/root/bitcoin/src/script/descriptor.cpp
Line | Count | Source |
1 | | // Copyright (c) 2018-present The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <script/descriptor.h> |
6 | | |
7 | | #include <hash.h> |
8 | | #include <key_io.h> |
9 | | #include <pubkey.h> |
10 | | #include <musig.h> |
11 | | #include <script/miniscript.h> |
12 | | #include <script/parsing.h> |
13 | | #include <script/script.h> |
14 | | #include <script/signingprovider.h> |
15 | | #include <script/solver.h> |
16 | | #include <uint256.h> |
17 | | |
18 | | #include <common/args.h> |
19 | | #include <span.h> |
20 | | #include <util/bip32.h> |
21 | | #include <util/check.h> |
22 | | #include <util/strencodings.h> |
23 | | #include <util/vector.h> |
24 | | |
25 | | #include <algorithm> |
26 | | #include <memory> |
27 | | #include <numeric> |
28 | | #include <optional> |
29 | | #include <string> |
30 | | #include <vector> |
31 | | |
32 | | using util::Split; |
33 | | |
34 | | namespace { |
35 | | |
36 | | //////////////////////////////////////////////////////////////////////////// |
37 | | // Checksum // |
38 | | //////////////////////////////////////////////////////////////////////////// |
39 | | |
40 | | // This section implements a checksum algorithm for descriptors with the |
41 | | // following properties: |
42 | | // * Mistakes in a descriptor string are measured in "symbol errors". The higher |
43 | | // the number of symbol errors, the harder it is to detect: |
44 | | // * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for |
45 | | // another in that set always counts as 1 symbol error. |
46 | | // * Note that hex encoded keys are covered by these characters. Xprvs and |
47 | | // xpubs use other characters too, but already have their own checksum |
48 | | // mechanism. |
49 | | // * Function names like "multi()" use other characters, but mistakes in |
50 | | // these would generally result in an unparsable descriptor. |
51 | | // * A case error always counts as 1 symbol error. |
52 | | // * Any other 1 character substitution error counts as 1 or 2 symbol errors. |
53 | | // * Any 1 symbol error is always detected. |
54 | | // * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected. |
55 | | // * Any 4 symbol error in a descriptor of up to 507 characters is always detected. |
56 | | // * Any 5 symbol error in a descriptor of up to 77 characters is always detected. |
57 | | // * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected |
58 | | // * Random errors have a chance of 1 in 2**40 of being undetected. |
59 | | // |
60 | | // These properties are achieved by expanding every group of 3 (non checksum) characters into |
61 | | // 4 GF(32) symbols, over which a cyclic code is defined. |
62 | | |
63 | | /* |
64 | | * Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32), |
65 | | * multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val. |
66 | | * |
67 | | * This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}. |
68 | | * It is chosen to define an cyclic error detecting code which is selected by: |
69 | | * - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting |
70 | | * 3 errors in windows up to 19000 symbols. |
71 | | * - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors. |
72 | | * - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512. |
73 | | * - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512. |
74 | | * |
75 | | * The generator and the constants to implement it can be verified using this Sage code: |
76 | | * B = GF(2) # Binary field |
77 | | * BP.<b> = B[] # Polynomials over the binary field |
78 | | * F_mod = b**5 + b**3 + 1 |
79 | | * F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition |
80 | | * FP.<x> = F[] # Polynomials over GF(32) |
81 | | * E_mod = x**3 + x + F.fetch_int(8) |
82 | | * E.<e> = F.extension(E_mod) # Extension field definition |
83 | | * alpha = e**2743 # Choice of an element in extension field |
84 | | * for p in divisors(E.order() - 1): # Verify alpha has order 32767. |
85 | | * assert((alpha**p == 1) == (p % 32767 == 0)) |
86 | | * G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1]) |
87 | | * print(G) # Print out the generator |
88 | | * for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers. |
89 | | * v = 0 |
90 | | * for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)): |
91 | | * v = v*32 + coef.integer_representation() |
92 | | * print("0x%x" % v) |
93 | | */ |
94 | | uint64_t PolyMod(uint64_t c, int val) |
95 | 0 | { |
