.h>
10
#include <util/check.h>
11
#include <util/feefrac.h>
12
#include <util/vector.h>
13
14
#include <compare>
15
#include <memory>
16
#include <set>
17
#include <span>
18
#include <utility>
19
20
namespace {
21
22
using namespace cluster_linearize;
23
24
/** The maximum number of levels a TxGraph can have (0 = main, 1 = staging). */
25
static constexpr int MAX_LEVELS{2};
26
27
// Forward declare the TxGraph implementation class.
28
class TxGraphImpl;
29
30
/** Position of a DepGraphIndex within a Cluster::m_linearization. */
31
using LinearizationIndex = uint32_t;
32
/** Position of a Cluster within Graph::ClusterSet::m_clusters. */
33
using ClusterSetIndex = uint32_t;
34
35
/** Quality levels for cached cluster linearizations. */
36
enum class QualityLevel
37
{
38
    /** This is a singleton cluster consisting of a transaction that individually exceeds the
39
     *  cluster size limit. It cannot be merged with anything. */
40
    OVERSIZED_SINGLETON,
41
    /** This cluster may have multiple disconnected components, which are all NEEDS_RELINEARIZE. */
42
    NEEDS_SPLIT,
43
    /** This cluster may have multiple disconnected components, which are all ACCEPTABLE. */
44
    NEEDS_SPLIT_ACCEPTABLE,
45
    /** This cluster has undergone changes that warrant re-linearization. */
46
    NEEDS_RELINEARIZE,
47
    /** The minimal level of linearization has been performed, but it is not known to be optimal. */
48
    ACCEPTABLE,
49
    /** The linearization is known to be optimal. */
50
    OPTIMAL,
51
    /** This cluster is not registered in any ClusterSet::m_clusters.
52
     *  This must be the last entry in QualityLevel as ClusterSet::m_clusters is sized using it. */
53
    NONE,
54
};
55
56
/** Information about a transaction inside TxGraphImpl::Trim. */
57
struct TrimTxData
58
{
59
    // Fields populated by Cluster::AppendTrimData(). These are immutable after TrimTxData
60
    // construction.
61
    /** Chunk feerate for this transaction. */
62
    FeePerWeight m_chunk_feerate;
63
    /** GraphIndex of the transaction. */
64
    TxGraph::GraphIndex m_index;
65
    /** Size of the transaction. */
66
    uint32_t m_tx_size;
67
68
    // Fields only used internally by TxGraphImpl::Trim():
69
    /** Number of unmet dependencies this transaction has. -1 if the transaction is included. */
70
    uint32_t m_deps_left;
71
    /** Number of dependencies that apply to this transaction as child. */
72
    uint32_t m_parent_count;
73
    /** Where in deps_by_child those dependencies begin. */
74
    uint32_t m_parent_offset;
75
    /** Number of dependencies that apply to this transaction as parent. */
76
    uint32_t m_children_count;
77
    /** Where in deps_by_parent those dependencies begin. */
78
    uint32_t m_children_offset;
79
80
    // Fields only used internally by TxGraphImpl::Trim()'s union-find implementation, and only for
81
    // transactions that are definitely included or definitely rejected.
82
    //
83
    // As transactions get processed, they get organized into trees which form partitions
84
    // representing the would-be clusters up to that point. The root of each tree is a
85
    // representative for that partition. See
86
    // https://en.wikipedia.org/wiki/Disjoint-set_data_structure.
87
    //
88
    /** Pointer to another TrimTxData, towards the root of the tree. If this is a root, m_uf_parent
89
     *  is equal to this itself. */
90
    TrimTxData* m_uf_parent;
91
    /** If this is a root, the total number of transactions in the partition. */
92
    uint32_t m_uf_count;
93
    /** If this is a root, the total size of transactions in the partition. */
94
    uint64_t m_uf_size;
95
};
96
97
/** A grouping of connected transactions inside a TxGraphImpl::ClusterSet. */
98
class Cluster
99
{
100
    friend class TxGraphImpl;
101
    using GraphIndex = TxGraph::GraphIndex;
102
    using SetType = BitSet<MAX_CLUSTER_COUNT_LIMIT>;
103
    /** The DepGraph for this cluster, holding all feerates, and ancestors/descendants. */
104
    DepGraph<SetType> m_depgraph;
105
    /** m_mapping[i] gives the GraphIndex for the position i transaction in m_depgraph. Values for
106
     *  positions i that do not exist in m_depgraph shouldn't ever be accessed and thus don't
107
     *  matter. m_mapping.size() equals m_depgraph.PositionRange(). */
108
    std::vector<GraphIndex> m_mapping;
109
    /** The current linearization of the cluster. m_linearization.size() equals
110
     *  m_depgraph.TxCount(). This is always kept topological. */
111
    std::vector<DepGraphIndex> m_linearization;
112
    /** The quality level of m_linearization. */
113
    QualityLevel m_quality{QualityLevel::NONE};
114
    /** Which position this Cluster has in Graph::ClusterSet::m_clusters[m_quality]. */
115
    ClusterSetIndex m_setindex{ClusterSetIndex(-1)};
116
    /** Which level this Cluster is at in the graph (-1=not inserted, 0=main, 1=staging). */
117
    int m_level{-1};
118
    /** Sequence number for this Cluster (for tie-breaking comparison between equal-chunk-feerate
119
        transactions in distinct clusters). */
120
    uint64_t m_sequence;
121
122
public:
123
    Cluster() noexcept = delete;
124
    /** Construct an empty Cluster. */
125
    explicit Cluster(uint64_t sequence) noexcept;
126
    /** Construct a singleton Cluster. */
127
    explicit Cluster(uint64_t sequence, TxGraphImpl& graph, const FeePerWeight& feerate, GraphIndex graph_index) noexcept;
128
129
    // Cannot move or copy (would invalidate Cluster* in Locator and ClusterSet). */
130
    Cluster(const Cluster&) = delete;
131
    Cluster& operator=(const Cluster&) = delete;
132
    Cluster(Cluster&&) = delete;
133
    Cluster& operator=(Cluster&&) = delete;
134
135
    // Generic helper functions.
136
137
    /** Whether the linearization of this Cluster can be exposed. */
138
    bool IsAcceptable(bool after_split = false) const noexcept
139
0
    {
140
0
        return m_quality == QualityLevel::ACCEPTABLE || m_quality == QualityLevel::OPTIMAL ||
141
0
               (after_split && m_quality == QualityLevel::NEEDS_SPLIT_ACCEPTABLE);
142
0
    }
143
    /** Whether the linearization of this Cluster is optimal. */
144
    bool IsOptimal() const noexcept
145
0
    {
146
0
        return m_quality == QualityLevel::OPTIMAL;
147
0
    }
148
    /** Whether this cluster is oversized. Note that no changes that can cause oversizedness are
149
     *  ever applied, so the only way a materialized Cluster object can be oversized is by being
150
     *  an individually oversized transaction singleton. */
151
0
    bool IsOversized() const noexcept { return m_quality == QualityLevel::OVERSIZED_SINGLETON; }
152
    /** Whether this cluster requires splitting. */
153
    bool NeedsSplitting() const noexcept
154
0
    {
155
0
        return m_quality == QualityLevel::NEEDS_SPLIT ||
156
0
               m_quality == QualityLevel::NEEDS_SPLIT_ACCEPTABLE;
157
0
    }
158
    /** Get the number of transactions in this Cluster. */
159
0
    LinearizationIndex GetTxCount() const noexcept { return m_linearization.size(); }
160
    /** Get the total size of the transactions in this Cluster. */
161
    uint64_t GetTotalTxSize() const noexcept;
162
    /** Given a DepGraphIndex into this Cluster, find the corresponding GraphIndex. */
163
0
    GraphIndex GetClusterEntry(DepGraphIndex index) const noexcept { return m_mapping[index]; }
164
    /** Only called by Graph::SwapIndexes. */
165
0
    void UpdateMapping(DepGraphIndex cluster_idx, GraphIndex graph_idx) noexcept { m_mapping[cluster_idx] = graph_idx; }
166
    /** Push changes to Cluster and its linearization to the TxGraphImpl Entry objects. */
167
    void Updated(TxGraphImpl& graph) noexcept;
168
    /** Create a copy of this Cluster in staging, returning a pointer to it (used by PullIn). */
169
    Cluster* CopyToStaging(TxGraphImpl& graph) const noexcept;
170
    /** Get the list of Clusters in main that conflict with this one (which is assumed to be in staging). */
171
    void GetConflicts(const TxGraphImpl& graph, std::vector<Cluster*>& out) const noexcept;
172
    /** Mark all the Entry objects belonging to this staging Cluster as missing. The Cluster must be
173
     *  deleted immediately after. */
174
    void MakeStagingTransactionsMissing(TxGraphImpl& graph) noexcept;
175
    /** Remove all transactions from a Cluster. */
176
    void Clear(TxGraphImpl& graph) noexcept;
177
    /** Change a Cluster's level from 1 (staging) to 0 (main). */
178
    void MoveToMain(TxGraphImpl& graph) noexcept;
179
180
    // Functions that implement the Cluster-specific side of internal TxGraphImpl mutations.
181
182
    /** Apply all removals from the front of to_remove that apply to this Cluster, popping them
183
     *  off. These must be at least one such entry. */
184
    void ApplyRemovals(TxGraphImpl& graph, std::span<GraphIndex>& to_remove) noexcept;
185
    /** Split this cluster (must have a NEEDS_SPLIT* quality). Returns whether to delete this
186
     *  Cluster afterwards. */
187
    [[nodiscard]] bool Split(TxGraphImpl& graph) noexcept;
188
    /** Move all transactions from cluster to *this (as separate components). */
189
    void Merge(TxGraphImpl& graph, Cluster& cluster) noexcept;
190
    /** Given a span of (parent, child) pairs that all belong to this Cluster, apply them. */
191
    void ApplyDependencies(TxGraphImpl& graph, std::span<std::pair<GraphIndex, GraphIndex>> to_apply) noexcept;
192
    /** Improve the linearization of this Cluster. Returns how much work was performed and whether
193
     *  the Cluster's QualityLevel improved as a result. */
194
    std::pair<uint64_t, bool> Relinearize(TxGraphImpl& graph, uint64_t max_iters) noexcept;
195
    /** For every chunk in the cluster, append its FeeFrac to ret. */
196
    void AppendChunkFeerates(std::vector<FeeFrac>& ret) const noexcept;
197
    /** Add a TrimTxData entry (filling m_chunk_feerate, m_index, m_tx_size) for every
198
     *  transaction in the Cluster to ret. Implicit dependencies between consecutive transactions
199
     *  in the linearization are added to deps. Return the Cluster's total transaction size. */
200
    uint64_t AppendTrimData(std::vector<TrimTxData>& ret, std::vector<std::pair<GraphIndex, GraphIndex>>& deps) const noexcept;
201
202
    // Functions that implement the Cluster-specific side of public TxGraph functions.
203
204
    /** Process elements from the front of args that apply to this cluster, and append Refs for the
205
     *  union of their ancestors to output. */
206
    void GetAncestorRefs(const TxGraphImpl& graph, std::span<std::pair<Cluster*, DepGraphIndex>>& args, std::vector<TxGraph::Ref*>& output) noexcept;
207
    /** Process elements from the front of args that apply to this cluster, and append Refs for the
208
     *  union of their descendants to output. */
209
    void GetDescendantRefs(const TxGraphImpl& graph, std::span<std::pair<Cluster*, DepGraphIndex>>& args, std::vector<TxGraph::Ref*>& output) noexcept;
210
    /** Populate range with refs for the transactions in this Cluster's linearization, from
211
     *  position start_pos until start_pos+range.size()-1, inclusive. Returns whether that
212
     *  range includes the last transaction in the linearization. */
213
    bool GetClusterRefs(TxGraphImpl& graph, std::span<TxGraph::Ref*> range, LinearizationIndex start_pos) noexcept;
214
    /** Get the individual transaction feerate of a Cluster element. */
215
    FeePerWeight GetIndividualFeerate(DepGraphIndex idx) noexcept;
216
    /** Modify the fee of a Cluster element. */
217
    void SetFee(TxGraphImpl& graph, DepGraphIndex idx, int64_t fee) noexcept;
218
219
    // Debugging functions.
220
221
    void SanityCheck(const TxGraphImpl& graph, int level) const;
222
};
223
224
225
/** The transaction graph, including staged changes.
226
 *
227
 * The overall design of the data structure consists of 3 interlinked representations:
228
 * - The transactions (held as a vector of TxGraphImpl::Entry inside TxGraphImpl).
229
 * - The clusters (Cluster objects in per-quality vectors inside TxGraphImpl::ClusterSet).
230
 * - The Refs (TxGraph::Ref objects, held externally by users of the TxGraph class)
231
 *
232
 * The Clusters are kept in one or two ClusterSet objects, one for the "main" graph, and one for
233
 * the proposed changes ("staging"). If a transaction occurs in both, they share the same Entry,
234
 * but there will be a separate Cluster per graph.
235
 *
236
 * Clusters and Refs contain the index of the Entry objects they refer to, and the Entry objects
237
 * refer back to the Clusters and Refs the corresponding transaction is contained in.
238
 *
239
 * While redundant, this permits moving all of them independently, without invalidating things
240
 * or costly iteration to fix up everything:
241
 * - Entry objects can be moved to fill holes left by removed transactions in the Entry vector
242
 *   (see TxGraphImpl::Compact).
243
 * - Clusters can be rewritten continuously (removals can cause them to split, new dependencies
244
 *   can cause them to be merged).
245
 * - Ref objects can be held outside the class, while permitting them to be moved around, and
246
 *   inherited from.
247
 */
248
class TxGraphImpl final : public TxGraph
249
{
250
    friend class Cluster;
251
    friend class BlockBuilderImpl;
252
private:
253
    /** Internal RNG. */
254
    FastRandomContext m_rng;
255
    /** This TxGraphImpl's maximum cluster count limit. */
256
    const DepGraphIndex m_max_cluster_count;
257
    /** This TxGraphImpl's maximum cluster size limit. */
258
    const uint64_t m_max_cluster_size;
259
    /** The number of linearization improvement steps needed per cluster to be considered
260
     *  acceptable. */
261
    const uint64_t m_acceptable_iters;
262
263
    /** Information about one group of Clusters to be merged. */
264
    struct GroupEntry
265
    {
266
        /** Where the clusters to be merged start in m_group_clusters. */
267
        uint32_t m_cluster_offset;
268
        /** How many clusters to merge. */
269
        uint32_t m_cluster_count;
270
        /** Where the dependencies for this cluster group in m_deps_to_add start. */
271
        uint32_t m_deps_offset;
272
        /** How many dependencies to add. */
273
        uint32_t m_deps_count;
274
    };
275
276
    /** Information about all groups of Clusters to be merged. */
277
    struct GroupData
278
    {
279
        /** The groups of Clusters to be merged. */
280
        std::vector<GroupEntry> m_groups;
281
        /** Which clusters are to be merged. GroupEntry::m_cluster_offset indexes into this. */
282
        std::vector<Cluster*> m_group_clusters;
283
    };
284
285
    /** The collection of all Clusters in main or staged. */
286
    struct ClusterSet
287
    {
288
        /** The vectors of clusters, one vector per quality level. ClusterSetIndex indexes into each. */
289
        std::array<std::vector<std::unique_ptr<Cluster>>, int(QualityLevel::NONE)> m_clusters;
290
        /** Which removals have yet to be applied. */
291
        std::vector<GraphIndex> m_to_remove;
292
        /** Which dependencies are to be added ((parent,child) pairs). GroupData::m_deps_offset indexes
293
         *  into this. */
294
        std::vector<std::pair<GraphIndex, GraphIndex>> m_deps_to_add;
295
        /** Information about the merges to be performed, if known. */
296
        std::optional<GroupData> m_group_data = GroupData{};
297
        /** Which entries were removed in this ClusterSet (so they can be wiped on abort). This
298
         *  includes all entries which have an (R) removed locator at this level (staging only),
299
         *  plus optionally any transaction in m_unlinked. */
300
        std::vector<GraphIndex> m_removed;
301
        /** Total number of transactions in this graph (sum of all transaction counts in all
302
         *  Clusters, and for staging also those inherited from the main ClusterSet). */
303
        GraphIndex m_txcount{0};
304
        /** Total number of individually oversized transactions in the graph. */
305
        GraphIndex m_txcount_oversized{0};
306
        /** Whether this graph is oversized (if known). */
307
        std::optional<bool> m_oversized{false};
308
309
0
        ClusterSet() noexcept = default;
310
    };
311
312
    /** The main ClusterSet. */
313
    ClusterSet m_main_clusterset;
314
    /** The staging ClusterSet, if any. */
315
    std::optional<ClusterSet> m_staging_clusterset;
316
    /** Next sequence number to assign to created Clusters. */
317
    uint64_t m_next_sequence_counter{0};
318
319
    /** Information about a chunk in the main graph. */
320
    struct ChunkData
321
    {
322
        /** The Entry which is the last transaction of the chunk. */
323
        mutable GraphIndex m_graph_index;
324
        /** How many transactions the chunk contains (-1 = singleton tail of cluster). */
325
        LinearizationIndex m_chunk_count;
326
327
        ChunkData(GraphIndex graph_index, LinearizationIndex chunk_count) noexcept :
328
0
            m_graph_index{graph_index}, m_chunk_count{chunk_count} {}
329
    };
330
331
    /** Compare two Cluster* by their m_sequence value (while supporting nullptr). */
332
    static std::strong_ordering CompareClusters(Cluster* a, Cluster* b) noexcept
333
0
    {
334
        // The nullptr pointer compares before everything else.
335
0
        if (a == nullptr || b == nullptr) {
336
0
            return (a != nullptr) <=> (b != nullptr);
337
0
        }
338
        // If neither pointer is nullptr, compare the Clusters' sequence numbers.
339
0
        Assume(a == b || a->m_sequence != b->m_sequence);
340
0
        return a->m_sequence <=> b->m_sequence;
341
0
    }
342
343
    /** Compare two entries (which must both exist within the main graph). */
344
    std::strong_ordering CompareMainTransactions(GraphIndex a, GraphIndex b) const noexcept
345
0
    {
346
0
        Assume(a < m_entries.size() && b < m_entries.size());
347
0
        const auto& entry_a = m_entries[a];
348
0
        const auto& entry_b = m_entries[b];
349
        // Compare chunk feerates, and return result if it differs.
350
0
        auto feerate_cmp = FeeRateCompare(entry_b.m_main_chunk_feerate, entry_a.m_main_chunk_feerate);
351
0
        if (feerate_cmp < 0) return std::strong_ordering::less;
352
0
        if (feerate_cmp > 0) return std::strong_ordering::greater;
353
        // Compare Cluster m_sequence as tie-break for equal chunk feerates.
354
0
        const auto& locator_a = entry_a.m_locator[0];
355
0
        const auto& locator_b = entry_b.m_locator[0];
356
0
        Assume(locator_a.IsPresent() && locator_b.IsPresent());
357
0
        if (locator_a.cluster != locator_b.cluster) {
358
0
            return CompareClusters(locator_a.cluster, locator_b.cluster);
359
0
        }
360
        // As final tie-break, compare position within cluster linearization.
361
0
        return entry_a.m_main_lin_index <=> entry_b.m_main_lin_index;
362
0
    }
363
364
    /** Comparator for ChunkData objects in mining order. */
365
    class ChunkOrder
366
    {
367
        const TxGraphImpl* const m_graph;
368
    public:
369
0
        explicit ChunkOrder(const TxGraphImpl* graph) : m_graph(graph) {}
370
371
        bool operator()(const ChunkData& a, const ChunkData& b) const noexcept
372
0
        {
373
0
            return m_graph->CompareMainTransactions(a.m_graph_index, b.m_graph_index) < 0;
374
0
        }
375
    };
376
377
    /** Definition for the mining index type. */
378
    using ChunkIndex = std::set<ChunkData, ChunkOrder>;
379
380
    /** Index of ChunkData objects, indexing the last transaction in each chunk in the main
381
     *  graph. */
382
    ChunkIndex m_main_chunkindex;
383
    /** Number of index-observing objects in existence (BlockBuilderImpls). */
384
    size_t m_main_chunkindex_observers{0};
385
    /** Cache of discarded ChunkIndex node handles to reuse, avoiding additional allocation. */
386
    std::vector<ChunkIndex::node_type> m_main_chunkindex_discarded;
387
388
    /** A Locator that describes whether, where, and in which Cluster an Entry appears.
389
     *  Every Entry has MAX_LEVELS locators, as it may appear in one Cluster per level.
390
     *
391
     *  Each level of a Locator is in one of three states:
392
     *
393
     *  - (P)resent: actually occurs in a Cluster at that level.
394
     *
395
     *  - (M)issing:
396
     *    - In the main graph:    the transaction does not exist in main.
397
     *    - In the staging graph: the transaction's existence is the same as in main. If it doesn't
398
     *                            exist in main, (M) in staging means it does not exist there
399
     *                            either. If it does exist in main, (M) in staging means the
400
     *                            cluster it is in has not been modified in staging, and thus the
401
     *                            transaction implicitly exists in staging too (without explicit
402
     *                            Cluster object; see PullIn() to create it in staging too).
403
     *
404
     *  - (R)emoved: only possible in staging; it means the transaction exists in main, but is
405
     *               removed in staging.
406
     *
407
     * The following combinations are possible:
408
     * - (M,M): the transaction doesn't exist in either graph.
409
     * - (P,M): the transaction exists in both, but only exists explicitly in a Cluster object in
410
     *          main. Its existence in staging is inherited from main.
411
     * - (P,P): the transaction exists in both, and is materialized in both. Thus, the clusters
412
     *          and/or their linearizations may be different in main and staging.
413
     * - (M,P): the transaction is added in staging, and does not exist in main.
414
     * - (P,R): the transaction exists in main, but is removed in staging.
415
     *
416
     * When staging does not exist, only (M,M) and (P,M) are possible.
417
     */
418
    struct Locator
419
    {
420
        /** Which Cluster the Entry appears in (nullptr = missing). */
421
        Cluster* cluster{nullptr};
422
        /** Where in the Cluster it appears (if cluster == nullptr: 0 = missing, -1 = removed). */
423
        DepGraphIndex index{0};
424
425
        /** Mark this Locator as missing (= same as lower level, or non-existing if level 0). */
426
0
        void SetMissing() noexcept { cluster = nullptr; index = 0; }
427
        /** Mark this Locator as removed (not allowed in level 0). */
428
0
        void SetRemoved() noexcept { cluster = nullptr; index = DepGraphIndex(-1); }
429
        /** Mark this Locator as present, in the specified Cluster. */
430
0
        void SetPresent(Cluster* c, DepGraphIndex i) noexcept { cluster = c; index = i; }
431
        /** Check if this Locator is missing. */
432
0
        bool IsMissing() const noexcept { return cluster == nullptr && index == 0; }
433
        /** Check if this Locator is removed. */
434
0
        bool IsRemoved() const noexcept { return cluster == nullptr && index == DepGraphIndex(-1); }
435
        /** Check if this Locator is present (in some Cluster). */
436
0
        bool IsPresent() const noexcept { return cluster != nullptr; }
437
    };
438
439
    /** Internal information about each transaction in a TxGraphImpl. */
440
    struct Entry
441
    {
442
        /** Pointer to the corresponding Ref object if any, or nullptr if unlinked. */
443
        Ref* m_ref{nullptr};
444
        /** Iterator to the corresponding ChunkData, if any, and m_main_chunkindex.end() otherwise.
445
         *  This is initialized on construction of the Entry, in AddTransaction. */
446
        ChunkIndex::iterator m_main_chunkindex_iterator;
447
        /** Which Cluster and position therein this Entry appears in. ([0] = main, [1] = staged). */
448
        Locator m_locator[MAX_LEVELS];
449
        /** The chunk feerate of this transaction in main (if present in m_locator[0]). */
450
        FeePerWeight m_main_chunk_feerate;
451
        /** The position this transaction has in the main linearization (if present). */
452
        LinearizationIndex m_main_lin_index;
453
    };
454
455
    /** The set of all transactions (in all levels combined). GraphIndex values index into this. */
456
    std::vector<Entry> m_entries;
457
458
    /** Set of Entries which have no linked Ref anymore. */
459
    std::vector<GraphIndex> m_unlinked;
460
461
public:
462
    /** Construct a new TxGraphImpl with the specified limits. */
463
    explicit TxGraphImpl(DepGraphIndex max_cluster_count, uint64_t max_cluster_size, uint64_t acceptable_iters) noexcept :
464
0
        m_max_cluster_count(max_cluster_count),
465
0
        m_max_cluster_size(max_cluster_size),
466
0
        m_acceptable_iters(acceptable_iters),
467
0
        m_main_chunkindex(ChunkOrder(this))
468
0
    {
469
0
        Assume(max_cluster_count >= 1);
470
0
        Assume(max_cluster_count <= MAX_CLUSTER_COUNT_LIMIT);
471
0
    }
472
473
    /** Destructor. */
474
    ~TxGraphImpl() noexcept;
475
476
    // Cannot move or copy (would invalidate TxGraphImpl* in Ref, MiningOrder, EvictionOrder).
477
    TxGraphImpl(const TxGraphImpl&) = delete;
478
    TxGraphImpl& operator=(const TxGraphImpl&) = delete;
479
    TxGraphImpl(TxGraphImpl&&) = delete;
480
    TxGraphImpl& operator=(TxGraphImpl&&) = delete;
481
482
    // Simple helper functions.
483
484
    /** Swap the Entry referred to by a and the one referred to by b. */
485
    void SwapIndexes(GraphIndex a, GraphIndex b) noexcept;
486
    /** If idx exists in the specified level ClusterSet (explicitly, or in the level below and not
487
    *   removed), return the Cluster it is in. Otherwise, return nullptr. */
488
    Cluster* FindCluster(GraphIndex idx, int level) const noexcept;
489
    /** Extract a Cluster from its ClusterSet. */
490
    std::unique_ptr<Cluster> ExtractCluster(int level, QualityLevel quality, ClusterSetIndex setindex) noexcept;
491
    /** Delete a Cluster. */
492
    void DeleteCluster(Cluster& cluster) noexcept;
493
    /** Insert a Cluster into its ClusterSet. */
494
    ClusterSetIndex InsertCluster(int level, std::unique_ptr<Cluster>&& cluster, QualityLevel quality) noexcept;
495
    /** Change the QualityLevel of a Cluster (identified by old_quality and old_index). */
496
    void SetClusterQuality(int level, QualityLevel old_quality, ClusterSetIndex old_index, QualityLevel new_quality) noexcept;
497
    /** Get the index of the top level ClusterSet (staging if it exists, main otherwise). */
498
0
    int GetTopLevel() const noexcept { return m_staging_clusterset.has_value(); }
499
    /** Get the specified level (staging if it exists and level is TOP, main otherwise). */
500
0
    int GetSpecifiedLevel(Level level) const noexcept { return level == Level::TOP && m_staging_clusterset.has_value(); }
501
    /** Get a reference to the ClusterSet at the specified level (which must exist). */
502
    ClusterSet& GetClusterSet(int level) noexcept;
503
    const ClusterSet& GetClusterSet(int level) const noexcept;
504
    /** Make a transaction not exist at a specified level. It must currently exist there.
505
     *  oversized_tx indicates whether the transaction is an individually-oversized one
506
     *  (OVERSIZED_SINGLETON). */
507
    void ClearLocator(int level, GraphIndex index, bool oversized_tx) noexcept;
508
    /** Find which Clusters in main conflict with ones in staging. */
509
    std::vector<Cluster*> GetConflicts() const noexcept;
510
    /** Clear an Entry's ChunkData. */
511
    void ClearChunkData(Entry& entry) noexcept;
512
    /** Give an Entry a ChunkData object. */
513
    void CreateChunkData(GraphIndex idx, LinearizationIndex chunk_count) noexcept;
514
515
    // Functions for handling Refs.
516
517
    /** Only called by Ref's move constructor/assignment to update Ref locations. */
518
    void UpdateRef(GraphIndex idx, Ref& new_location) noexcept final
519
0
    {
520
0
        auto& entry = m_entries[idx];
521
0
        Assume(entry.m_ref != nullptr);
522
0
        entry.m_ref = &new_location;
523
0
    }
524
525
    /** Only called by Ref::~Ref to unlink Refs, and Ref's move assignment. */
526
    void UnlinkRef(GraphIndex idx) noexcept final
527
0
    {
528
0
        auto& entry = m_entries[idx];
529
0
        Assume(entry.m_ref != nullptr);
530
0
        Assume(m_main_chunkindex_observers == 0 || !entry.m_locator[0].IsPresent());
531
0
        entry.m_ref = nullptr;
532
        // Mark the transaction as to be removed in all levels where it explicitly or implicitly
533
        // exists.
534
0
        bool exists_anywhere{false};
535
0
        bool exists{false};
536
0
        for (int level = 0; level <= GetTopLevel(); ++level) {
537
0
            if (entry.m_locator[level].IsPresent()) {
538
0
                exists_anywhere = true;
539
0
                exists = true;
540
0
            } else if (entry.m_locator[level].IsRemoved()) {
541
0
                exists = false;
542
0
            }
543
0
            if (exists) {
544
0
                auto& clusterset = GetClusterSet(level);
545
0
                clusterset.m_to_remove.push_back(idx);
546
                // Force recomputation of grouping data.
547
0
                clusterset.m_group_data = std::nullopt;
548
                // Do not wipe the oversized state of main if staging exists. The reason for this
549
                // is that the alternative would mean that cluster merges may need to be applied to
550
                // a formerly-oversized main graph while staging exists (to satisfy chunk feerate
551
                // queries into main, for example), and such merges could conflict with pulls of
552
                // some of their constituents into staging.
553
0
                if (level == GetTopLevel() && clusterset.m_oversized == true) {
554
0
                    clusterset.m_oversized = std::nullopt;
555
0
                }
556
0
            }
557
0
        }
558
0
        m_unlinked.push_back(idx);
559
0
        if (!exists_anywhere) Compact();
560
0
    }
561
562
    // Functions related to various normalization/application steps.
563
    /** Get rid of unlinked Entry objects in m_entries, if possible (this changes the GraphIndex
564
     *  values for remaining Entry objects, so this only does something when no to-be-applied
565
     *  operations or staged removals referring to GraphIndexes remain). */
566
    void Compact() noexcept;
567
    /** If cluster is not in staging, copy it there, and return a pointer to it.
568
    *   Staging must exist, and this modifies the locators of its
569
    *   transactions from inherited (P,M) to explicit (P,P). */
570
    Cluster* PullIn(Cluster* cluster) noexcept;
571
    /** Apply all removals queued up in m_to_remove to the relevant Clusters (which get a
572
     *  NEEDS_SPLIT* QualityLevel) up to the specified level. */
573
    void ApplyRemovals(int up_to_level) noexcept;
574
    /** Split an individual cluster. */
575
    void Split(Cluster& cluster) noexcept;
576
    /** Split all clusters that need splitting up to the specified level. */
577
    void SplitAll(int up_to_level) noexcept;
578
    /** Populate m_group_data based on m_deps_to_add in the specified level. */
579
    void GroupClusters(int level) noexcept;
580
    /** Merge the specified clusters. */
581
    void Merge(std::span<Cluster*> to_merge) noexcept;
582
    /** Apply all m_deps_to_add to the relevant Clusters in the specified level. */
583
    void ApplyDependencies(int level) noexcept;
584
    /** Make a specified Cluster have quality ACCEPTABLE or OPTIMAL. */
585
    void MakeAcceptable(Cluster& cluster) noexcept;
586
    /** Make all Clusters at the specified level have quality ACCEPTABLE or OPTIMAL. */
587
    void MakeAllAcceptable(int level) noexcept;
588
589
    // Implementations for the public TxGraph interface.
590
591
    Ref AddTransaction(const FeePerWeight& feerate) noexcept final;
592
    void RemoveTransaction(const Ref& arg) noexcept final;
593
    void AddDependency(const Ref& parent, const Ref& child) noexcept final;
594
    void SetTransactionFee(const Ref&, int64_t fee) noexcept final;
595
596
    bool DoWork(uint64_t iters) noexcept final;
597
598
    void StartStaging() noexcept final;
599
    void CommitStaging() noexcept final;
600
    void AbortStaging() noexcept final;
601
0
    bool HaveStaging() const noexcept final { return m_staging_clusterset.has_value(); }
602
603
    bool Exists(const Ref& arg, Level level) noexcept final;
604
    FeePerWeight GetMainChunkFeerate(const Ref& arg) noexcept final;
605
    FeePerWeight GetIndividualFeerate(const Ref& arg) noexcept final;
606
    std::vector<Ref*> GetCluster(const Ref& arg, Level level) noexcept final;
607
    std::vector<Ref*> GetAncestors(const Ref& arg, Level level) noexcept final;
608
    std::vector<Ref*> GetDescendants(const Ref& arg, Level level) noexcept final;
609
    std::vector<Ref*> GetAncestorsUnion(std::span<const Ref* const> args, Level level) noexcept final;
610
    std::vector<Ref*> GetDescendantsUnion(std::span<const Ref* const> args, Level level) noexcept final;
611
    GraphIndex GetTransactionCount(Level level) noexcept final;
612
    bool IsOversized(Level level) noexcept final;
613
    std::strong_ordering CompareMainOrder(const Ref& a, const Ref& b) noexcept final;
614
    GraphIndex CountDistinctClusters(std::span<const Ref* const> refs, Level level) noexcept final;
615
    std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>> GetMainStagingDiagrams() noexcept final;
616
    std::vector<Ref*> Trim() noexcept final;
617
618
    std::unique_ptr<BlockBuilder> GetBlockBuilder() noexcept final;
619
    std::pair<std::vector<Ref*>, FeePerWeight> GetWorstMainChunk() noexcept final;
620
621
    void SanityCheck() const final;
622
};
623
624
TxGraphImpl::ClusterSet& TxGraphImpl::GetClusterSet(int level) noexcept
625
0
{
626
0
    if (level == 0) return m_main_clusterset;
627
0
    Assume(level == 1);
628
0
    Assume(m_staging_clusterset.has_value());
629
0
    return *m_staging_clusterset;
630
0
}
631
632
const TxGraphImpl::ClusterSet& TxGraphImpl::GetClusterSet(int level) const noexcept
633
0
{
634
0
    if (level == 0) return m_main_clusterset;
635
0
    Assume(level == 1);
636
0
    Assume(m_staging_clusterset.has_value());
637
0
    return *m_staging_clusterset;
638
0
}
639
640
/** Implementation of the TxGraph::BlockBuilder interface. */
641
class BlockBuilderImpl final : public TxGraph::BlockBuilder
642
{
643
    /** Which TxGraphImpl this object is doing block building for. It will have its
644
     *  m_main_chunkindex_observers incremented as long as this BlockBuilderImpl exists. */
645
    TxGraphImpl* const m_graph;
646
    /** Clusters which we're not including further transactions from. */
647
    std::set<Cluster*> m_excluded_clusters;
648
    /** Iterator to the current chunk in the chunk index. end() if nothing further remains. */
649
    TxGraphImpl::ChunkIndex::const_iterator m_cur_iter;
650
    /** Which cluster the current chunk belongs to, so we can exclude further transactions from it
651
     *  when that chunk is skipped. */
652
    Cluster* m_cur_cluster;
653
    /** Whether we know that m_cur_iter points to the last chunk of m_cur_cluster. */
654
    bool m_known_end_of_cluster;
655
656
    // Move m_cur_iter / m_cur_cluster to the next acceptable chunk.
657
    void Next() noexcept;
658
659
public:
660
    /** Construct a new BlockBuilderImpl to build blocks for the provided graph. */
661
    BlockBuilderImpl(TxGraphImpl& graph) noexcept;
662
663
    // Implement the public interface.
664
    ~BlockBuilderImpl() final;
665
    std::optional<std::pair<std::vector<TxGraph::Ref*>, FeePerWeight>> GetCurrentChunk() noexcept final;
666
    void Include() noexcept final;
667
    void Skip() noexcept final;
668
};
669
670
void TxGraphImpl::ClearChunkData(Entry& entry) noexcept
671
0
{
672
0
    if (entry.m_main_chunkindex_iterator != m_main_chunkindex.end()) {
673
0
        Assume(m_main_chunkindex_observers == 0);
674
        // If the Entry has a non-empty m_main_chunkindex_iterator, extract it, and move the handle
675
        // to the cache of discarded chunkindex entries.
676
0
        m_main_chunkindex_discarded.emplace_back(m_main_chunkindex.extract(entry.m_main_chunkindex_iterator));
677
0
        entry.m_main_chunkindex_iterator = m_main_chunkindex.end();
678
0
    }
679
0
}
680
681
void TxGraphImpl::CreateChunkData(GraphIndex idx, LinearizationIndex chunk_count) noexcept
682
0
{
683
0
    auto& entry = m_entries[idx];
684
0
    if (!m_main_chunkindex_discarded.empty()) {
685
        // Reuse an discarded node handle.
686
0
        auto& node = m_main_chunkindex_discarded.back().value();
687
0
        node.m_graph_index = idx;
688
0
        node.m_chunk_count = chunk_count;
689
0
        auto insert_result = m_main_chunkindex.insert(std::move(m_main_chunkindex_discarded.back()));
690
0
        Assume(insert_result.inserted);
691
0
        entry.m_main_chunkindex_iterator = insert_result.position;
692
0
        m_main_chunkindex_discarded.pop_back();
693
0
    } else {
694
        // Construct a new entry.
695
0
        auto emplace_result = m_main_chunkindex.emplace(idx, chunk_count);
696
0
        Assume(emplace_result.second);
697
0
        entry.m_main_chunkindex_iterator = emplace_result.first;
698
0
    }
699
0
}
700
701
uint64_t Cluster::GetTotalTxSize() const noexcept
702
0
{
703
0
    uint64_t ret{0};
704
0
    for (auto i : m_linearization) {
705
0
        ret += m_depgraph.FeeRate(i).size;
706
0
    }
707
0
    return ret;
708
0
}
709
710
void TxGraphImpl::ClearLocator(int level, GraphIndex idx, bool oversized_tx) noexcept
711
0
{
712
0
    auto& entry = m_entries[idx];
713
0
    auto& clusterset = GetClusterSet(level);
714
0
    Assume(entry.m_locator[level].IsPresent());
715
    // Change the locator from Present to Missing or Removed.
716
0
    if (level == 0 || !entry.m_locator[level - 1].IsPresent()) {
717
0
        entry.m_locator[level].SetMissing();
718
0
    } else {
719
0
        entry.m_locator[level].SetRemoved();
720
0
        clusterset.m_removed.push_back(idx);
721
0
    }
722
    // Update the transaction count.
723
0
    --clusterset.m_txcount;
724
0
    clusterset.m_txcount_oversized -= oversized_tx;
725
    // If clearing main, adjust the status of Locators of this transaction in staging, if it exists.
726
0
    if (level == 0 && GetTopLevel() == 1) {
727
0
        if (entry.m_locator[1].IsRemoved()) {
728
0
            entry.m_locator[1].SetMissing();
729
0
        } else if (!entry.m_locator[1].IsPresent()) {
730
0
            --m_staging_clusterset->m_txcount;
731
0
            m_staging_clusterset->m_txcount_oversized -= oversized_tx;
732
0
        }
733
0
    }
734
0
    if (level == 0) ClearChunkData(entry);
735
0
}
736
737
void Cluster::Updated(TxGraphImpl& graph) noexcept
738
0
{
739
    // Update all the Locators for this Cluster's Entry objects.
740
0
    for (DepGraphIndex idx : m_linearization) {
741
0
        auto& entry = graph.m_entries[m_mapping[idx]];
742
        // Discard any potential ChunkData prior to modifying the Cluster (as that could
743
        // invalidate its ordering).
744
0
        if (m_level == 0) graph.ClearChunkData(entry);
745
0
        entry.m_locator[m_level].SetPresent(this, idx);
746
0
    }
747
    // If this is for the main graph (level = 0), and the Cluster's quality is ACCEPTABLE or
748
    // OPTIMAL, compute its chunking and store its information in the Entry's m_main_lin_index
749
    // and m_main_chunk_feerate. These fields are only accessed after making the entire graph
750
    // ACCEPTABLE, so it is pointless to compute these if we haven't reached that quality level
751
    // yet.
752
0
    if (m_level == 0 && IsAcceptable()) {
753
0
        const LinearizationChunking chunking(m_depgraph, m_linearization);
754
0
        LinearizationIndex lin_idx{0};
755
        // Iterate over the chunks.