96 | 0 | uint8_t c0 = c >> 35; |
97 | 0 | c = ((c & 0x7ffffffff) << 5) ^ val; |
98 | 0 | if (c0 & 1) c ^= 0xf5dee51989; |
99 | 0 | if (c0 & 2) c ^= 0xa9fdca3312; |
100 | 0 | if (c0 & 4) c ^= 0x1bab10e32d; |
101 | 0 | if (c0 & 8) c ^= 0x3706b1677a; |
102 | 0 | if (c0 & 16) c ^= 0x644d626ffd; |
103 | 0 | return c; |
104 | 0 | } |
105 | | |
106 | | std::string DescriptorChecksum(const std::span<const char>& span) |
107 | 0 | { |
108 | | /** A character set designed such that: |
109 | | * - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32. |
110 | | * - Case errors cause an offset that's a multiple of 32. |
111 | | * - As many alphabetic characters are in the same group (while following the above restrictions). |
112 | | * |
113 | | * If p(x) gives the position of a character c in this character set, every group of 3 characters |
114 | | * (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32). |
115 | | * This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just |
116 | | * affect a single symbol. |
117 | | * |
118 | | * As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect |
119 | | * the position within the groups. |
120 | | */ |
121 | 0 | static const std::string INPUT_CHARSET = |
122 | 0 | "0123456789()[],'/*abcdefgh@:$%{}" |
123 | 0 | "IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~" |
124 | 0 | "ijklmnopqrstuvwxyzABCDEFGH`#\"\\ "; |
125 | | |
126 | | /** The character set for the checksum itself (same as bech32). */ |
127 | 0 | static const std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"; |
128 | |
|
129 | 0 | uint64_t c = 1; |
130 | 0 | int cls = 0; |
131 | 0 | int clscount = 0; |
132 | 0 | for (auto ch : span) { |
133 | 0 | auto pos = INPUT_CHARSET.find(ch); |
134 | 0 | if (pos == std::string::npos) return ""; |
135 | 0 | c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character. |
136 | 0 | cls = cls * 3 + (pos >> 5); // Accumulate the group numbers |
137 | 0 | if (++clscount == 3) { |
138 | | // Emit an extra symbol representing the group numbers, for every 3 characters. |
139 | 0 | c = PolyMod(c, cls); |
140 | 0 | cls = 0; |
141 | 0 | clscount = 0; |
142 | 0 | } |
143 | 0 | } |
144 | 0 | if (clscount > 0) c = PolyMod(c, cls); |
145 | 0 | for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum. |
146 | 0 | c ^= 1; // Prevent appending zeroes from not affecting the checksum. |
147 | |
|
148 | 0 | std::string ret(8, ' '); |
149 | 0 | for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31]; |
150 | 0 | return ret; |
151 | 0 | } |
152 | | |
153 | 0 | std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); } |
154 | | |
155 | | //////////////////////////////////////////////////////////////////////////// |
156 | | // Internal representation // |
157 | | //////////////////////////////////////////////////////////////////////////// |
158 | | |
159 | | typedef std::vector<uint32_t> KeyPath; |
160 | | |
161 | | /** Interface for public key objects in descriptors. */ |
162 | | struct PubkeyProvider |
163 | | { |
164 | | protected: |
165 | | //! Index of this key expression in the descriptor |
166 | | //! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0 |
167 | | uint32_t m_expr_index; |
168 | | |
169 | | public: |
170 | 0 | explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {} |
171 | | |
172 | 0 | virtual ~PubkeyProvider() = default; |
173 | | |
174 | | /** Compare two public keys represented by this provider. |
175 | | * Used by the Miniscript descriptors to check for duplicate keys in the script. |
176 | | */ |
177 | 0 | bool operator<(PubkeyProvider& other) const { |
178 | 0 | FlatSigningProvider dummy; |
179 | |
|
180 | 0 | std::optional<CPubKey> a = GetPubKey(0, dummy, dummy); |
181 | 0 | std::optional<CPubKey> b = other.GetPubKey(0, dummy, dummy); |
182 | |
|
183 | 0 | return a < b; |
184 | 0 | } |
185 | | |
186 | | /** Derive a public key and put it into out. |
187 | | * read_cache is the cache to read keys from (if not nullptr) |
188 | | * write_cache is the cache to write keys to (if not nullptr) |
189 | | * Caches are not exclusive but this is not tested. Currently we use them exclusively |
190 | | */ |
191 | | virtual std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0; |
192 | | |
193 | | /** Whether this represent multiple public keys at different positions. */ |
194 | | virtual bool IsRange() const = 0; |
195 | | |
196 | | /** Get the size of the generated public key(s) in bytes (33 or 65). */ |
197 | | virtual size_t GetSize() const = 0; |