756
0
        for (unsigned chunk_idx = 0; chunk_idx < chunking.NumChunksLeft(); ++chunk_idx) {
757
0
            auto chunk = chunking.GetChunk(chunk_idx);
758
0
            auto chunk_count = chunk.transactions.Count();
759
0
            Assume(chunk_count > 0);
760
            // Iterate over the transactions in the linearization, which must match those in chunk.
761
0
            while (true) {
762
0
                DepGraphIndex idx = m_linearization[lin_idx];
763
0
                GraphIndex graph_idx = m_mapping[idx];
764
0
                auto& entry = graph.m_entries[graph_idx];
765
0
                entry.m_main_lin_index = lin_idx++;
766
0
                entry.m_main_chunk_feerate = FeePerWeight::FromFeeFrac(chunk.feerate);
767
0
                Assume(chunk.transactions[idx]);
768
0
                chunk.transactions.Reset(idx);
769
0
                if (chunk.transactions.None()) {
770
                    // Last transaction in the chunk.
771
0
                    if (chunk_count == 1 && chunk_idx + 1 == chunking.NumChunksLeft()) {
772
                        // If this is the final chunk of the cluster, and it contains just a single
773
                        // transaction (which will always be true for the very common singleton
774
                        // clusters), store the special value -1 as chunk count.
775
0
                        chunk_count = LinearizationIndex(-1);
776
0
                    }
777
0
                    graph.CreateChunkData(graph_idx, chunk_count);
778
0
                    break;
779
0
                }
780
0
            }
781
0
        }
782
0
    }
783
0
}
784
785
void Cluster::GetConflicts(const TxGraphImpl& graph, std::vector<Cluster*>& out) const noexcept
786
0
{
787
0
    Assume(m_level == 1);
788
0
    for (auto i : m_linearization) {
789
0
        auto& entry = graph.m_entries[m_mapping[i]];
790
        // For every transaction Entry in this Cluster, if it also exists in a lower-level Cluster,
791
        // then that Cluster conflicts.
792
0
        if (entry.m_locator[0].IsPresent()) {
793
0
            out.push_back(entry.m_locator[0].cluster);
794
0
        }
795
0
    }
796
0
}
797
798
std::vector<Cluster*> TxGraphImpl::GetConflicts() const noexcept
799
0
{
800
0
    Assume(GetTopLevel() == 1);
801
0
    auto& clusterset = GetClusterSet(1);
802
0
    std::vector<Cluster*> ret;
803
    // All main Clusters containing transactions in m_removed (so (P,R) ones) are conflicts.
804
0
    for (auto i : clusterset.m_removed) {
805
0
        auto& entry = m_entries[i];
806
0
        if (entry.m_locator[0].IsPresent()) {
807
0
            ret.push_back(entry.m_locator[0].cluster);
808
0
        }
809
0
    }
810
    // Then go over all Clusters at this level, and find their conflicts (the (P,P) ones).
811
0
    for (int quality = 0; quality < int(QualityLevel::NONE); ++quality) {
812
0
        auto& clusters = clusterset.m_clusters[quality];
813
0
        for (const auto& cluster : clusters) {
814
0
            cluster->GetConflicts(*this, ret);
815
0
        }
816
0
    }
817
    // Deduplicate the result (the same Cluster may appear multiple times).
818
0
    std::sort(ret.begin(), ret.end(), [](Cluster* a, Cluster* b) noexcept { return CompareClusters(a, b) < 0; });
819
0
    ret.erase(std::unique(ret.begin(), ret.end()), ret.end());
820
0
    return ret;
821
0
}
822
823
Cluster* Cluster::CopyToStaging(TxGraphImpl& graph) const noexcept
824
0
{
825
    // Construct an empty Cluster.
826
0
    auto ret = std::make_unique<Cluster>(graph.m_next_sequence_counter++);
827
0
    auto ptr = ret.get();
828
    // Copy depgraph, mapping, and linearization/
829
0
    ptr->m_depgraph = m_depgraph;
830
0
    ptr->m_mapping = m_mapping;
831
0
    ptr->m_linearization = m_linearization;
832
    // Insert the new Cluster into the graph.
833
0
    graph.InsertCluster(1, std::move(ret), m_quality);
834
    // Update its Locators.
835
0
    ptr->Updated(graph);
836
0
    return ptr;
837
0
}
838
839
void Cluster::ApplyRemovals(TxGraphImpl& graph, std::span<GraphIndex>& to_remove) noexcept
840
0
{
841
    // Iterate over the prefix of to_remove that applies to this cluster.
842
0
    Assume(!to_remove.empty());
843
0
    SetType todo;
844
0
    do {
845
0
        GraphIndex idx = to_remove.front();
846
0
        Assume(idx < graph.m_entries.size());
847
0
        auto& entry = graph.m_entries[idx];
848
0
        auto& locator = entry.m_locator[m_level];
849
        // Stop once we hit an entry that applies to another Cluster.
850
0
        if (locator.cluster != this) break;
851
        // - Remember it in a set of to-remove DepGraphIndexes.
852
0
        todo.Set(locator.index);
853
        // - Remove from m_mapping. This isn't strictly necessary as unused positions in m_mapping
854
        //   are just never accessed, but set it to -1 here to increase the ability to detect a bug
855
        //   that causes it to be accessed regardless.
856
0
        m_mapping[locator.index] = GraphIndex(-1);
857
        // - Remove its linearization index from the Entry (if in main).
858
0
        if (m_level == 0) {
859
0
            entry.m_main_lin_index = LinearizationIndex(-1);
860
0
        }
861
        // - Mark it as missing/removed in the Entry's locator.
862
0
        graph.ClearLocator(m_level, idx, m_quality == QualityLevel::OVERSIZED_SINGLETON);
863
0
        to_remove = to_remove.subspan(1);
864
0
    } while(!to_remove.empty());
865
866
0
    auto quality = m_quality;
867
0
    Assume(todo.Any());
868
    // Wipe from the Cluster's DepGraph (this is O(n) regardless of the number of entries
869
    // removed, so we benefit from batching all the removals).
870
0
    m_depgraph.RemoveTransactions(todo);
871
0
    m_mapping.resize(m_depgraph.PositionRange());
872
873
    // First remove all removals at the end of the linearization.
874
0
    while (!m_linearization.empty() && todo[m_linearization.back()]) {
875
0
        todo.Reset(m_linearization.back());
876
0
        m_linearization.pop_back();
877
0
    }
878
0
    if (todo.None()) {
879
        // If no further removals remain, and thus all removals were at the end, we may be able
880
        // to leave the cluster at a better quality level.
881
0
        if (IsAcceptable(/*after_split=*/true)) {
882
0
            quality = QualityLevel::NEEDS_SPLIT_ACCEPTABLE;
883
0
        } else {
884
0
            quality = QualityLevel::NEEDS_SPLIT;
885
0
        }
886
0
    } else {
887
        // If more removals remain, filter those out of m_linearization.
888
0
        m_linearization.erase(std::remove_if(
889
0
            m_linearization.begin(),
890
0
            m_linearization.end(),
891
0
            [&](auto pos) { return todo[pos]; }), m_linearization.end());
892
0
        quality = QualityLevel::NEEDS_SPLIT;
893
0
    }
894
0
    graph.SetClusterQuality(m_level, m_quality, m_setindex, quality);
895
0
    Updated(graph);
896
0
}
897
898
void Cluster::Clear(TxGraphImpl& graph) noexcept
899
0
{
900
0
    for (auto i : m_linearization) {
901
0
        graph.ClearLocator(m_level, m_mapping[i], m_quality == QualityLevel::OVERSIZED_SINGLETON);
902
0
    }
903
0
    m_depgraph = {};
904
0
    m_linearization.clear();
905
0
    m_mapping.clear();
906
0
}
907
908
void Cluster::MoveToMain(TxGraphImpl& graph) noexcept
909
0
{
910
0
    Assume(m_level == 1);
911
0
    for (auto i : m_linearization) {
912
0
        GraphIndex idx = m_mapping[i];
913
0
        auto& entry = graph.m_entries[idx];
914
0
        entry.m_locator[1].SetMissing();
915
0
    }
916
0
    auto quality = m_quality;
917
0
    auto cluster = graph.ExtractCluster(1, quality, m_setindex);
918
0
    graph.InsertCluster(0, std::move(cluster), quality);
919
0
    Updated(graph);
920
0
}
921
922
void Cluster::AppendChunkFeerates(std::vector<FeeFrac>& ret) const noexcept
923
0
{
924
0
    auto chunk_feerates = ChunkLinearization(m_depgraph, m_linearization);
925
0
    ret.reserve(ret.size() + chunk_feerates.size());
926
0
    ret.insert(ret.end(), chunk_feerates.begin(), chunk_feerates.end());
927
0
}
928
929
uint64_t Cluster::AppendTrimData(std::vector<TrimTxData>& ret, std::vector<std::pair<GraphIndex, GraphIndex>>& deps) const noexcept
930
0
{
931
0
    const LinearizationChunking linchunking(m_depgraph, m_linearization);
932
0
    LinearizationIndex pos{0};
933
0
    uint64_t size{0};
934
0
    auto prev_index = GraphIndex(-1);
935
    // Iterate over the chunks of this cluster's linearization.
936
0
    for (unsigned i = 0; i < linchunking.NumChunksLeft(); ++i) {
937
0
        const auto& [chunk, chunk_feerate] = linchunking.GetChunk(i);
938
        // Iterate over the transactions of that chunk, in linearization order.
939
0
        auto chunk_tx_count = chunk.Count();
940
0
        for (unsigned j = 0; j < chunk_tx_count; ++j) {
941
0
            auto cluster_idx = m_linearization[pos];
942
            // The transaction must appear in the chunk.
943
0
            Assume(chunk[cluster_idx]);
944
            // Construct a new element in ret.
945
0
            auto& entry = ret.emplace_back();
946
0
            entry.m_chunk_feerate = FeePerWeight::FromFeeFrac(chunk_feerate);
947
0
            entry.m_index = m_mapping[cluster_idx];
948
            // If this is not the first transaction of the cluster linearization, it has an
949
            // implicit dependency on its predecessor.
950
0
            if (pos != 0) deps.emplace_back(prev_index, entry.m_index);
951
0
            prev_index = entry.m_index;
952
0
            entry.m_tx_size = m_depgraph.FeeRate(cluster_idx).size;
953
0
            size += entry.m_tx_size;
954
0
            ++pos;
955
0
        }
956
0
    }
957
0
    return size;
958
0
}
959
960
bool Cluster::Split(TxGraphImpl& graph) noexcept
961
0
{
962
    // This function can only be called when the Cluster needs splitting.
963
0
    Assume(NeedsSplitting());
964
    // Determine the new quality the split-off Clusters will have.
965
0
    QualityLevel new_quality = IsAcceptable(/*after_split=*/true) ? QualityLevel::ACCEPTABLE
966
0
                                                                  : QualityLevel::NEEDS_RELINEARIZE;
967
    // If we're going to produce ACCEPTABLE clusters (i.e., when in NEEDS_SPLIT_ACCEPTABLE), we
968
    // need to post-linearize to make sure the split-out versions are all connected (as
969
    // connectivity may have changed by removing part of the cluster). This could be done on each
970
    // resulting split-out cluster separately, but it is simpler to do it once up front before
971
    // splitting. This step is not necessary if the resulting clusters are NEEDS_RELINEARIZE, as
972
    // they will be post-linearized anyway in MakeAcceptable().
973
0
    if (new_quality == QualityLevel::ACCEPTABLE) {
974
0
        PostLinearize(m_depgraph, m_linearization);
975
0
    }
976
    /** Which positions are still left in this Cluster. */
977
0
    auto todo = m_depgraph.Positions();
978
    /** Mapping from transaction positions in this Cluster to the Cluster where it ends up, and
979
     *  its position therein. */
980
0
    std::vector<std::pair<Cluster*, DepGraphIndex>> remap(m_depgraph.PositionRange());
981
0
    std::vector<Cluster*> new_clusters;
982
0
    bool first{true};
983
    // Iterate over the connected components of this Cluster's m_depgraph.
984
0
    while (todo.Any()) {
985
0
        auto component = m_depgraph.FindConnectedComponent(todo);
986
0
        auto split_quality = component.Count() <= 2 ? QualityLevel::OPTIMAL : new_quality;
987
0
        if (first && component == todo) {
988
            // The existing Cluster is an entire component. Leave it be, but update its quality.
989
0
            Assume(todo == m_depgraph.Positions());
990
0
            graph.SetClusterQuality(m_level, m_quality, m_setindex, split_quality);
991
            // If this made the quality ACCEPTABLE or OPTIMAL, we need to compute and cache its
992
            // chunking.
993
0
            Updated(graph);
994
0
            return false;
995
0
        }
996
0
        first = false;
997
        // Construct a new Cluster to hold the found component.
998
0
        auto new_cluster = std::make_unique<Cluster>(graph.m_next_sequence_counter++);
999
0
        new_clusters.push_back(new_cluster.get());
1000
        // Remember that all the component's transactions go to this new Cluster. The positions
1001
        // will be determined below, so use -1 for now.
1002
0
        for (auto i : component) {
1003
0
            remap[i] = {new_cluster.get(), DepGraphIndex(-1)};
1004
0
        }
1005
0
        graph.InsertCluster(m_level, std::move(new_cluster), split_quality);
1006
0
        todo -= component;
1007
0
    }
1008
    // Redistribute the transactions.
1009
0
    for (auto i : m_linearization) {
1010
        /** The cluster which transaction originally in position i is moved to. */
1011
0
        Cluster* new_cluster = remap[i].first;
1012
        // Copy the transaction to the new cluster's depgraph, and remember the position.
1013
0
        remap[i].second = new_cluster->m_depgraph.AddTransaction(m_depgraph.FeeRate(i));
1014
        // Create new mapping entry.
1015
0
        new_cluster->m_mapping.push_back(m_mapping[i]);
1016
        // Create a new linearization entry. As we're only appending transactions, they equal the
1017
        // DepGraphIndex.
1018
0
        new_cluster->m_linearization.push_back(remap[i].second);
1019
0
    }
1020
    // Redistribute the dependencies.
1021
0
    for (auto i : m_linearization) {
1022
        /** The cluster transaction in position i is moved to. */
1023
0
        Cluster* new_cluster = remap[i].first;
1024
        // Copy its parents, translating positions.
1025
0
        SetType new_parents;
1026
0
        for (auto par : m_depgraph.GetReducedParents(i)) new_parents.Set(remap[par].second);
1027
0
        new_cluster->m_depgraph.AddDependencies(new_parents, remap[i].second);
1028
0
    }
1029
    // Update all the Locators of moved transactions.
1030
0
    for (Cluster* new_cluster : new_clusters) {
1031
0
        new_cluster->Updated(graph);
1032
0
    }
1033
    // Wipe this Cluster, and return that it needs to be deleted.
1034
0
    m_depgraph = DepGraph<SetType>{};
1035
0
    m_mapping.clear();
1036
0
    m_linearization.clear();
1037
0
    return true;
1038
0
}
1039
1040
void Cluster::Merge(TxGraphImpl& graph, Cluster& other) noexcept
1041
0
{
1042
    /** Vector to store the positions in this Cluster for each position in other. */
1043
0
    std::vector<DepGraphIndex> remap(other.m_depgraph.PositionRange());
1044
    // Iterate over all transactions in the other Cluster (the one being absorbed).
1045
0
    for (auto pos : other.m_linearization) {
1046
0
        auto idx = other.m_mapping[pos];
1047
        // Copy the transaction into this Cluster, and remember its position.
1048
0
        auto new_pos = m_depgraph.AddTransaction(other.m_depgraph.FeeRate(pos));
1049
0
        remap[pos] = new_pos;
1050
0
        if (new_pos == m_mapping.size()) {
1051
0
            m_mapping.push_back(idx);
1052
0
        } else {
1053
0
            m_mapping[new_pos] = idx;
1054
0
        }
1055
0
        m_linearization.push_back(new_pos);
1056
        // Copy the transaction's dependencies, translating them using remap. Note that since
1057
        // pos iterates over other.m_linearization, which is in topological order, all parents
1058
        // of pos should already be in remap.
1059
0
        SetType parents;
1060
0
        for (auto par : other.m_depgraph.GetReducedParents(pos)) {
1061
0
            parents.Set(remap[par]);
1062
0
        }
1063
0
        m_depgraph.AddDependencies(parents, remap[pos]);
1064
        // Update the transaction's Locator. There is no need to call Updated() to update chunk
1065
        // feerates, as Updated() will be invoked by Cluster::ApplyDependencies on the resulting
1066
        // merged Cluster later anyway).
1067
0
        auto& entry = graph.m_entries[idx];
1068
        // Discard any potential ChunkData prior to modifying the Cluster (as that could
1069
        // invalidate its ordering).
1070
0
        if (m_level == 0) graph.ClearChunkData(entry);
1071
0
        entry.m_locator[m_level].SetPresent(this, new_pos);
1072
0
    }
1073
    // Purge the other Cluster, now that everything has been moved.
1074
0
    other.m_depgraph = DepGraph<SetType>{};
1075
0
    other.m_linearization.clear();
1076
0
    other.m_mapping.clear();
1077
0
}
1078
1079
void Cluster::ApplyDependencies(TxGraphImpl& graph, std::span<std::pair<GraphIndex, GraphIndex>> to_apply) noexcept
1080
0
{
1081
    // This function is invoked by TxGraphImpl::ApplyDependencies after merging groups of Clusters
1082
    // between which dependencies are added, which simply concatenates their linearizations. Invoke
1083
    // PostLinearize, which has the effect that the linearization becomes a merge-sort of the
1084
    // constituent linearizations. Do this here rather than in Cluster::Merge, because this
1085
    // function is only invoked once per merged Cluster, rather than once per constituent one.
1086
    // This concatenation + post-linearization could be replaced with an explicit merge-sort.
1087
0
    PostLinearize(m_depgraph, m_linearization);
1088
1089
    // Sort the list of dependencies to apply by child, so those can be applied in batch.
1090
0
    std::sort(to_apply.begin(), to_apply.end(), [](auto& a, auto& b) { return a.second < b.second; });
1091
    // Iterate over groups of to-be-added dependencies with the same child.
1092
0
    auto it = to_apply.begin();
1093
0
    while (it != to_apply.end()) {
1094
0
        auto& first_child = graph.m_entries[it->second].m_locator[m_level];
1095
0
        const auto child_idx = first_child.index;
1096
        // Iterate over all to-be-added dependencies within that same child, gather the relevant
1097
        // parents.
1098
0
        SetType parents;
1099
0
        while (it != to_apply.end()) {
1100
0
            auto& child = graph.m_entries[it->second].m_locator[m_level];
1101
0
            auto& parent = graph.m_entries[it->first].m_locator[m_level];
1102
0
            Assume(child.cluster == this && parent.cluster == this);
1103
0
            if (child.index != child_idx) break;
1104
0
            parents.Set(parent.index);
1105
0
            ++it;
1106
0
        }
1107
        // Push all dependencies to the underlying DepGraph. Note that this is O(N) in the size of
1108
        // the cluster, regardless of the number of parents being added, so batching them together
1109
        // has a performance benefit.
1110
0
        m_depgraph.AddDependencies(parents, child_idx);
1111
0
    }
1112
1113
    // Finally fix the linearization, as the new dependencies may have invalidated the
1114
    // linearization, and post-linearize it to fix up the worst problems with it.
1115
0
    FixLinearization(m_depgraph, m_linearization);
1116
0
    PostLinearize(m_depgraph, m_linearization);
1117
0
    Assume(!NeedsSplitting());
1118
0
    Assume(!IsOversized());
1119
0
    if (IsAcceptable()) {
1120
0
        graph.SetClusterQuality(m_level, m_quality, m_setindex, QualityLevel::NEEDS_RELINEARIZE);
1121
0
    }
1122
1123
    // Finally push the changes to graph.m_entries.
1124
0
    Updated(graph);
1125
0
}
1126
1127
TxGraphImpl::~TxGraphImpl() noexcept
1128
0
{
1129
    // If Refs outlive the TxGraphImpl they refer to, unlink them, so that their destructor does not
1130
    // try to reach into a non-existing TxGraphImpl anymore.
1131
0
    for (auto& entry : m_entries) {
1132
0
        if (entry.m_ref != nullptr) {
1133
0
            GetRefGraph(*entry.m_ref) = nullptr;
1134
0
        }
1135
0
    }
1136
0
}
1137
1138
std::unique_ptr<Cluster> TxGraphImpl::ExtractCluster(int level, QualityLevel quality, ClusterSetIndex setindex) noexcept
1139
0
{
1140
0
    Assume(quality != QualityLevel::NONE);
1141
1142
0
    auto& clusterset = GetClusterSet(level);
1143
0
    auto& quality_clusters = clusterset.m_clusters[int(quality)];
1144
0
    Assume(setindex < quality_clusters.size());
1145
1146
    // Extract the Cluster-owning unique_ptr.
1147
0
    std::unique_ptr<Cluster> ret = std::move(quality_clusters[setindex]);
1148
0
    ret->m_quality = QualityLevel::NONE;
1149
0
    ret->m_setindex = ClusterSetIndex(-1);
1150
0
    ret->m_level = -1;
1151
1152
    // Clean up space in quality_cluster.
1153
0
    auto max_setindex = quality_clusters.size() - 1;
1154
0
    if (setindex != max_setindex) {
1155
        // If the cluster was not the last element of quality_clusters, move that to take its place.
1156
0
        quality_clusters.back()->m_setindex = setindex;
1157
0
        quality_clusters.back()->m_level = level;
1158
0
        quality_clusters[setindex] = std::move(quality_clusters.back());
1159
0
    }
1160
    // The last element of quality_clusters is now unused; drop it.
1161
0
    quality_clusters.pop_back();
1162
1163
0
    return ret;
1164
0
}
1165
1166
ClusterSetIndex TxGraphImpl::InsertCluster(int level, std::unique_ptr<Cluster>&& cluster, QualityLevel quality) noexcept
1167
0
{
1168
    // Cannot insert with quality level NONE (as that would mean not inserted).
1169
0
    Assume(quality != QualityLevel::NONE);
1170
    // The passed-in Cluster must not currently be in the TxGraphImpl.
1171
0
    Assume(cluster->m_quality == QualityLevel::NONE);
1172
1173
    // Append it at the end of the relevant TxGraphImpl::m_cluster.
1174
0
    auto& clusterset = GetClusterSet(level);
1175
0
    auto& quality_clusters = clusterset.m_clusters[int(quality)];
1176
0
    ClusterSetIndex ret = quality_clusters.size();
1177
0
    cluster->m_quality = quality;
1178
0
    cluster->m_setindex = ret;
1179
0
    cluster->m_level = level;
1180
0
    quality_clusters.push_back(std::move(cluster));
1181
0
    return ret;
1182
0
}
1183
1184
void TxGraphImpl::SetClusterQuality(int level, QualityLevel old_quality, ClusterSetIndex old_index, QualityLevel new_quality) noexcept
1185
0
{
1186
0
    Assume(new_quality != QualityLevel::NONE);
1187
1188
    // Don't do anything if the quality did not change.
1189
0
    if (old_quality == new_quality) return;
1190
    // Extract the cluster from where it currently resides.
1191
0
    auto cluster_ptr = ExtractCluster(level, old_quality, old_index);
1192
    // And re-insert it where it belongs.
1193
0
    InsertCluster(level, std::move(cluster_ptr), new_quality);
1194
0
}
1195
1196
void TxGraphImpl::DeleteCluster(Cluster& cluster) noexcept
1197
0
{
1198
    // Extract the cluster from where it currently resides.
1199
0
    auto cluster_ptr = ExtractCluster(cluster.m_level, cluster.m_quality, cluster.m_setindex);
1200
    // And throw it away.
1201
0
    cluster_ptr.reset();
1202
0
}
1203
1204
Cluster* TxGraphImpl::FindCluster(GraphIndex idx, int level) const noexcept
1205
0
{
1206
0
    Assume(level >= 0 && level <= GetTopLevel());
1207
0
    auto& entry = m_entries[idx];
1208
    // Search the entry's locators from top to bottom.
1209
0
    for (int l = level; l >= 0; --l) {
1210
        // If the locator is missing, dig deeper; it may exist at a lower level and therefore be
1211
        // implicitly existing at this level too.
1212
0
        if (entry.m_locator[l].IsMissing()) continue;
1213
        // If the locator has the entry marked as explicitly removed, stop.
1214
0
        if (entry.m_locator[l].IsRemoved()) break;
1215
        // Otherwise, we have found the topmost ClusterSet that contains this entry.
1216
0
        return entry.m_locator[l].cluster;
1217
0
    }
1218
    // If no non-empty locator was found, or an explicitly removed was hit, return nothing.
1219
0
    return nullptr;
1220
0
}
1221
1222
Cluster* TxGraphImpl::PullIn(Cluster* cluster) noexcept
1223
0
{
1224
0
    int to_level = GetTopLevel();
1225
0
    Assume(to_level == 1);
1226
0
    int level = cluster->m_level;
1227
0
    Assume(level <= to_level);
1228
    // Copy the Cluster from main to staging, if it's not already there.
1229
0
    if (level == 0) {
1230
        // Make the Cluster Acceptable before copying. This isn't strictly necessary, but doing it
1231
        // now avoids doing double work later.
1232
0
        MakeAcceptable(*cluster);
1233
0
        cluster = cluster->CopyToStaging(*this);
1234
0
    }
1235
0
    return cluster;
1236
0
}
1237
1238
void TxGraphImpl::ApplyRemovals(int up_to_level) noexcept
1239
0
{
1240
0
    Assume(up_to_level >= 0 && up_to_level <= GetTopLevel());
1241
0
    for (int level = 0; level <= up_to_level; ++level) {
1242
0
        auto& clusterset = GetClusterSet(level);
1243
0
        auto& to_remove = clusterset.m_to_remove;
1244
        // Skip if there is nothing to remove in this level.
1245
0
        if (to_remove.empty()) continue;
1246
        // Pull in all Clusters that are not in staging.
1247
0
        if (level == 1) {
1248
0
            for (GraphIndex index : to_remove) {
1249
0
                auto cluster = FindCluster(index, level);
1250
0
                if (cluster != nullptr) PullIn(cluster);
1251
0
            }
1252
0
        }
1253
        // Group the set of to-be-removed entries by Cluster::m_sequence.
1254
0
        std::sort(to_remove.begin(), to_remove.end(), [&](GraphIndex a, GraphIndex b) noexcept {
1255
0
            Cluster* cluster_a = m_entries[a].m_locator[level].cluster;
1256
0
            Cluster* cluster_b = m_entries[b].m_locator[level].cluster;
1257
0
            return CompareClusters(cluster_a, cluster_b) < 0;
1258
0
        });
1259
        // Process per Cluster.
1260
0
        std::span to_remove_span{to_remove};
1261
0
        while (!to_remove_span.empty()) {
1262
0
            Cluster* cluster = m_entries[to_remove_span.front()].m_locator[level].cluster;
1263
0
            if (cluster != nullptr) {
1264
                // If the first to_remove_span entry's Cluster exists, hand to_remove_span to it, so it
1265
                // can pop off whatever applies to it.
1266
0
                cluster->ApplyRemovals(*this, to_remove_span);
1267
0
            } else {
1268
                // Otherwise, skip this already-removed entry. This may happen when
1269
                // RemoveTransaction was called twice on the same Ref, for example.
1270
0
                to_remove_span = to_remove_span.subspan(1);
1271
0
            }
1272
0
        }
1273
0
        to_remove.clear();
1274
0
    }
1275
0
    Compact();
1276
0
}
1277
1278
void TxGraphImpl::SwapIndexes(GraphIndex a, GraphIndex b) noexcept
1279
0
{
1280
0
    Assume(a < m_entries.size());
1281
0
    Assume(b < m_entries.size());
1282
    // Swap the Entry objects.
1283
0
    std::swap(m_entries[a], m_entries[b]);
1284
    // Iterate over both objects.
1285
0
    for (int i = 0; i < 2; ++i) {
1286
0
        GraphIndex idx = i ? b : a;
1287
0
        Entry& entry = m_entries[idx];
1288
        // Update linked Ref, if any exists.
1289
0
        if (entry.m_ref) GetRefIndex(*entry.m_ref) = idx;
1290
        // Update linked chunk index entries, if any exist.
1291
0
        if (entry.m_main_chunkindex_iterator != m_main_chunkindex.end()) {
1292
0
            entry.m_main_chunkindex_iterator->m_graph_index = idx;
1293
0
        }
1294
        // Update the locators for both levels. The rest of the Entry information will not change,
1295
        // so no need to invoke Cluster::Updated().
1296
0
        for (int level = 0; level < MAX_LEVELS; ++level) {
1297
0
            Locator& locator = entry.m_locator[level];
1298
0
            if (locator.IsPresent()) {
1299
0
                locator.cluster->UpdateMapping(locator.index, idx);
1300
0
            }
1301
0
        }
1302
0
    }
1303
0
}
1304
1305
void TxGraphImpl::Compact() noexcept
1306
0
{
1307
    // We cannot compact while any to-be-applied operations or staged removals remain as we'd need
1308
    // to rewrite them. It is easier to delay the compaction until they have been applied.
1309
0
    if (!m_main_clusterset.m_deps_to_add.empty()) return;
1310
0
    if (!m_main_clusterset.m_to_remove.empty()) return;
1311
0
    Assume(m_main_clusterset.m_removed.empty()); // non-staging m_removed is always empty
1312
0
    if (m_staging_clusterset.has_value()) {
1313
0
        if (!m_staging_clusterset->m_deps_to_add.empty()) return;
1314
0
        if (!m_staging_clusterset->m_to_remove.empty()) return;
1315
0
        if (!m_staging_clusterset->m_removed.empty()) return;
1316
0
    }
1317
1318
    // Release memory used by discarded ChunkData index entries.
1319
0
    ClearShrink(m_main_chunkindex_discarded);
1320
1321
    // Sort the GraphIndexes that need to be cleaned up. They are sorted in reverse, so the last
1322
    // ones get processed first. This means earlier-processed GraphIndexes will not cause moving of
1323
    // later-processed ones during the "swap with end of m_entries" step below (which might
1324
    // invalidate them).
1325
0
    std::sort(m_unlinked.begin(), m_unlinked.end(), std::greater{});
1326
1327
0
    auto last = GraphIndex(-1);
1328
0
    for (GraphIndex idx : m_unlinked) {
1329
        // m_unlinked should never contain the same GraphIndex twice (the code below would fail
1330
        // if so, because GraphIndexes get invalidated by removing them).
1331
0
        Assume(idx != last);
1332
0
        last = idx;
1333
1334
        // Make sure the entry is unlinked.
1335
0
        Entry& entry = m_entries[idx];
1336
0
        Assume(entry.m_ref == nullptr);
1337
        // Make sure the entry does not occur in the graph.
1338
0
        for (int level = 0; level < MAX_LEVELS; ++level) {
1339
0
            Assume(!entry.m_locator[level].IsPresent());
1340
0
        }
1341
1342
        // Move the entry to the end.
1343
0
        if (idx != m_entries.size() - 1) SwapIndexes(idx, m_entries.size() - 1);
1344
        // Drop the entry for idx, now that it is at the end.
1345
0
        m_entries.pop_back();
1346
0
    }
1347
0
    m_unlinked.clear();
1348
0
}
1349
1350
void TxGraphImpl::Split(Cluster& cluster) noexcept
1351
0
{
1352
    // To split a Cluster, first make sure all removals are applied (as we might need to split
1353
    // again afterwards otherwise).
1354
0
    ApplyRemovals(cluster.m_level);
1355
0
    bool del = cluster.Split(*this);
1356
0
    if (del) {
1357
        // Cluster::Split reports whether the Cluster is to be deleted.
1358
0
        DeleteCluster(cluster);
1359
0
    }
1360
0
}
1361
1362
void TxGraphImpl::SplitAll(int up_to_level) noexcept
1363
0
{
1364
0
    Assume(up_to_level >= 0 && up_to_level <= GetTopLevel());
1365
    // Before splitting all Cluster, first make sure all removals are applied.
1366
0
    ApplyRemovals(up_to_level);
1367
0
    for (int level = 0; level <= up_to_level; ++level) {
1368
0
        for (auto quality : {QualityLevel::NEEDS_SPLIT, QualityLevel::NEEDS_SPLIT_ACCEPTABLE}) {
1369
0
            auto& queue = GetClusterSet(level).m_clusters[int(quality)];
1370
0
            while (!queue.empty()) {
1371
0
                Split(*queue.back().get());
1372
0
            }
1373
0
        }
1374
0
    }
1375
0
}
1376
1377
void TxGraphImpl::GroupClusters(int level) noexcept
1378
0
{
1379
0
    auto& clusterset = GetClusterSet(level);
1380
    // If the groupings have been computed already, nothing is left to be done.
1381
0
    if (clusterset.m_group_data.has_value()) return;
1382
1383
    // Before computing which Clusters need to be merged together, first apply all removals and
1384
    // split the Clusters into connected components. If we would group first, we might end up
1385
    // with inefficient and/or oversized Clusters which just end up being split again anyway.
1386
0
    SplitAll(level);
1387
1388
    /** Annotated clusters: an entry for each Cluster, together with the sequence number for the
1389
     *  representative for the partition it is in (initially its own, later that of the
1390
     *  to-be-merged group). */
1391
0
    std::vector<std::pair<Cluster*, uint64_t>> an_clusters;
1392
    /** Annotated dependencies: an entry for each m_deps_to_add entry (excluding ones that apply
1393
     *  to removed transactions), together with the sequence number of the representative root of
1394
     *  Clusters it applies to (initially that of the child Cluster, later that of the
1395
     *  to-be-merged group). */
1396
0
    std::vector<std::pair<std::pair<GraphIndex, GraphIndex>, uint64_t>> an_deps;
1397
1398
    // Construct an an_clusters entry for every oversized cluster, including ones from levels below,
1399
    // as they may be inherited in this one.
1400
0
    for (int level_iter = 0; level_iter <= level; ++level_iter) {
1401
0
        for (auto& cluster : GetClusterSet(level_iter).m_clusters[int(QualityLevel::OVERSIZED_SINGLETON)]) {
1402
0
            auto graph_idx = cluster->GetClusterEntry(0);
1403
0
            auto cur_cluster = FindCluster(graph_idx, level);
1404
0
            if (cur_cluster == nullptr) continue;
1405
0
            an_clusters.emplace_back(cur_cluster, cur_cluster->m_sequence);
1406
0
        }
1407
0
    }
1408
1409
    // Construct a an_clusters entry for every parent and child in the to-be-applied dependencies,
1410
    // and an an_deps entry for each dependency to be applied.
1411
0
    an_deps.reserve(clusterset.m_deps_to_add.size());
1412
0
    for (const auto& [par, chl] : clusterset.m_deps_to_add) {
1413
0
        auto par_cluster = FindCluster(par, level);
1414
0
        auto chl_cluster = FindCluster(chl, level);
1415
        // Skip dependencies for which the parent or child transaction is removed.
1416
0
        if (par_cluster == nullptr || chl_cluster == nullptr) continue;
1417
0
        an_clusters.emplace_back(par_cluster, par_cluster->m_sequence);
1418
        // Do not include a duplicate when parent and child are identical, as it'll be removed
1419
        // below anyway.
1420
0
        if (chl_cluster != par_cluster) an_clusters.emplace_back(chl_cluster, chl_cluster->m_sequence);
1421
        // Add entry to an_deps, using the child sequence number.
1422
0
        an_deps.emplace_back(std::pair{par, chl}, chl_cluster->m_sequence);
1423
0
    }
1424
    // Sort and deduplicate an_clusters, so we end up with a sorted list of all involved Clusters
1425
    // to which dependencies apply, or which are oversized.
1426
0
    std::sort(an_clusters.begin(), an_clusters.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
1427
0
    an_clusters.erase(std::unique(an_clusters.begin(), an_clusters.end()), an_clusters.end());
1428
    // Sort an_deps by applying the same order to the involved child cluster.
1429
0
    std::sort(an_deps.begin(), an_deps.end(), [&](auto& a, auto& b) noexcept { return a.second < b.second; });
1430
1431
    // Run the union-find algorithm to to find partitions of the input Clusters which need to be
1432
    // grouped together. See https://en.wikipedia.org/wiki/Disjoint-set_data_structure.
1433
0
    {
1434
        /** Each PartitionData entry contains information about a single input Cluster. */
1435
0
        struct PartitionData
1436
0
        {
1437
            /** The sequence number of the cluster this holds information for. */
1438
0
            uint64_t sequence;
1439
            /** All PartitionData entries belonging to the same partition are organized in a tree.
1440
             *  Each element points to its parent, or to itself if it is the root. The root is then
1441
             *  a representative for the entire tree, and can be found by walking upwards from any
1442
             *  element. */
1443
0
            PartitionData* parent;
1444
            /** (only if this is a root, so when parent == this) An upper bound on the height of
1445
             *  tree for this partition. */
1446
0
            unsigned rank;
1447
0
        };
1448
        /** Information about each input Cluster. Sorted by Cluster::m_sequence. */
1449
0
        std::vector<PartitionData> partition_data;
1450
1451
        /** Given a Cluster, find its corresponding PartitionData. */
1452
0
        auto locate_fn = [&](uint64_t sequence) noexcept -> PartitionData* {
1453
0
            auto it = std::lower_bound(partition_data.begin(), partition_data.end(), sequence,
1454
0
                                       [](auto& a, uint64_t seq) noexcept { return a.sequence < seq; });
1455
0
            Assume(it != partition_data.end());
1456
0
            Assume(it->sequence == sequence);
1457
0
            return &*it;
1458
0
        };
1459
1460
        /** Given a PartitionData, find the root of the tree it is in (its representative). */
1461
0
        static constexpr auto find_root_fn = [](PartitionData* data) noexcept -> PartitionData* {
1462
0
            while (data->parent != data) {
1463
                // Replace pointers to parents with pointers to grandparents.
1464
                // See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Finding_set_representatives.
1465
0
                auto par = data->parent;
1466
0
                data->parent = par->parent;
1467
0
                data = par;
1468
0
            }
1469
0
            return data;
1470
0
        };
1471
1472
        /** Given two PartitionDatas, union the partitions they are in, and return their
1473
         *  representative. */
1474
0
        static constexpr auto union_fn = [](PartitionData* arg1, PartitionData* arg2) noexcept {
1475
            // Find the roots of the trees, and bail out if they are already equal (which would
1476
            // mean they are in the same partition already).
1477
0
            auto rep1 = find_root_fn(arg1);
1478
0
            auto rep2 = find_root_fn(arg2);
1479
0
            if (rep1 == rep2) return rep1;
1480
            // Pick the lower-rank root to become a child of the higher-rank one.
1481
            // See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Union_by_rank.
1482
0
            if (rep1->rank < rep2->rank) std::swap(rep1, rep2);
1483
0
            rep2->parent = rep1;
1484
0
            rep1->rank += (rep1->rank == rep2->rank);
1485
0
            return rep1;
1486
0
        };
1487
1488
        // Start by initializing every Cluster as its own singleton partition.
1489
0
        partition_data.resize(an_clusters.size());
1490
0
        for (size_t i = 0; i < an_clusters.size(); ++i) {
1491
0
            partition_data[i].sequence = an_clusters[i].first->m_sequence;
1492
0
            partition_data[i].parent = &partition_data[i];
1493
0
            partition_data[i].rank = 0;
1494
0
        }
1495
1496
        // Run through all parent/child pairs in an_deps, and union the partitions their Clusters
1497
        // are in.
1498
0
        Cluster* last_chl_cluster{nullptr};
1499
0
        PartitionData* last_partition{nullptr};
1500
0
        for (const auto& [dep, _] : an_deps) {
1501
0
            auto [par, chl] = dep;
1502
0
            auto par_cluster = FindCluster(par, level);
1503
0
            auto chl_cluster = FindCluster(chl, level);
1504
0
            Assume(chl_cluster != nullptr && par_cluster != nullptr);
1505
            // Nothing to do if parent and child are in the same Cluster.
1506
0
            if (par_cluster == chl_cluster) continue;
1507
0
            Assume(par != chl);
1508
0
            if (chl_cluster == last_chl_cluster) {
1509
                // If the child Clusters is the same as the previous iteration, union with the
1510
                // tree they were in, avoiding the need for another lookup. Note that an_deps
1511
                // is sorted by child Cluster, so batches with the same child are expected.
1512
0
                last_partition = union_fn(locate_fn(par_cluster->m_sequence), last_partition);
1513
0
            } else {
1514
0
                last_chl_cluster = chl_cluster;
1515
0
                last_partition = union_fn(locate_fn(par_cluster->m_sequence), locate_fn(chl_cluster->m_sequence));
1516
0
            }
1517
0
        }
1518
1519
        // Update the sequence numbers in an_clusters and an_deps to be those of the partition
1520
        // representative.
1521
0
        auto deps_it = an_deps.begin();
1522
0
        for (size_t i = 0; i < partition_data.size(); ++i) {
1523
0
            auto& data = partition_data[i];
1524
            // Find the sequence of the representative of the partition Cluster i is in, and store
1525
            // it with the Cluster.
1526
0
            auto rep_seq = find_root_fn(&data)->sequence;
1527
0
            an_clusters[i].second = rep_seq;
1528
            // Find all dependencies whose child Cluster is Cluster i, and annotate them with rep.
1529
0
            while (deps_it != an_deps.end()) {
1530
0
                auto [par, chl] = deps_it->first;
1531
0
                auto chl_cluster = FindCluster(chl, level);
1532
0
                Assume(chl_cluster != nullptr);
1533
0
                if (chl_cluster->m_sequence > data.sequence) break;
1534
0
                deps_it->second = rep_seq;
1535
0
                ++deps_it;
1536
0
            }
1537
0
        }
1538
0
    }
1539
1540
    // Sort both an_clusters and an_deps by sequence number of the representative of the
1541
    // partition they are in, grouping all those applying to the same partition together.
1542
0
    std::sort(an_deps.begin(), an_deps.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
1543
0
    std::sort(an_clusters.begin(), an_clusters.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
1544
1545
    // Translate the resulting cluster groups to the m_group_data structure, and the dependencies
1546
    // back to m_deps_to_add.
1547
0
    clusterset.m_group_data = GroupData{};
1548
0
    clusterset.m_group_data->m_group_clusters.reserve(an_clusters.size());
1549
0
    clusterset.m_deps_to_add.clear();
1550
0
    clusterset.m_deps_to_add.reserve(an_deps.size());
1551
0
    clusterset.m_oversized = false;
1552
0
    auto an_deps_it = an_deps.begin();
1553
0
    auto an_clusters_it = an_clusters.begin();
1554
0
    while (an_clusters_it != an_clusters.end()) {
1555
        // Process all clusters/dependencies belonging to the partition with representative rep.
1556
0
        auto rep = an_clusters_it->second;
1557
        // Create and initialize a new GroupData entry for the partition.
1558
0
        auto& new_entry = clusterset.m_group_data->m_groups.emplace_back();
1559
0
        new_entry.m_cluster_offset = clusterset.m_group_data->m_group_clusters.size();
1560
0
        new_entry.m_cluster_count = 0;
1561
0
        new_entry.m_deps_offset = clusterset.m_deps_to_add.size();
1562
0
        new_entry.m_deps_count = 0;
1563
0
        uint32_t total_count{0};
1564
0
        uint64_t total_size{0};
1565
        // Add all its clusters to it (copying those from an_clusters to m_group_clusters).
1566
0
        while (an_clusters_it != an_clusters.end() && an_clusters_it->second == rep) {
1567
0
            clusterset.m_group_data->m_group_clusters.push_back(an_clusters_it->first);
1568
0
            total_count += an_clusters_it->first->GetTxCount();
1569
0
            total_size += an_clusters_it->first->GetTotalTxSize();
1570
0
            ++an_clusters_it;
1571
0
            ++new_entry.m_cluster_count;
1572
0
        }
1573
        // Add all its dependencies to it (copying those back from an_deps to m_deps_to_add).
1574
0
        while (an_deps_it != an_deps.end() && an_deps_it->second == rep) {
1575
0
            clusterset.m_deps_to_add.push_back(an_deps_it->first);
1576
0
            ++an_deps_it;
1577
0
            ++new_entry.m_deps_count;
1578
0
        }
1579
        // Detect oversizedness.
1580
0
        if (total_count > m_max_cluster_count || total_size > m_max_cluster_size) {
1581
0
            clusterset.m_oversized = true;
1582
0
        }
1583
0
    }
1584
0
    Assume(an_deps_it == an_deps.end());
1585
0
    Assume(an_clusters_it == an_clusters.end());
1586
0
    Compact();
1587
0
}
1588
1589
void TxGraphImpl::Merge(std::span<Cluster*> to_merge) noexcept
1590
0
{
1591
0
    Assume(!to_merge.empty());
1592
    // Nothing to do if a group consists of just a single Cluster.
1593
0
    if (to_merge.size() == 1) return;
1594
1595
    // Move the largest Cluster to the front of to_merge. As all transactions in other to-be-merged
1596
    // Clusters will be moved to that one, putting the largest one first minimizes the number of
1597
    // moves.
1598
0
    size_t max_size_pos{0};
1599
0
    DepGraphIndex max_size = to_merge[max_size_pos]->GetTxCount();
1600
0
    for (size_t i = 1; i < to_merge.size(); ++i) {
1601
0
        DepGraphIndex size = to_merge[i]->GetTxCount();
1602
0
        if (size > max_size) {
1603
0
            max_size_pos = i;
1604
0
            max_size = size;
1605
0
        }
1606
0
    }
1607
0
    if (max_size_pos != 0) std::swap(to_merge[0], to_merge[max_size_pos]);
1608
1609
    // Merge all further Clusters in the group into the first one, and delete them.
1610
0
    for (size_t i = 1; i < to_merge.size(); ++i) {
1611
0
        to_merge[0]->Merge(*this, *to_merge[i]);
1612
0
        DeleteCluster(*to_merge[i]);
1613
0
    }
1614
0
}
1615
1616
void TxGraphImpl::ApplyDependencies(int level) noexcept
1617
0
{
1618
0
    auto& clusterset = GetClusterSet(level);
1619
    // Do not bother computing groups if we already know the result will be oversized.
1620
0
    if (clusterset.m_oversized == true) return;
1621
    // Compute the groups of to-be-merged Clusters (which also applies all removals, and splits).
1622
0
    GroupClusters(level);
1623
0
    Assume(clusterset.m_group_data.has_value());
1624
    // Nothing to do if there are no dependencies to be added.
1625
0
    if (clusterset.m_deps_to_add.empty()) return;
1626
    // Dependencies cannot be applied if it would result in oversized clusters.
1627
0
    if (clusterset.m_oversized == true) return;
1628
1629
    // For each group of to-be-merged Clusters.
1630
0
    for (const auto& group_entry : clusterset.m_group_data->m_groups) {
1631
0
        auto cluster_span = std::span{clusterset.m_group_data->m_group_clusters}
1632
0
                                .subspan(group_entry.m_cluster_offset, group_entry.m_cluster_count);
1633
        // Pull in all the Clusters that contain dependencies.
1634
0
        if (level == 1) {
1635
0
            for (Cluster*& cluster : cluster_span) {
1636
0
                cluster = PullIn(cluster);
1637
0
            }
1638
0
        }
1639
        // Invoke Merge() to merge them into a single Cluster.
1640
0
        Merge(cluster_span);
1641
        // Actually apply all to-be-added dependencies (all parents and children from this grouping
1642
        // belong to the same Cluster at this point because of the merging above).
1643
0
        auto deps_span = std::span{clusterset.m_deps_to_add}
1644
0
                             .subspan(group_entry.m_deps_offset, group_entry.m_deps_count);
1645
0
        Assume(!deps_span.empty());
1646
0
        const auto& loc = m_entries[deps_span[0].second].m_locator[level];
1647
0
        Assume(loc.IsPresent());
1648
0
        loc.cluster->ApplyDependencies(*this, deps_span);
1649
0
    }
1650
1651
    // Wipe the list of to-be-added dependencies now that they are applied.
1652
0
    clusterset.m_deps_to_add.clear();
1653
0
    Compact();
1654
    // Also no further Cluster mergings are needed (note that we clear, but don't set to
1655
    // std::nullopt, as that would imply the groupings are unknown).
1656
0
    clusterset.m_group_data = GroupData{};
1657
0
}
1658
1659
std::pair<uint64_t, bool> Cluster::Relinearize(TxGraphImpl& graph, uint64_t max_iters) noexcept
1660
0
{
1661
    // We can only relinearize Clusters that do not need splitting.
1662
0
    Assume(!NeedsSplitting());
1663
    // No work is required for Clusters which are already optimally linearized.
1664
0
    if (IsOptimal()) return {0, false};
1665
    // Invoke the actual linearization algorithm (passing in the existing one).
1666
0
    uint64_t rng_seed = graph.m_rng.rand64();
1667
0
    auto [linearization, optimal, cost] = Linearize(m_depgraph, max_iters, rng_seed, m_linearization);
1668
    // Postlinearize if the result isn't optimal already. This guarantees (among other things)
1669
    // that the chunks of the resulting linearization are all connected.
1670
0
    if (!optimal) PostLinearize(m_depgraph, linearization);
1671
    // Update the linearization.
1672
0
    m_linearization = std::move(linearization);
1673
    // Update the Cluster's quality.
1674
0
    bool improved = false;
1675
0
    if (optimal) {
1676
0
        graph.SetClusterQuality(m_level, m_quality, m_setindex, QualityLevel::OPTIMAL);
1677
0
        improved = true;
1678
0
    } else if (max_iters >= graph.m_acceptable_iters && !IsAcceptable()) {
1679
0
        graph.SetClusterQuality(m_level, m_quality, m_setindex, QualityLevel::ACCEPTABLE);
1680
0
        improved = true;
1681
0
    }
1682
    // Update the Entry objects.
1683
0
    Updated(graph);
1684
0
    return {cost, improved};
1685
0
}
1686
1687
void TxGraphImpl::MakeAcceptable(Cluster& cluster) noexcept
1688
0
{
1689
    // Relinearize the Cluster if needed.
1690
0
    if (!cluster.NeedsSplitting() && !cluster.IsAcceptable() && !cluster.IsOversized()) {
1691
0
        cluster.Relinearize(*this, m_acceptable_iters);
1692
0
    }
1693
0
}
1694
1695
void TxGraphImpl::MakeAllAcceptable(int level) noexcept
1696
0
{
1697
0
    ApplyDependencies(level);
1698
0
    auto& clusterset = GetClusterSet(level);
1699
0
    if (clusterset.m_oversized == true) return;
1700
0
    auto& queue = clusterset.m_clusters[int(QualityLevel::NEEDS_RELINEARIZE)];
1701
0
    while (!queue.empty()) {
1702
0
        MakeAcceptable(*queue.back().get());
1703
0
    }
1704
0
}
1705
1706
0
Cluster::Cluster(uint64_t sequence) noexcept : m_sequence{sequence} {}
1707
1708
Cluster::Cluster(uint64_t sequence, TxGraphImpl& graph, const FeePerWeight& feerate, GraphIndex graph_index) noexcept :
1709
0
    m_sequence{sequence}
1710
0
{
1711
    // Create a new transaction in the DepGraph, and remember its position in m_mapping.
1712
0
    auto cluster_idx = m_depgraph.AddTransaction(feerate);
1713
0
    m_mapping.push_back(graph_index);
1714
0
    m_linearization.push_back(cluster_idx);
1715
0
}
1716
1717
TxGraph::Ref TxGraphImpl::AddTransaction(const FeePerWeight& feerate) noexcept
1718
0
{
1719
0
    Assume(m_main_chunkindex_observers == 0 || GetTopLevel() != 0);
1720
0
    Assume(feerate.size > 0);
1721
    // Construct a new Ref.
1722
0
    Ref ret;
1723
    // Construct a new Entry, and link it with the Ref.
1724
0
    auto idx = m_entries.size();
1725
0
    m_entries.emplace_back();
1726
0
    auto& entry = m_entries.back();
1727
0
    entry.m_main_chunkindex_iterator = m_main_chunkindex.end();
1728
0
    entry.m_ref = &ret;
1729
0
    GetRefGraph(ret) = this;
1730
0
    GetRefIndex(ret) = idx;
1731
    // Construct a new singleton Cluster (which is necessarily optimally linearized).
1732
0
    bool oversized = uint64_t(feerate.size) > m_max_cluster_size;
1733
0
    auto cluster = std::make_unique<Cluster>(m_next_sequence_counter++, *this, feerate, idx);
1734
0
    auto cluster_ptr = cluster.get();
1735
0
    int level = GetTopLevel();
1736
0
    auto& clusterset = GetClusterSet(level);
1737
0
    InsertCluster(level, std::move(cluster), oversized ? QualityLevel::OVERSIZED_SINGLETON : QualityLevel::OPTIMAL);
1738
0
    cluster_ptr->Updated(*this);
1739
0
    ++clusterset.m_txcount;
1740
    // Deal with individually oversized transactions.
1741
0
    if (oversized) {
1742
0
        ++clusterset.m_txcount_oversized;
1743
0
        clusterset.m_oversized = true;
1744
0
        clusterset.m_group_data = std::nullopt;
1745
0
    }
1746
    // Return the Ref.
1747
0
    return ret;
1748
0
}
1749
1750
void TxGraphImpl::RemoveTransaction(const Ref& arg) noexcept
1751
0
{
1752
    // Don't do anything if the Ref is empty (which may be indicative of the transaction already
1753
    // having been removed).
1754
0
    if (GetRefGraph(arg) == nullptr) return;
1755
0
    Assume(GetRefGraph(arg) == this);
1756
0
    Assume(m_main_chunkindex_observers == 0 || GetTopLevel() != 0);
1757
    // Find the Cluster the transaction is in, and stop if it isn't in any.
1758
0
    int level = GetTopLevel();
1759
0
    auto cluster = FindCluster(GetRefIndex(arg), level);
1760
0
    if (cluster == nullptr) return;
1761
    // Remember that the transaction is to be removed.
1762
0
    auto& clusterset = GetClusterSet(level);
1763
0
    clusterset.m_to_remove.push_back(GetRefIndex(arg));
1764
    // Wipe m_group_data (as it will need to be recomputed).
1765
0
    clusterset.m_group_data.reset();
1766
0
    if (clusterset.m_oversized == true) clusterset.m_oversized = std::nullopt;
1767
0
}
1768
1769
void TxGraphImpl::AddDependency(const Ref& parent, const Ref& child) noexcept
1770
0
{
1771
    // Don't do anything if either Ref is empty (which may be indicative of it having already been
1772
    // removed).
1773
0
    if (GetRefGraph(parent) == nullptr || GetRefGraph(child) == nullptr) return;
1774
0
    Assume(GetRefGraph(parent) == this && GetRefGraph(child) == this);
1775
0
    Assume(m_main_chunkindex_observers == 0 || GetTopLevel() != 0);
1776
    // Don't do anything if this is a dependency on self.
1777
0
    if (GetRefIndex(parent) == GetRefIndex(child)) return;
1778
    // Find the Cluster the parent and child transaction are in, and stop if either appears to be
1779
    // already removed.
1780
0
    int level = GetTopLevel();
1781
0
    auto par_cluster = FindCluster(GetRefIndex(parent), level);
1782
0
    if (par_cluster == nullptr) return;
1783
0
    auto chl_cluster = FindCluster(GetRefIndex(child), level);
1784
0
    if (chl_cluster == nullptr) return;
1785
    // Remember that this dependency is to be applied.
1786
0
    auto& clusterset = GetClusterSet(level);
1787
0
    clusterset.m_deps_to_add.emplace_back(GetRefIndex(parent), GetRefIndex(child));
1788
    // Wipe m_group_data (as it will need to be recomputed).
1789
0
    clusterset.m_group_data.reset();
1790
0
    if (clusterset.m_oversized == false) clusterset.m_oversized = std::nullopt;
1791
0
}
1792
1793
bool TxGraphImpl::Exists(const Ref& arg, Level level_select) noexcept
1794
0
{
1795
0
    if (GetRefGraph(arg) == nullptr) return false;
1796
0
    Assume(GetRefGraph(arg) == this);
1797
0
    size_t level = GetSpecifiedLevel(level_select);
1798
    // Make sure the transaction isn't scheduled for removal.
1799
0
    ApplyRemovals(level);
1800
0
    auto cluster = FindCluster(GetRefIndex(arg), level);
1801
0
    return cluster != nullptr;
1802
0
}
1803
1804
void Cluster::GetAncestorRefs(const TxGraphImpl& graph, std::span<std::pair<Cluster*, DepGraphIndex>>& args, std::vector<TxGraph::Ref*>& output) noexcept
1805
0
{
1806
    /** The union of all ancestors to be returned. */
1807
0
    SetType ancestors_union;
1808
    // Process elements from the front of args, as long as they apply.
1809
0
    while (!args.empty()) {
1810
0
        if (args.front().first != this) break;
1811
0
        ancestors_union |= m_depgraph.Ancestors(args.front().second);
1812
0
        args = args.subspan(1);
1813
0
    }
1814
0
    Assume(ancestors_union.Any());
1815
    // Translate all ancestors (in arbitrary order) to Refs (if they have any), and return them.
1816
0
    for (auto idx : ancestors_union) {
1817
0
        const auto& entry = graph.m_entries[m_mapping[idx]];
1818
0
        Assume(entry.m_ref != nullptr);
1819
0
        output.push_back(entry.m_ref);
1820
0
    }
1821
0
}
1822
1823
void Cluster::GetDescendantRefs(const TxGraphImpl& graph, std::span<std::pair<Cluster*, DepGraphIndex>>& args, std::vector<TxGraph::Ref*>& output) noexcept
1824
0
{
1825
    /** The union of all descendants to be returned. */
1826
0
    SetType descendants_union;
1827
    // Process elements from the front of args, as long as they apply.
1828
0
    while (!args.empty()) {
1829
0
        if (args.front().first != this) break;
1830
0
        descendants_union |= m_depgraph.Descendants(args.front().second);
1831
0
        args = args.subspan(1);
1832
0
    }
1833
0
    Assume(descendants_union.Any());
1834
    // Translate all descendants (in arbitrary order) to Refs (if they have any), and return them.
1835
0
    for (auto idx : descendants_union) {
1836
0
        const auto& entry = graph.m_entries[m_mapping[idx]];
1837
0
        Assume(entry.m_ref != nullptr);
1838
0
        output.push_back(entry.m_ref);
1839
0
    }
1840
0
}
1841
1842
bool Cluster::GetClusterRefs(TxGraphImpl& graph, std::span<TxGraph::Ref*> range, LinearizationIndex start_pos) noexcept
1843
0
{
1844
    // Translate the transactions in the Cluster (in linearization order, starting at start_pos in
1845
    // the linearization) to Refs, and fill them in range.
1846
0
    for (auto& ref : range) {
1847
0
        Assume(start_pos < m_linearization.size());
1848
0
        const auto& entry = graph.m_entries[m_mapping[m_linearization[start_pos++]]];
1849
0
        Assume(entry.m_ref != nullptr);
1850
0
        ref = entry.m_ref;
1851
0
    }
1852
    // Return whether start_pos has advanced to the end of the Cluster.
1853
0
    return start_pos == m_linearization.size();
1854
0
}
1855
1856
FeePerWeight Cluster::GetIndividualFeerate(DepGraphIndex idx) noexcept
1857
0
{
1858
0
    return FeePerWeight::FromFeeFrac(m_depgraph.FeeRate(idx));
1859
0
}
1860
1861
void Cluster::MakeStagingTransactionsMissing(TxGraphImpl& graph) noexcept
1862
0
{
1863
0
    Assume(m_level == 1);
1864
    // Mark all transactions of a Cluster missing, needed when aborting staging, so that the
1865
    // corresponding Locators don't retain references into aborted Clusters.
1866
0
    for (auto ci : m_linearization) {
1867
0
        GraphIndex idx = m_mapping[ci];
1868
0
        auto& entry = graph.m_entries[idx];
1869
0
        entry.m_locator[1].SetMissing();
1870
0
    }
1871
0
}
1872
1873
std::vector<TxGraph::Ref*> TxGraphImpl::GetAncestors(const Ref& arg, Level level_select) noexcept
1874
0
{
1875
    // Return the empty vector if the Ref is empty.
1876
0
    if (GetRefGraph(arg) == nullptr) return {};
1877
0
    Assume(GetRefGraph(arg) == this);
1878
    // Apply all removals and dependencies, as the result might be incorrect otherwise.
1879
0
    size_t level = GetSpecifiedLevel(level_select);
1880
0
    ApplyDependencies(level);
1881
    // Ancestry cannot be known if unapplied dependencies remain.
1882
0
    Assume(GetClusterSet(level).m_deps_to_add.empty());
1883
    // Find the Cluster the argument is in, and return the empty vector if it isn't in any.
1884
0
    auto cluster = FindCluster(GetRefIndex(arg), level);
1885
0
    if (cluster == nullptr) return {};
1886
    // Dispatch to the Cluster.
1887
0
    std::pair<Cluster*, DepGraphIndex> match = {cluster, m_entries[GetRefIndex(arg)].m_locator[cluster->m_level].index};
1888
0
    auto matches = std::span(&match, 1);
1889
0
    std::vector<TxGraph::Ref*> ret;
1890
0
    cluster->GetAncestorRefs(*this, matches, ret);
1891
0
    return ret;
1892
0
}
1893
1894
std::vector<TxGraph::Ref*> TxGraphImpl::GetDescendants(const Ref& arg, Level level_select) noexcept
1895
0
{
1896
    // Return the empty vector if the Ref is empty.
1897
0
    if (GetRefGraph(arg) == nullptr) return {};
1898
0
    Assume(GetRefGraph(arg) == this);
1899
    // Apply all removals and dependencies, as the result might be incorrect otherwise.
1900
0
    size_t level = GetSpecifiedLevel(level_select);
1901
0
    ApplyDependencies(level);
1902
    // Ancestry cannot be known if unapplied dependencies remain.
1903
0
    Assume(GetClusterSet(level).m_deps_to_add.empty());
1904
    // Find the Cluster the argument is in, and return the empty vector if it isn't in any.
1905
0
    auto cluster = FindCluster(GetRefIndex(arg), level);
1906
0
    if (cluster == nullptr) return {};
1907
    // Dispatch to the Cluster.
1908
0
    std::pair<Cluster*, DepGraphIndex> match = {cluster, m_entries[GetRefIndex(arg)].m_locator[cluster->m_level].index};
1909
0
    auto matches = std::span(&match, 1);
1910
0
    std::vector<TxGraph::Ref*> ret;
1911
0
    cluster->GetDescendantRefs(*this, matches, ret);
1912
0
    return ret;
1913
0
}
1914
1915
std::vector<TxGraph::Ref*> TxGraphImpl::GetAncestorsUnion(std::span<const Ref* const> args, Level level_select) noexcept
1916
0
{
1917
    // Apply all dependencies, as the result might be incorrect otherwise.
1918
0
    size_t level = GetSpecifiedLevel(level_select);
1919
0
    ApplyDependencies(level);
1920
    // Ancestry cannot be known if unapplied dependencies remain.
1921
0
    Assume(GetClusterSet(level).m_deps_to_add.empty());
1922
1923
    // Translate args to matches.
1924
0
    std::vector<std::pair<Cluster*, DepGraphIndex>> matches;
1925
0
    matches.reserve(args.size());
1926
0
    for (auto arg : args) {
1927
0
        Assume(arg);
1928
        // Skip empty Refs.
1929
0
        if (GetRefGraph(*arg) == nullptr) continue;
1930
0
        Assume(GetRefGraph(*arg) == this);
1931
        // Find the Cluster the argument is in, and skip if none is found.
1932
0
        auto cluster = FindCluster(GetRefIndex(*arg), level);
1933
0
        if (cluster == nullptr) continue;
1934
        // Append to matches.
1935
0
        matches.emplace_back(cluster, m_entries[GetRefIndex(*arg)].m_locator[cluster->m_level].index);
1936
0
    }
1937
    // Group by Cluster.
1938
0
    std::sort(matches.begin(), matches.end(), [](auto& a, auto& b) noexcept { return CompareClusters(a.first, b.first) < 0; });
1939
    // Dispatch to the Clusters.
1940
0
    std::span match_span(matches);
1941
0
    std::vector<TxGraph::Ref*> ret;
1942
0
    while (!match_span.empty()) {
1943
0
        match_span.front().first->GetAncestorRefs(*this, match_span, ret);
1944
0
    }
1945
0
    return ret;
1946
0
}
1947
1948
std::vector<TxGraph::Ref*> TxGraphImpl::GetDescendantsUnion(std::span<const Ref* const> args, Level level_select) noexcept
1949
0
{
1950
    // Apply all dependencies, as the result might be incorrect otherwise.
1951
0
    size_t level = GetSpecifiedLevel(level_select);
1952
0
    ApplyDependencies(level);
1953
    // Ancestry cannot be known if unapplied dependencies remain.
1954
0
    Assume(GetClusterSet(level).m_deps_to_add.empty());
1955
1956
    // Translate args to matches.
1957
0
    std::vector<std::pair<Cluster*, DepGraphIndex>> matches;
1958
0
    matches.reserve(args.size());
1959
0
    for (auto arg : args) {
1960
0
        Assume(arg);
1961
        // Skip empty Refs.
1962
0
        if (GetRefGraph(*arg) == nullptr) continue;
1963
0
        Assume(GetRefGraph(*arg) == this);
1964
        // Find the Cluster the argument is in, and skip if none is found.
1965
0
        auto cluster = FindCluster(GetRefIndex(*arg), level);
1966
0
        if (cluster == nullptr) continue;
1967
        // Append to matches.
1968
0
        matches.emplace_back(cluster, m_entries[GetRefIndex(*arg)].m_locator[cluster->m_level].index);
1969
0
    }
1970
    // Group by Cluster.
1971
0
    std::sort(matches.begin(), matches.end(), [](auto& a, auto& b) noexcept { return CompareClusters(a.first, b.first) < 0; });
1972
    // Dispatch to the Clusters.
1973
0
    std::span match_span(matches);
1974
0
    std::vector<TxGraph::Ref*> ret;
1975
0
    while (!match_span.empty()) {
1976
0
        match_span.front().first->GetDescendantRefs(*this, match_span, ret);
1977
0
    }
1978
0
    return ret;
1979
0
}
1980
1981
std::vector<TxGraph::Ref*> TxGraphImpl::GetCluster(const Ref& arg, Level level_select) noexcept
1982
0
{
1983
    // Return the empty vector if the Ref is empty (which may be indicative of the transaction
1984
    // having been removed already.
1985
0
    if (GetRefGraph(arg) == nullptr) return {};
1986
0
    Assume(GetRefGraph(arg) == this);
1987
    // Apply all removals and dependencies, as the result might be incorrect otherwise.
1988
0
    size_t level = GetSpecifiedLevel(level_select);
1989
0
    ApplyDependencies(level);
1990
    // Cluster linearization cannot be known if unapplied dependencies remain.
1991
0
    Assume(GetClusterSet(level).m_deps_to_add.empty());
1992
    // Find the Cluster the argument is in, and return the empty vector if it isn't in any.
1993
0
    auto cluster = FindCluster(GetRefIndex(arg), level);
1994
0
    if (cluster == nullptr) return {};
1995
    // Make sure the Cluster has an acceptable quality level, and then dispatch to it.
1996
0
    MakeAcceptable(*cluster);
1997
0
    std::vector<TxGraph::Ref*> ret(cluster->GetTxCount());
1998
0
    cluster->GetClusterRefs(*this, ret, 0);
1999
0
    return ret;
2000
0
}
2001
2002
TxGraph::GraphIndex TxGraphImpl::GetTransactionCount(Level level_select) noexcept
2003
0
{
2004
0
    size_t level = GetSpecifiedLevel(level_select);
2005
0
    ApplyRemovals(level);
2006
0
    return GetClusterSet(level).m_txcount;
2007
0
}
2008
2009
FeePerWeight TxGraphImpl::GetIndividualFeerate(const Ref& arg) noexcept
2010
0
{
2011
    // Return the empty FeePerWeight if the passed Ref is empty.
2012
0
    if (GetRefGraph(arg) == nullptr) return {};
2013
0
    Assume(GetRefGraph(arg) == this);
2014
    // Find the cluster the argument is in (the level does not matter as individual feerates will
2015
    // be identical if it occurs in both), and return the empty FeePerWeight if it isn't in any.
2016
0
    Cluster* cluster{nullptr};
2017
0
    for (int level = 0; level <= GetTopLevel(); ++level) {
2018
        // Apply removals, so that we can correctly report FeePerWeight{} for non-existing
2019
        // transactions.
2020
0
        ApplyRemovals(level);
2021
0
        if (m_entries[GetRefIndex(arg)].m_locator[level].IsPresent()) {
2022
0
            cluster = m_entries[GetRefIndex(arg)].m_locator[level].cluster;
2023
0
            break;
2024
0
        }
2025
0
    }
2026
0
    if (cluster == nullptr) return {};
2027
    // Dispatch to the Cluster.
2028
0
    return cluster->GetIndividualFeerate(m_entries[GetRefIndex(arg)].m_locator[cluster->m_level].index);
2029
0
}
2030
2031
FeePerWeight TxGraphImpl::GetMainChunkFeerate(const Ref& arg) noexcept
2032
0
{
2033
    // Return the empty FeePerWeight if the passed Ref is empty.
2034
0
    if (GetRefGraph(arg) == nullptr) return {};
2035
0
    Assume(GetRefGraph(arg) == this);
2036
    // Apply all removals and dependencies, as the result might be inaccurate otherwise.
2037
0
    ApplyDependencies(/*level=*/0);
2038
    // Chunk feerates cannot be accurately known if unapplied dependencies remain.
2039
0
    Assume(m_main_clusterset.m_deps_to_add.empty());
2040
    // Find the cluster the argument is in, and return the empty FeePerWeight if it isn't in any.
2041
0
    auto cluster = FindCluster(GetRefIndex(arg), 0);
2042
0
    if (cluster == nullptr) return {};
2043
    // Make sure the Cluster has an acceptable quality level, and then return the transaction's
2044
    // chunk feerate.
2045
0
    MakeAcceptable(*cluster);
2046
0
    const auto& entry = m_entries[GetRefIndex(arg)];
2047
0
    return entry.m_main_chunk_feerate;
2048
0
}
2049
2050
bool TxGraphImpl::IsOversized(Level level_select) noexcept
2051
0
{
2052
0
    size_t level = GetSpecifiedLevel(level_select);
2053
0
    auto& clusterset = GetClusterSet(level);
2054
0
    if (clusterset.m_oversized.has_value()) {
2055
        // Return cached value if known.
2056
0
        return *clusterset.m_oversized;
2057
0
    }
2058
0
    ApplyRemovals(level);
2059
0
    if (clusterset.m_txcount_oversized > 0) {
2060
0
        clusterset.m_oversized = true;
2061
0
    } else {
2062
        // Find which Clusters will need to be merged together, as that is where the oversize
2063
        // property is assessed.
2064
0
        GroupClusters(level);
2065
0
    }
2066
0
    Assume(clusterset.m_oversized.has_value());
2067
0
    return *clusterset.m_oversized;
2068
0
}
2069
2070
void TxGraphImpl::StartStaging() noexcept
2071
0
{
2072
    // Staging cannot already exist.
2073
0
    Assume(!m_staging_clusterset.has_value());
2074
    // Apply all remaining dependencies in main before creating a staging graph. Once staging
2075
    // exists, we cannot merge Clusters anymore (because of interference with Clusters being
2076
    // pulled into staging), so to make sure all inspectors are available (if not oversized), do
2077
    // all merging work now. Call SplitAll() first, so that even if ApplyDependencies does not do
2078
    // any thing due to knowing the result is oversized, splitting is still performed.
2079
0
    SplitAll(0);
2080
0
    ApplyDependencies(0);
2081
    // Construct the staging ClusterSet.
2082
0
    m_staging_clusterset.emplace();
2083
    // Copy statistics, precomputed data, and to-be-applied dependencies (only if oversized) to
2084
    // the new graph. To-be-applied removals will always be empty at this point.
2085
0
    m_staging_clusterset->m_txcount = m_main_clusterset.m_txcount;
2086
0
    m_staging_clusterset->m_txcount_oversized = m_main_clusterset.m_txcount_oversized;
2087
0
    m_staging_clusterset->m_deps_to_add = m_main_clusterset.m_deps_to_add;
2088
0
    m_staging_clusterset->m_group_data = m_main_clusterset.m_group_data;
2089
0
    m_staging_clusterset->m_oversized = m_main_clusterset.m_oversized;
2090
0
    Assume(m_staging_clusterset->m_oversized.has_value());
2091
0
}
2092
2093
void TxGraphImpl::AbortStaging() noexcept
2094
0
{
2095
    // Staging must exist.
2096
0
    Assume(m_staging_clusterset.has_value());
2097
    // Mark all removed transactions as Missing (so the staging locator for these transactions
2098
    // can be reused if another staging is created).
2099
0
    for (auto idx : m_staging_clusterset->m_removed) {
2100
0
        m_entries[idx].m_locator[1].SetMissing();
2101
0
    }
2102
    // Do the same with the non-removed transactions in staging Clusters.
2103
0
    for (int quality = 0; quality < int(QualityLevel::NONE); ++quality) {
2104
0
        for (auto& cluster : m_staging_clusterset->m_clusters[quality]) {
2105
0
            cluster->MakeStagingTransactionsMissing(*this);
2106
0
        }
2107
0
    }
2108
    // Destroy the staging ClusterSet.
2109
0
    m_staging_clusterset.reset();
2110
0
    Compact();
2111
0
    if (!m_main_clusterset.m_group_data.has_value()) {
2112
        // In case m_oversized in main was kept after a Ref destruction while staging exists, we
2113
        // need to re-evaluate m_oversized now.
2114
0
        if (m_main_clusterset.m_to_remove.empty() && m_main_clusterset.m_txcount_oversized > 0) {
2115
            // It is possible that a Ref destruction caused a removal in main while staging existed.
2116
            // In this case, m_txcount_oversized may be inaccurate.
2117
0
            m_main_clusterset.m_oversized = true;
2118
0
        } else {
2119
0
            m_main_clusterset.m_oversized = std::nullopt;
2120
0
        }
2121
0
    }
2122
0
}
2123
2124
void TxGraphImpl::CommitStaging() noexcept
2125
0
{
2126
    // Staging must exist.
2127
0
    Assume(m_staging_clusterset.has_value());
2128
0
    Assume(m_main_chunkindex_observers == 0);
2129
    // Delete all conflicting Clusters in main, to make place for moving the staging ones
2130
    // there. All of these have been copied to staging in PullIn().
2131
0
    auto conflicts = GetConflicts();
2132
0
    for (Cluster* conflict : conflicts) {
2133
0
        conflict->Clear(*this);
2134
0
        DeleteCluster(*conflict);
2135
0
    }
2136
    // Mark the removed transactions as Missing (so the staging locator for these transactions
2137
    // can be reused if another staging is created).
2138
0
    for (auto idx : m_staging_clusterset->m_removed) {
2139
0
        m_entries[idx].m_locator[1].SetMissing();
2140
0
    }
2141
    // Then move all Clusters in staging to main.
2142
0
    for (int quality = 0; quality < int(QualityLevel::NONE); ++quality) {
2143
0
        auto& stage_sets = m_staging_clusterset->m_clusters[quality];
2144
0
        while (!stage_sets.empty()) {
2145
0
            stage_sets.back()->MoveToMain(*this);
2146
0
        }
2147
0
    }
2148
    // Move all statistics, precomputed data, and to-be-applied removals and dependencies.
2149
0
    m_main_clusterset.m_deps_to_add = std::move(m_staging_clusterset->m_deps_to_add);
2150
0
    m_main_clusterset.m_to_remove = std::move(m_staging_clusterset->m_to_remove);
2151
0
    m_main_clusterset.m_group_data = std::move(m_staging_clusterset->m_group_data);
2152
0
    m_main_clusterset.m_oversized = std::move(m_staging_clusterset->m_oversized);
2153
0
    m_main_clusterset.m_txcount = std::move(m_staging_clusterset->m_txcount);
2154
0
    m_main_clusterset.m_txcount_oversized = std::move(m_staging_clusterset->m_txcount_oversized);
2155
    // Delete the old staging graph, after all its information was moved to main.
2156
0
    m_staging_clusterset.reset();
2157
0
    Compact();
2158
0
}
2159
2160
void Cluster::SetFee(TxGraphImpl& graph, DepGraphIndex idx, int64_t fee) noexcept
2161
0
{
2162
    // Make sure the specified DepGraphIndex exists in this Cluster.
2163
0
    Assume(m_depgraph.Positions()[idx]);
2164
    // Bail out if the fee isn't actually being changed.
2165
0
    if (m_depgraph.FeeRate(idx).fee == fee) return;
2166
    // Update the fee, remember that relinearization will be necessary, and update the Entries
2167
    // in the same Cluster.
2168
0
    m_depgraph.FeeRate(idx).fee = fee;
2169
0
    if (m_quality == QualityLevel::OVERSIZED_SINGLETON) {
2170
        // Nothing to do.
2171
0
    } else if (!NeedsSplitting()) {
2172
0
        graph.SetClusterQuality(m_level, m_quality, m_setindex, QualityLevel::NEEDS_RELINEARIZE);
2173
0
    } else {
2174
0
        graph.SetClusterQuality(m_level, m_quality, m_setindex, QualityLevel::NEEDS_SPLIT);
2175
0
    }
2176
0
    Updated(graph);
2177
0
}
2178
2179
void TxGraphImpl::SetTransactionFee(const Ref& ref, int64_t fee) noexcept
2180
0
{
2181
    // Don't do anything if the passed Ref is empty.
2182
0
    if (GetRefGraph(ref) == nullptr) return;
2183
0
    Assume(GetRefGraph(ref) == this);
2184
0
    Assume(m_main_chunkindex_observers == 0);
2185
    // Find the entry, its locator, and inform its Cluster about the new feerate, if any.
2186
0
    auto& entry = m_entries[GetRefIndex(ref)];
2187
0
    for (int level = 0; level < MAX_LEVELS; ++level) {
2188
0
        auto& locator = entry.m_locator[level];
2189
0
        if (locator.IsPresent()) {
2190
0
            locator.cluster->SetFee(*this, locator.index, fee);
2191
0
        }
2192
0
    }
2193
0
}
2194
2195
std::strong_ordering TxGraphImpl::CompareMainOrder(const Ref& a, const Ref& b) noexcept
2196
0
{
2197
    // The references must not be empty.
2198
0
    Assume(GetRefGraph(a) == this);
2199
0
    Assume(GetRefGraph(b) == this);
2200
    // Apply dependencies in main.
2201
0
    ApplyDependencies(0);
2202
0
    Assume(m_main_clusterset.m_deps_to_add.empty());
2203
    // Make both involved Clusters acceptable, so chunk feerates are relevant.
2204
0
    const auto& entry_a = m_entries[GetRefIndex(a)];
2205
0
    const auto& entry_b = m_entries[GetRefIndex(b)];
2206
0
    const auto& locator_a = entry_a.m_locator[0];
2207
0
    const auto& locator_b = entry_b.m_locator[0];
2208
0
    Assume(locator_a.IsPresent());
2209
0
    Assume(locator_b.IsPresent());
2210
0
    MakeAcceptable(*locator_a.cluster);
2211
0
    MakeAcceptable(*locator_b.cluster);
2212
    // Invoke comparison logic.
2213
0
    return CompareMainTransactions(GetRefIndex(a), GetRefIndex(b));
2214
0
}
2215
2216
TxGraph::GraphIndex TxGraphImpl::CountDistinctClusters(std::span<const Ref* const> refs, Level level_select) noexcept
2217
0
{
2218
0
    size_t level = GetSpecifiedLevel(level_select);
2219
0
    ApplyDependencies(level);
2220
0
    auto& clusterset = GetClusterSet(level);
2221
0
    Assume(clusterset.m_deps_to_add.empty());
2222
    // Build a vector of Clusters that the specified Refs occur in.
2223
0
    std::vector<Cluster*> clusters;
2224
0
    clusters.reserve(refs.size());
2225
0
    for (const Ref* ref : refs) {
2226
0
        Assume(ref);
2227
0
        if (GetRefGraph(*ref) == nullptr) continue;
2228
0
        Assume(GetRefGraph(*ref) == this);
2229
0
        auto cluster = FindCluster(GetRefIndex(*ref), level);
2230
0
        if (cluster != nullptr) clusters.push_back(cluster);
2231
0
    }
2232
    // Count the number of distinct elements in clusters.
2233
0
    std::sort(clusters.begin(), clusters.end(), [](Cluster* a, Cluster* b) noexcept { return CompareClusters(a, b) < 0; });
2234
0
    Cluster* last{nullptr};
2235
0
    GraphIndex ret{0};
2236
0
    for (Cluster* cluster : clusters) {
2237
0
        ret += (cluster != last);
2238
0
        last = cluster;
2239
0
    }
2240
0
    return ret;
2241
0
}
2242
2243
std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>> TxGraphImpl::GetMainStagingDiagrams() noexcept
2244
0
{
2245
0
    Assume(m_staging_clusterset.has_value());
2246
0
    MakeAllAcceptable(0);
2247
0
    Assume(m_main_clusterset.m_deps_to_add.empty()); // can only fail if main is oversized
2248
0
    MakeAllAcceptable(1);
2249
0
    Assume(m_staging_clusterset->m_deps_to_add.empty()); // can only fail if staging is oversized
2250
    // For all Clusters in main which conflict with Clusters in staging (i.e., all that are removed
2251
    // by, or replaced in, staging), gather their chunk feerates.
2252
0
    auto main_clusters = GetConflicts();
2253
0
    std::vector<FeeFrac> main_feerates, staging_feerates;
2254
0
    for (Cluster* cluster : main_clusters) {
2255
0
        cluster->AppendChunkFeerates(main_feerates);
2256
0
    }
2257
    // Do the same for the Clusters in staging themselves.
2258
0
    for (int quality = 0; quality < int(QualityLevel::NONE); ++quality) {
2259
0
        for (const auto& cluster : m_staging_clusterset->m_clusters[quality]) {
2260
0
            cluster->AppendChunkFeerates(staging_feerates);
2261
0
        }
2262
0
    }
2263
    // Sort both by decreasing feerate to obtain diagrams, and return them.
2264
0
    std::sort(main_feerates.begin(), main_feerates.end(), [](auto& a, auto& b) { return a > b; });
2265
0
    std::sort(staging_feerates.begin(), staging_feerates.end(), [](auto& a, auto& b) { return a > b; });
2266
0
    return std::make_pair(std::move(main_feerates), std::move(staging_feerates));
2267
0
}
2268
2269
void Cluster::SanityCheck(const TxGraphImpl& graph, int level) const
2270
0
{
2271
    // There must be an m_mapping for each m_depgraph position (including holes).
2272
0
    assert(m_depgraph.PositionRange() == m_mapping.size());
2273
    // The linearization for this Cluster must contain every transaction once.
2274
0
    assert(m_depgraph.TxCount() == m_linearization.size());
2275
    // The number of transactions in a Cluster cannot exceed m_max_cluster_count.
2276
0
    assert(m_linearization.size() <= graph.m_max_cluster_count);
2277
    // The level must match the level the Cluster occurs in.
2278
0
    assert(m_level == level);
2279
    // The sum of their sizes cannot exceed m_max_cluster_size, unless it is an individually
2280
    // oversized transaction singleton. Note that groups of to-be-merged clusters which would
2281
    // exceed this limit are marked oversized, which means they are never applied.
2282
0
    assert(m_quality == QualityLevel::OVERSIZED_SINGLETON || GetTotalTxSize() <= graph.m_max_cluster_size);
2283
    // m_quality and m_setindex are checked in TxGraphImpl::SanityCheck.
2284
2285
    // OVERSIZED clusters are singletons.
2286
0
    assert(m_quality != QualityLevel::OVERSIZED_SINGLETON || m_linearization.size() == 1);
2287
2288
    // Compute the chunking of m_linearization.
2289
0
    LinearizationChunking linchunking(m_depgraph, m_linearization);
2290
2291
    // Verify m_linearization.
2292
0
    SetType m_done;
2293
0
    LinearizationIndex linindex{0};
2294
0
    DepGraphIndex chunk_pos{0}; //!< position within the current chunk
2295
0
    assert(m_depgraph.IsAcyclic());
2296
0
    for (auto lin_pos : m_linearization) {
2297
0
        assert(lin_pos < m_mapping.size());
2298
0
        const auto& entry = graph.m_entries[m_mapping[lin_pos]];
2299
        // Check that the linearization is topological.
2300
0
        m_done.Set(lin_pos);
2301
0
        assert(m_done.IsSupersetOf(m_depgraph.Ancestors(lin_pos)));
2302
        // Check that the Entry has a locator pointing back to this Cluster & position within it.
2303
0
        assert(entry.m_locator[level].cluster == this);
2304
0
        assert(entry.m_locator[level].index == lin_pos);
2305
        // For main-level entries, check linearization position and chunk feerate.
2306
0
        if (level == 0 && IsAcceptable()) {
2307
0
            assert(entry.m_main_lin_index == linindex);
2308
0
            ++linindex;
2309
0
            if (!linchunking.GetChunk(0).transactions[lin_pos]) {
2310
0
                linchunking.MarkDone(linchunking.GetChunk(0).transactions);
2311
0
                chunk_pos = 0;
2312
0
            }
2313
0
            assert(entry.m_main_chunk_feerate == linchunking.GetChunk(0).feerate);
2314
            // Verify that an entry in the chunk index exists for every chunk-ending transaction.
2315
0
            ++chunk_pos;
2316
0
            bool is_chunk_end = (chunk_pos == linchunking.GetChunk(0).transactions.Count());
2317
0
            assert((entry.m_main_chunkindex_iterator != graph.m_main_chunkindex.end()) == is_chunk_end);
2318
0
            if (is_chunk_end) {
2319
0
                auto& chunk_data = *entry.m_main_chunkindex_iterator;
2320
0
                if (m_done == m_depgraph.Positions() && chunk_pos == 1) {
2321
0
                    assert(chunk_data.m_chunk_count == LinearizationIndex(-1));
2322
0
                } else {
2323
0
                    assert(chunk_data.m_chunk_count == chunk_pos);
2324
0
                }
2325
0
            }
2326
            // If this Cluster has an acceptable quality level, its chunks must be connected.
2327
0
            assert(m_depgraph.IsConnected(linchunking.GetChunk(0).transactions));
2328
0
        }
2329
0
    }
2330
    // Verify that each element of m_depgraph occurred in m_linearization.
2331
0
    assert(m_done == m_depgraph.Positions());
2332
0
}
2333
2334
void TxGraphImpl::SanityCheck() const
2335
0
{
2336
    /** Which GraphIndexes ought to occur in m_unlinked, based on m_entries. */
2337
0
    std::set<GraphIndex> expected_unlinked;
2338
    /** Which Clusters ought to occur in ClusterSet::m_clusters, based on m_entries. */
2339
0
    std::set<const Cluster*> expected_clusters[MAX_LEVELS];
2340
    /** Which GraphIndexes ought to occur in ClusterSet::m_removed, based on m_entries. */
2341
0
    std::set<GraphIndex> expected_removed[MAX_LEVELS];
2342
    /** Which Cluster::m_sequence values have been encountered. */
2343
0
    std::set<uint64_t> sequences;
2344
    /** Which GraphIndexes ought to occur in m_main_chunkindex, based on m_entries. */
2345
0
    std::set<GraphIndex> expected_chunkindex;
2346
    /** Whether compaction is possible in the current state. */
2347
0
    bool compact_possible{true};
2348
2349
    // Go over all Entry objects in m_entries.
2350
0
    for (GraphIndex idx = 0; idx < m_entries.size(); ++idx) {
2351
0
        const auto& entry = m_entries[idx];
2352
0
        if (entry.m_ref == nullptr) {
2353
            // Unlinked Entry must have indexes appear in m_unlinked.
2354
0
            expected_unlinked.insert(idx);
2355
0
        } else {
2356
            // Every non-unlinked Entry must have a Ref that points back to it.
2357
0
            assert(GetRefGraph(*entry.m_ref) == this);
2358
0
            assert(GetRefIndex(*entry.m_ref) == idx);
2359
0
        }
2360
0
        if (entry.m_main_chunkindex_iterator != m_main_chunkindex.end()) {
2361
            // Remember which entries we see a chunkindex entry for.
2362
0
            assert(entry.m_locator[0].IsPresent());
2363
0
            expected_chunkindex.insert(idx);
2364
0
        }
2365
        // Verify the Entry m_locators.
2366
0
        bool was_present{false}, was_removed{false};
2367
0
        for (int level = 0; level < MAX_LEVELS; ++level) {
2368
0
            const auto& locator = entry.m_locator[level];
2369
            // Every Locator must be in exactly one of these 3 states.
2370
0
            assert(locator.IsMissing() + locator.IsRemoved() + locator.IsPresent() == 1);
2371
0
            if (locator.IsPresent()) {
2372
                // Once removed, a transaction cannot be revived.
2373
0
                assert(!was_removed);
2374
                // Verify that the Cluster agrees with where the Locator claims the transaction is.
2375
0
                assert(locator.cluster->GetClusterEntry(locator.index) == idx);
2376
                // Remember that we expect said Cluster to appear in the ClusterSet::m_clusters.
2377
0
                expected_clusters[level].insert(locator.cluster);
2378
0
                was_present = true;
2379
0
            } else if (locator.IsRemoved()) {
2380
                // Level 0 (main) cannot have IsRemoved locators (IsMissing there means non-existing).
2381
0
                assert(level > 0);
2382
                // A Locator can only be IsRemoved if it was IsPresent before, and only once.
2383
0
                assert(was_present && !was_removed);
2384
                // Remember that we expect this GraphIndex to occur in the ClusterSet::m_removed.
2385
0
                expected_removed[level].insert(idx);
2386
0
                was_removed = true;
2387
0
            }
2388
0
        }
2389
0
    }
2390
2391
    // For all levels (0 = main, 1 = staged)...
2392
0
    for (int level = 0; level <= GetTopLevel(); ++level) {
2393
0
        assert(level < MAX_LEVELS);
2394
0
        auto& clusterset = GetClusterSet(level);
2395
0
        std::set<const Cluster*> actual_clusters;
2396
2397
        // For all quality levels...
2398
0
        for (int qual = 0; qual < int(QualityLevel::NONE); ++qual) {
2399
0
            QualityLevel quality{qual};
2400
0
            const auto& quality_clusters = clusterset.m_clusters[qual];
2401
            // ... for all clusters in them ...
2402
0
            for (ClusterSetIndex setindex = 0; setindex < quality_clusters.size(); ++setindex) {
2403
0
                const auto& cluster = *quality_clusters[setindex];
2404
                // Check the sequence number.
2405
0
                assert(cluster.m_sequence < m_next_sequence_counter);
2406
0
                assert(sequences.count(cluster.m_sequence) == 0);
2407
0
                sequences.insert(cluster.m_sequence);
2408
                // Remember we saw this Cluster (only if it is non-empty; empty Clusters aren't
2409
                // expected to be referenced by the Entry vector).
2410
0
                if (cluster.GetTxCount() != 0) {
2411
0
                    actual_clusters.insert(&cluster);
2412
0
                }
2413
                // Sanity check the cluster, according to the Cluster's internal rules.
2414
0
                cluster.SanityCheck(*this, level);
2415
                // Check that the cluster's quality and setindex matches its position in the quality list.
2416
0
                assert(cluster.m_quality == quality);
2417
0
                assert(cluster.m_setindex == setindex);
2418
0
            }
2419
0
        }
2420
2421
        // Verify that all to-be-removed transactions have valid identifiers.
2422
0
        for (GraphIndex idx : clusterset.m_to_remove) {
2423
0
            assert(idx < m_entries.size());
2424
            // We cannot assert that all m_to_remove transactions are still present: ~Ref on a
2425
            // (P,M) transaction (present in main, inherited in staging) will cause an m_to_remove
2426
            // addition in both main and staging, but a subsequence ApplyRemovals in main will
2427
            // cause it to disappear from staging too, leaving the m_to_remove in place.
2428
0
        }
2429
2430
        // Verify that all to-be-added dependencies have valid identifiers.
2431
0
        for (auto [par_idx, chl_idx] : clusterset.m_deps_to_add) {
2432
0
            assert(par_idx != chl_idx);
2433
0
            assert(par_idx < m_entries.size());
2434
0
            assert(chl_idx < m_entries.size());
2435
0
        }
2436
2437
        // Verify that the actually encountered clusters match the ones occurring in Entry vector.
2438
0
        assert(actual_clusters == expected_clusters[level]);
2439
2440
        // Verify that the contents of m_removed matches what was expected based on the Entry vector.
2441
0
        std::set<GraphIndex> actual_removed(clusterset.m_removed.begin(), clusterset.m_removed.end());
2442
0
        for (auto i : expected_unlinked) {
2443
            // If a transaction exists in both main and staging, and is removed from staging (adding
2444
            // it to m_removed there), and consequently destroyed (wiping the locator completely),
2445
            // it can remain in m_removed despite not having an IsRemoved() locator. Exclude those
2446
            // transactions from the comparison here.
2447
0
            actual_removed.erase(i);
2448
0
            expected_removed[level].erase(i);
2449
0
        }
2450
2451
0
        assert(actual_removed == expected_removed[level]);
2452
2453
        // If any GraphIndex entries remain in this ClusterSet, compact is not possible.
2454
0
        if (!clusterset.m_deps_to_add.empty()) compact_possible = false;
2455
0
        if (!clusterset.m_to_remove.empty()) compact_possible = false;
2456
0
        if (!clusterset.m_removed.empty()) compact_possible = false;
2457
2458
        // For non-top levels, m_oversized must be known (as it cannot change until the level
2459
        // on top is gone).
2460
0
        if (level < GetTopLevel()) assert(clusterset.m_oversized.has_value());
2461
0
    }
2462
2463
    // Verify that the contents of m_unlinked matches what was expected based on the Entry vector.
2464
0
    std::set<GraphIndex> actual_unlinked(m_unlinked.begin(), m_unlinked.end());
2465
0
    assert(actual_unlinked == expected_unlinked);
2466
2467
    // If compaction was possible, it should have been performed already, and m_unlinked must be
2468
    // empty (to prevent memory leaks due to an ever-growing m_entries vector).
2469
0
    if (compact_possible) {
2470
0
        assert(actual_unlinked.empty());
2471
0
    }
2472
2473
    // Finally, check the chunk index.
2474
0
    std::set<GraphIndex> actual_chunkindex;
2475
0
    FeeFrac last_chunk_feerate;
2476
0
    for (const auto& chunk : m_main_chunkindex) {
2477
0
        GraphIndex idx = chunk.m_graph_index;
2478
0
        actual_chunkindex.insert(idx);
2479
0
        auto chunk_feerate = m_entries[idx].m_main_chunk_feerate;
2480
0
        if (!last_chunk_feerate.IsEmpty()) {
2481
0
            assert(FeeRateCompare(last_chunk_feerate, chunk_feerate) >= 0);
2482
0
        }
2483
0
        last_chunk_feerate = chunk_feerate;
2484
0
    }
2485
0
    assert(actual_chunkindex == expected_chunkindex);
2486
0
}
2487
2488
bool TxGraphImpl::DoWork(uint64_t iters) noexcept
2489
0
{
2490
0
    uint64_t iters_done{0};
2491
    // First linearize everything in NEEDS_RELINEARIZE to an acceptable level. If more budget
2492
    // remains after that, try to make everything optimal.
2493
0
    for (QualityLevel quality : {QualityLevel::NEEDS_RELINEARIZE, QualityLevel::ACCEPTABLE}) {
2494
        // First linearize staging, if it exists, then main.
2495
0
        for (int level = GetTopLevel(); level >= 0; --level) {
2496
            // Do not modify main if it has any observers.
2497
0
            if (level == 0 && m_main_chunkindex_observers != 0) continue;
2498
0
            ApplyDependencies(level);
2499
0
            auto& clusterset = GetClusterSet(level);
2500
            // Do not modify oversized levels.
2501
0
            if (clusterset.m_oversized == true) continue;
2502
0
            auto& queue = clusterset.m_clusters[int(quality)];
2503
0
            while (!queue.empty()) {
2504
0
                if (iters_done >= iters) return false;
2505
                // Randomize the order in which we process, so that if the first cluster somehow
2506
                // needs more work than what iters allows, we don't keep spending it on the same
2507
                // one.
2508
0
                auto pos = m_rng.randrange<size_t>(queue.size());
2509
0
                auto iters_now = iters - iters_done;
2510
0
                if (quality == QualityLevel::NEEDS_RELINEARIZE) {
2511
                    // If we're working with clusters that need relinearization still, only perform
2512
                    // up to m_acceptable_iters iterations. If they become ACCEPTABLE, and we still
2513
                    // have budget after all other clusters are ACCEPTABLE too, we'll spend the
2514
                    // remaining budget on trying to make them OPTIMAL.
2515
0
                    iters_now = std::min(iters_now, m_acceptable_iters);
2516
0
                }
2517
0
                auto [cost, improved] = queue[pos].get()->Relinearize(*this, iters_now);
2518
0
                iters_done += cost;
2519
                // If no improvement was made to the Cluster, it means we've essentially run out of
2520
                // budget. Even though it may be the case that iters_done < iters still, the
2521
                // linearizer decided there wasn't enough budget left to attempt anything with.
2522
                // To avoid an infinite loop that keeps trying clusters with minuscule budgets,
2523
                // stop here too.
2524
0
                if (!improved) return false;
2525
0
            }
2526
0
        }
2527
0
    }
2528
    // All possible work has been performed, so we can return true. Note that this does *not* mean
2529
    // that all clusters are optimally linearized now. It may be that there is nothing to do left
2530
    // because all non-optimal clusters are in oversized and/or observer-bearing levels.
2531
0
    return true;
2532
0
}
2533
2534
void BlockBuilderImpl::Next() noexcept
2535
0
{
2536
    // Don't do anything if we're already done.
2537
0
    if (m_cur_iter == m_graph->m_main_chunkindex.end()) return;
2538
0
    while (true) {
2539
        // Advance the pointer, and stop if we reach the end.
2540
0
        ++m_cur_iter;
2541
0
        m_cur_cluster = nullptr;
2542
0
        if (m_cur_iter == m_graph->m_main_chunkindex.end()) break;
2543
        // Find the cluster pointed to by m_cur_iter.
2544
0
        const auto& chunk_data = *m_cur_iter;
2545
0
        const auto& chunk_end_entry = m_graph->m_entries[chunk_data.m_graph_index];
2546
0
        m_cur_cluster = chunk_end_entry.m_locator[0].cluster;
2547
0
        m_known_end_of_cluster = false;
2548
        // If we previously skipped a chunk from this cluster we cannot include more from it.
2549
0
        if (!m_excluded_clusters.contains(m_cur_cluster)) break;
2550
0
    }
2551
0
}
2552
2553
std::optional<std::pair<std::vector<TxGraph::Ref*>, FeePerWeight>> BlockBuilderImpl::GetCurrentChunk() noexcept
2554
0
{
2555
0
    std::optional<std::pair<std::vector<TxGraph::Ref*>, FeePerWeight>> ret;
2556
    // Populate the return value if we are not done.
2557
0
    if (m_cur_iter != m_graph->m_main_chunkindex.end()) {
2558
0
        ret.emplace();
2559
0
        const auto& chunk_data = *m_cur_iter;
2560
0
        const auto& chunk_end_entry = m_graph->m_entries[chunk_data.m_graph_index];
2561
0
        if (chunk_data.m_chunk_count == LinearizationIndex(-1)) {
2562
            // Special case in case just a single transaction remains, avoiding the need to
2563
            // dispatch to and dereference Cluster.
2564
0
            ret->first.resize(1);
2565
0
            Assume(chunk_end_entry.m_ref != nullptr);
2566
0
            ret->first[0] = chunk_end_entry.m_ref;
2567
0
            m_known_end_of_cluster = true;
2568
0
        } else {
2569
0
            Assume(m_cur_cluster);
2570
0
            ret->first.resize(chunk_data.m_chunk_count);
2571
0
            auto start_pos = chunk_end_entry.m_main_lin_index + 1 - chunk_data.m_chunk_count;
2572
0
            m_known_end_of_cluster = m_cur_cluster->GetClusterRefs(*m_graph, ret->first, start_pos);
2573
            // If the chunk size was 1 and at end of cluster, then the special case above should
2574
            // have been used.
2575
0
            Assume(!m_known_end_of_cluster || chunk_data.m_chunk_count > 1);
2576
0
        }
2577
0
        ret->second = chunk_end_entry.m_main_chunk_feerate;
2578
0
    }
2579
0
    return ret;
2580
0
}
2581
2582
0
BlockBuilderImpl::BlockBuilderImpl(TxGraphImpl& graph) noexcept : m_graph(&graph)
2583
0
{
2584
    // Make sure all clusters in main are up to date, and acceptable.
2585
0
    m_graph->MakeAllAcceptable(0);
2586
    // There cannot remain any inapplicable dependencies (only possible if main is oversized).
2587
0
    Assume(m_graph->m_main_clusterset.m_deps_to_add.empty());
2588
    // Remember that this object is observing the graph's index, so that we can detect concurrent
2589
    // modifications.
2590
0
    ++m_graph->m_main_chunkindex_observers;
2591
    // Find the first chunk.
2592
0
    m_cur_iter = m_graph->m_main_chunkindex.begin();
2593
0
    m_cur_cluster = nullptr;
2594
0
    if (m_cur_iter != m_graph->m_main_chunkindex.end()) {
2595
        // Find the cluster pointed to by m_cur_iter.
2596
0
        const auto& chunk_data = *m_cur_iter;
2597
0
        const auto& chunk_end_entry = m_graph->m_entries[chunk_data.m_graph_index];
2598
0
        m_cur_cluster = chunk_end_entry.m_locator[0].cluster;
2599
0
    }
2600
0
}
2601
2602
BlockBuilderImpl::~BlockBuilderImpl()
2603
0
{
2604
0
    Assume(m_graph->m_main_chunkindex_observers > 0);
2605
    // Permit modifications to the main graph again after destroying the BlockBuilderImpl.
2606
0
    --m_graph->m_main_chunkindex_observers;
2607
0
}
2608
2609
void BlockBuilderImpl::Include() noexcept
2610
0
{
2611
    // The actual inclusion of the chunk is done by the calling code. All we have to do is switch
2612
    // to the next chunk.
2613
0
    Next();
2614
0
}
2615
2616
void BlockBuilderImpl::Skip() noexcept
2617
0
{
2618
    // When skipping a chunk we need to not include anything more of the cluster, as that could make
2619
    // the result topologically invalid. However, don't do this if the chunk is known to be the last
2620
    // chunk of the cluster. This may significantly reduce the size of m_excluded_clusters,
2621
    // especially when many singleton clusters are ignored.
2622
0
    if (m_cur_cluster != nullptr && !m_known_end_of_cluster) {
2623
0
        m_excluded_clusters.insert(m_cur_cluster);
2624
0
    }
2625
0
    Next();
2626
0
}
2627
2628
std::unique_ptr<TxGraph::BlockBuilder> TxGraphImpl::GetBlockBuilder() noexcept
2629
0
{
2630
0
    return std::make_unique<BlockBuilderImpl>(*this);
2631
0
}
2632
2633
std::pair<std::vector<TxGraph::Ref*>, FeePerWeight> TxGraphImpl::GetWorstMainChunk() noexcept
2634
0
{
2635
0
    std::pair<std::vector<Ref*>, FeePerWeight> ret;
2636
    // Make sure all clusters in main are up to date, and acceptable.
2637
0
    MakeAllAcceptable(0);
2638
0
    Assume(m_main_clusterset.m_deps_to_add.empty());
2639
    // If the graph is not empty, populate ret.
2640
0
    if (!m_main_chunkindex.empty()) {
2641
0
        const auto& chunk_data = *m_main_chunkindex.rbegin();
2642
0
        const auto& chunk_end_entry = m_entries[chunk_data.m_graph_index];
2643
0
        Cluster* cluster = chunk_end_entry.m_locator[0].cluster;
2644
0
        if (chunk_data.m_chunk_count == LinearizationIndex(-1) || chunk_data.m_chunk_count == 1)  {
2645
            // Special case for singletons.
2646
0
            ret.first.resize(1);
2647
0
            Assume(chunk_end_entry.m_ref != nullptr);
2648
0
            ret.first[0] = chunk_end_entry.m_ref;
2649
0
        } else {
2650
0
            ret.first.resize(chunk_data.m_chunk_count);
2651
0
            auto start_pos = chunk_end_entry.m_main_lin_index + 1 - chunk_data.m_chunk_count;
2652
0
            cluster->GetClusterRefs(*this, ret.first, start_pos);
2653
0
            std::reverse(ret.first.begin(), ret.first.end());
2654
0
        }
2655
0
        ret.second = chunk_end_entry.m_main_chunk_feerate;
2656
0
    }
2657
0
    return ret;
2658
0
}
2659
2660
std::vector<TxGraph::Ref*> TxGraphImpl::Trim() noexcept
2661
0
{
2662
0
    int level = GetTopLevel();
2663
0
    Assume(m_main_chunkindex_observers == 0 || level != 0);
2664
0
    std::vector<TxGraph::Ref*> ret;
2665
2666
    // Compute the groups of to-be-merged Clusters (which also applies all removals, and splits).
2667
0
    auto& clusterset = GetClusterSet(level);
2668
0
    if (clusterset.m_oversized == false) return ret;
2669
0
    GroupClusters(level);
2670
0
    Assume(clusterset.m_group_data.has_value());
2671
    // Nothing to do if not oversized.
2672
0
    Assume(clusterset.m_oversized.has_value());
2673
0
    if (clusterset.m_oversized == false) return ret;
2674
2675
    // In this function, would-be clusters (as precomputed in m_group_data by GroupClusters) are
2676
    // trimmed by removing transactions in them such that the resulting clusters satisfy the size
2677
    // and count limits.
2678
    //
2679
    // It works by defining for each would-be cluster a rudimentary linearization: at every point
2680
    // the highest-chunk-feerate remaining transaction is picked among those with no unmet
2681
    // dependencies. "Dependency" here means either a to-be-added dependency (m_deps_to_add), or
2682
    // an implicit dependency added between any two consecutive transaction in their current
2683
    // cluster linearization. So it can be seen as a "merge sort" of the chunks of the clusters,
2684
    // but respecting the dependencies being added.
2685
    //
2686
    // This rudimentary linearization is computed lazily, by putting all eligible (no unmet
2687
    // dependencies) transactions in a heap, and popping the highest-feerate one from it. Along the
2688
    // way, the counts and sizes of the would-be clusters up to that point are tracked (by
2689
    // partitioning the involved transactions using a union-find structure). Any transaction whose
2690
    // addition would cause a violation is removed, along with all their descendants.
2691
    //
2692
    // A next invocation of GroupClusters (after applying the removals) will compute the new
2693
    // resulting clusters, and none of them will violate the limits.
2694
2695
    /** All dependencies (both to be added ones, and implicit ones between consecutive transactions
2696
     *  in existing cluster linearizations), sorted by parent. */
2697
0
    std::vector<std::pair<GraphIndex, GraphIndex>> deps_by_parent;
2698
    /** Same, but sorted by child. */
2699
0
    std::vector<std::pair<GraphIndex, GraphIndex>> deps_by_child;
2700
    /** Information about all transactions involved in a Cluster group to be trimmed, sorted by
2701
     *  GraphIndex. It contains entries both for transactions that have already been included,
2702
     *  and ones that have not yet been. */
2703
0
    std::vector<TrimTxData> trim_data;
2704
    /** Iterators into trim_data, treated as a max heap according to cmp_fn below. Each entry is
2705
     *  a transaction that has not yet been included yet, but all its ancestors have. */
2706
0
    std::vector<std::vector<TrimTxData>::iterator> trim_heap;
2707
    /** The list of representatives of the partitions a given transaction depends on. */
2708
0
    std::vector<TrimTxData*> current_deps;
2709
2710
    /** Function to define the ordering of trim_heap. */
2711
0
    static constexpr auto cmp_fn = [](auto a, auto b) noexcept {
2712
        // Sort by increasing chunk feerate, and then by decreasing size.
2713
        // We do not need to sort by cluster or within clusters, because due to the implicit
2714
        // dependency between consecutive linearization elements, no two transactions from the
2715
        // same Cluster will ever simultaneously be in the heap.
2716
0
        return a->m_chunk_feerate < b->m_chunk_feerate;
2717
0
    };
2718
2719
    /** Given a TrimTxData entry, find the representative of the partition it is in. */
2720
0
    static constexpr auto find_fn = [](TrimTxData* arg) noexcept {
2721
0
        while (arg != arg->m_uf_parent) {
2722
            // Replace pointer to parent with pointer to grandparent (path splitting).
2723
            // See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Finding_set_representatives.
2724
0
            auto par = arg->m_uf_parent;
2725
0
            arg->m_uf_parent = par->m_uf_parent;
2726
0
            arg = par;
2727
0
        }
2728
0
        return arg;
2729
0
    };
2730
2731
    /** Given two TrimTxData entries, union the partitions they are in, and return the
2732
     *  representative. */
2733
0
    static constexpr auto union_fn = [](TrimTxData* arg1, TrimTxData* arg2) noexcept {
2734
        // Replace arg1 and arg2 by their representatives.
2735
0
        auto rep1 = find_fn(arg1);
2736
0
        auto rep2 = find_fn(arg2);
2737
        // Bail out if both representatives are the same, because that means arg1 and arg2 are in
2738
        // the same partition already.
2739
0
        if (rep1 == rep2) return rep1;
2740
        // Pick the lower-count root to become a child of the higher-count one.
2741
        // See https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Union_by_size.
2742
0
        if (rep1->m_uf_count < rep2->m_uf_count) std::swap(rep1, rep2);
2743
0
        rep2->m_uf_parent = rep1;
2744
        // Add the statistics of arg2 (which is no longer a representative) to those of arg1 (which
2745
        // is now the representative for both).
2746
0
        rep1->m_uf_size += rep2->m_uf_size;
2747
0
        rep1->m_uf_count += rep2->m_uf_count;
2748
0
        return rep1;
2749
0
    };
2750
2751
    /** Get iterator to TrimTxData entry for a given index. */
2752
0
    auto locate_fn = [&](GraphIndex index) noexcept {
2753
0
        auto it = std::lower_bound(trim_data.begin(), trim_data.end(), index, [](TrimTxData& elem, GraphIndex idx) noexcept {
2754
0
            return elem.m_index < idx;
2755
0
        });
2756
0
        Assume(it != trim_data.end() && it->m_index == index);
2757
0
        return it;
2758
0
    };
2759
2760
    // For each group of to-be-merged Clusters.
2761
0
    for (const auto& group_data : clusterset.m_group_data->m_groups) {
2762
0
        trim_data.clear();
2763
0
        trim_heap.clear();
2764
0
        deps_by_child.clear();
2765
0
        deps_by_parent.clear();
2766
2767
        // Gather trim data and implicit dependency data from all involved Clusters.
2768
0
        auto cluster_span = std::span{clusterset.m_group_data->m_group_clusters}
2769
0
                                .subspan(group_data.m_cluster_offset, group_data.m_cluster_count);
2770
0
        uint64_t size{0};
2771
0
        for (Cluster* cluster : cluster_span) {
2772
0
            size += cluster->AppendTrimData(trim_data, deps_by_child);
2773
0
        }
2774
        // If this group of Clusters does not violate any limits, continue to the next group.
2775
0
        if (trim_data.size() <= m_max_cluster_count && size <= m_max_cluster_size) continue;
2776
        // Sort the trim data by GraphIndex. In what follows, we will treat this sorted vector as
2777
        // a map from GraphIndex to TrimTxData via locate_fn, and its ordering will not change
2778
        // anymore.
2779
0
        std::sort(trim_data.begin(), trim_data.end(), [](auto& a, auto& b) noexcept { return a.m_index < b.m_index; });
2780
2781
        // Add the explicitly added dependencies to deps_by_child.
2782
0
        deps_by_child.insert(deps_by_child.end(),
2783
0
                             clusterset.m_deps_to_add.begin() + group_data.m_deps_offset,
2784
0
                             clusterset.m_deps_to_add.begin() + group_data.m_deps_offset + group_data.m_deps_count);
2785
2786
        // Sort deps_by_child by child transaction GraphIndex. The order will not be changed
2787
        // anymore after this.
2788
0
        std::sort(deps_by_child.begin(), deps_by_child.end(), [](auto& a, auto& b) noexcept { return a.second < b.second; });
2789
        // Fill m_parents_count and m_parents_offset in trim_data, as well as m_deps_left, and
2790
        // initially populate trim_heap. Because of the sort above, all dependencies involving the
2791
        // same child are grouped together, so a single linear scan suffices.
2792
0
        auto deps_it = deps_by_child.begin();
2793
0
        for (auto trim_it = trim_data.begin(); trim_it != trim_data.end(); ++trim_it) {
2794
0
            trim_it->m_parent_offset = deps_it - deps_by_child.begin();
2795
0
            trim_it->m_deps_left = 0;
2796
0
            while (deps_it != deps_by_child.end() && deps_it->second == trim_it->m_index) {
2797
0
                ++trim_it->m_deps_left;
2798
0
                ++deps_it;
2799
0
            }
2800
0
            trim_it->m_parent_count = trim_it->m_deps_left;
2801
            // If this transaction has no unmet dependencies, and is not oversized, add it to the
2802
            // heap (just append for now, the heapification happens below).
2803
0
            if (trim_it->m_deps_left == 0 && trim_it->m_tx_size <= m_max_cluster_size) {
2804
0
                trim_heap.push_back(trim_it);
2805
0
            }
2806
0
        }
2807
0
        Assume(deps_it == deps_by_child.end());
2808
2809
        // Construct deps_by_parent, sorted by parent transaction GraphIndex. The order will not be
2810
        // changed anymore after this.
2811
0
        deps_by_parent = deps_by_child;
2812
0
        std::sort(deps_by_parent.begin(), deps_by_parent.end(), [](auto& a, auto& b) noexcept { return a.first < b.first; });
2813
        // Fill m_children_offset and m_children_count in trim_data. Because of the sort above, all
2814
        // dependencies involving the same parent are grouped together, so a single linear scan
2815
        // suffices.
2816
0
        deps_it = deps_by_parent.begin();
2817
0
        for (auto& trim_entry : trim_data) {
2818
0
            trim_entry.m_children_count = 0;
2819
0
            trim_entry.m_children_offset = deps_it - deps_by_parent.begin();
2820
0
            while (deps_it != deps_by_parent.end() && deps_it->first == trim_entry.m_index) {
2821
0
                ++trim_entry.m_children_count;
2822
0
                ++deps_it;
2823
0
            }
2824
0
        }
2825
0
        Assume(deps_it == deps_by_parent.end());
2826
2827
        // Build a heap of all transactions with 0 unmet dependencies.
2828
0
        std::make_heap(trim_heap.begin(), trim_heap.end(), cmp_fn);
2829
2830
        // Iterate over to-be-included transactions, and convert them to included transactions, or
2831
        // skip them if adding them would violate resource limits of the would-be cluster.
2832
        //
2833
        // It is possible that the heap empties without ever hitting either cluster limit, in case
2834
        // the implied graph (to be added dependencies plus implicit dependency between each
2835
        // original transaction and its predecessor in the linearization it came from) contains
2836
        // cycles. Such cycles will be removed entirely, because each of the transactions in the
2837
        // cycle permanently have unmet dependencies. However, this cannot occur in real scenarios
2838
        // where Trim() is called to deal with reorganizations that would violate cluster limits,
2839
        // as all added dependencies are in the same direction (from old mempool transactions to
2840
        // new from-block transactions); cycles require dependencies in both directions to be
2841
        // added.
2842
0
        while (!trim_heap.empty()) {
2843
            // Move the best remaining transaction to the end of trim_heap.
2844
0
            std::pop_heap(trim_heap.begin(), trim_heap.end(), cmp_fn);
2845
            // Pop it, and find its TrimTxData.
2846
0
            auto& entry = *trim_heap.back();
2847
0
            trim_heap.pop_back();
2848
2849
            // Initialize it as a singleton partition.
2850
0
            entry.m_uf_parent = &entry;
2851
0
            entry.m_uf_count = 1;
2852
0
            entry.m_uf_size = entry.m_tx_size;
2853
2854
            // Find the distinct transaction partitions this entry depends on.
2855
0
            current_deps.clear();
2856
0
            for (auto& [par, chl] : std::span{deps_by_child}.subspan(entry.m_parent_offset, entry.m_parent_count)) {
2857
0
                Assume(chl == entry.m_index);
2858
0
                current_deps.push_back(find_fn(&*locate_fn(par)));
2859
0
            }
2860
0
            std::sort(current_deps.begin(), current_deps.end());
2861
0
            current_deps.erase(std::unique(current_deps.begin(), current_deps.end()), current_deps.end());
2862
2863
            // Compute resource counts.
2864
0
            uint32_t new_count = 1;
2865
0
            uint64_t new_size = entry.m_tx_size;
2866
0
            for (TrimTxData* ptr : current_deps) {
2867
0
                new_count += ptr->m_uf_count;
2868
0
                new_size += ptr->m_uf_size;
2869
0
            }
2870
            // Skip the entry if this would violate any limit.
2871
0
            if (new_count > m_max_cluster_count || new_size > m_max_cluster_size) continue;
2872
2873
            // Union the partitions this transaction and all its dependencies are in together.
2874
0
            auto rep = &entry;
2875
0
            for (TrimTxData* ptr : current_deps) rep = union_fn(ptr, rep);
2876
            // Mark the entry as included (so the loop below will not remove the transaction).
2877
0
            entry.m_deps_left = uint32_t(-1);
2878
            // Mark each to-be-added dependency involving this transaction as parent satisfied.
2879
0
            for (auto& [par, chl] : std::span{deps_by_parent}.subspan(entry.m_children_offset, entry.m_children_count)) {
2880
0
                Assume(par == entry.m_index);
2881
0
                auto chl_it = locate_fn(chl);
2882
                // Reduce the number of unmet dependencies of chl_it, and if that brings the number
2883
                // to zero, add it to the heap of includable transactions.
2884
0
                Assume(chl_it->m_deps_left > 0);
2885
0
                if (--chl_it->m_deps_left == 0) {
2886
0
                    trim_heap.push_back(chl_it);
2887
0
                    std::push_heap(trim_heap.begin(), trim_heap.end(), cmp_fn);
2888
0
                }
2889
0
            }
2890
0
        }
2891
2892
        // Remove all the transactions that were not processed above. Because nothing gets
2893
        // processed until/unless all its dependencies are met, this automatically guarantees
2894
        // that if a transaction is removed, all its descendants, or would-be descendants, are
2895
        // removed as well.
2896
0
        for (const auto& trim_entry : trim_data) {
2897
0
            if (trim_entry.m_deps_left != uint32_t(-1)) {
2898
0
                ret.push_back(m_entries[trim_entry.m_index].m_ref);
2899
0
                clusterset.m_to_remove.push_back(trim_entry.m_index);
2900
0
            }
2901
0
        }
2902
0
    }
2903
0
    clusterset.m_group_data.reset();
2904
0
    clusterset.m_oversized = false;
2905
0
    Assume(!ret.empty());
2906
0
    return ret;
2907
0
}
2908
2909
} // namespace
2910
2911
TxGraph::Ref::~Ref()
2912
0
{
2913
0
    if (m_graph) {
2914
        // Inform the TxGraph about the Ref being destroyed.
2915
0
        m_graph->UnlinkRef(m_index);
2916
0
        m_graph = nullptr;
2917
0
    }
2918
0
}
2919
2920
TxGraph::Ref& TxGraph::Ref::operator=(Ref&& other) noexcept
2921
0
{
2922
    // Unlink the current graph, if any.
2923
0
    if (m_graph) m_graph->UnlinkRef(m_index);
2924
    // Inform the other's graph about the move, if any.
2925
0
    if (other.m_graph) other.m_graph->UpdateRef(other.m_index, *this);
2926
    // Actually update the contents.
2927
0
    m_graph = other.m_graph;
2928
0
    m_index = other.m_index;
2929
0
    other.m_graph = nullptr;
2930
0
    other.m_index = GraphIndex(-1);
2931
0
    return *this;
2932
0
}
2933
2934
TxGraph::Ref::Ref(Ref&& other) noexcept
2935
0
{
2936
    // Inform the TxGraph of other that its Ref is being moved.
2937
0
    if (other.m_graph) other.m_graph->UpdateRef(other.m_index, *this);
2938
    // Actually move the contents.
2939
0
    std::swap(m_graph, other.m_graph);
2940
0
    std::swap(m_index, other.m_index);
2941
0
}
2942
2943
std::unique_ptr<TxGraph> MakeTxGraph(unsigned max_cluster_count, uint64_t max_cluster_size, uint64_t acceptable_iters) noexcept
2944
0
{
2945
0
    return std::make_unique<TxGraphImpl>(max_cluster_count, max_cluster_size, acceptable_iters);
2946
0
}