198 | | |
199 | | enum class StringType { |
200 | | PUBLIC, |
201 | | COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions |
202 | | }; |
203 | | |
204 | | /** Get the descriptor string form. */ |
205 | | virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0; |
206 | | |
207 | | /** Get the descriptor string form including private data (if available in arg). */ |
208 | | virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0; |
209 | | |
210 | | /** Get the descriptor string form with the xpub at the last hardened derivation, |
211 | | * and always use h for hardened derivation. |
212 | | */ |
213 | | virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0; |
214 | | |
215 | | /** Derive a private key, if private data is available in arg and put it into out. */ |
216 | | virtual void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const = 0; |
217 | | |
218 | | /** Return the non-extended public key for this PubkeyProvider, if it has one. */ |
219 | | virtual std::optional<CPubKey> GetRootPubKey() const = 0; |
220 | | /** Return the extended public key for this PubkeyProvider, if it has one. */ |
221 | | virtual std::optional<CExtPubKey> GetRootExtPubKey() const = 0; |
222 | | |
223 | | /** Make a deep copy of this PubkeyProvider */ |
224 | | virtual std::unique_ptr<PubkeyProvider> Clone() const = 0; |
225 | | |
226 | | /** Whether this PubkeyProvider is a BIP 32 extended key that can be derived from */ |
227 | | virtual bool IsBIP32() const = 0; |
228 | | }; |
229 | | |
230 | | class OriginPubkeyProvider final : public PubkeyProvider |
231 | | { |
232 | | KeyOriginInfo m_origin; |
233 | | std::unique_ptr<PubkeyProvider> m_provider; |
234 | | bool m_apostrophe; |
235 | | |
236 | | std::string OriginString(StringType type, bool normalized=false) const |
237 | 0 | { |
238 | | // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions |
239 | 0 | bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT; |
240 | 0 | return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe); |
241 | 0 | } |
242 | | |
243 | | public: |
244 | 0 | OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {} |
245 | | std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override |
246 | 0 | { |
247 | 0 | std::optional<CPubKey> pub = m_provider->GetPubKey(pos, arg, out, read_cache, write_cache); |
248 | 0 | if (!pub) return std::nullopt; |
249 | 0 | Assert(out.pubkeys.contains(pub->GetID())); |
250 | 0 | auto& [pubkey, suborigin] = out.origins[pub->GetID()]; |
251 | 0 | Assert(pubkey == *pub); // m_provider must have a valid origin by this point. |
252 | 0 | std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), suborigin.fingerprint); |
253 | 0 | suborigin.path.insert(suborigin.path.begin(), m_origin.path.begin(), m_origin.path.end()); |
254 | 0 | return pub; |
255 | 0 | } |
256 | 0 | bool IsRange() const override { return m_provider->IsRange(); } |
257 | 0 | size_t GetSize() const override { return m_provider->GetSize(); } |
258 | 0 | bool IsBIP32() const override { return m_provider->IsBIP32(); } |
259 | 0 | std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); } |
260 | | bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override |
261 | 0 | { |
262 | 0 | std::string sub; |
263 | 0 | if (!m_provider->ToPrivateString(arg, sub)) return false; |
264 | 0 | ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub); |
265 | 0 | return true; |
266 | 0 | } |
267 | | bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override |
268 | 0 | { |
269 | 0 | std::string sub; |
270 | 0 | if (!m_provider->ToNormalizedString(arg, sub, cache)) return false; |
271 | | // If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider |
272 | | // In that case, we need to strip out the leading square bracket and fingerprint from the substring, |
273 | | // and append that to our own origin string. |
274 | 0 | if (sub[0] == '[') { |
275 | 0 | sub = sub.substr(9); |
276 | 0 | ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub); |
277 | 0 | } else { |
278 | 0 | ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub); |
279 | 0 | } |
280 | 0 | return true; |
281 | 0 | } |
282 | | void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override |
283 | 0 | { |
284 | 0 | m_provider->GetPrivKey(pos, arg, out); |
285 | 0 | } |
286 | | std::optional<CPubKey> GetRootPubKey() const override |
287 | 0 | { |
288 | 0 | return m_provider->GetRootPubKey(); |
289 | 0 | } |
290 | | std::optional<CExtPubKey> GetRootExtPubKey() const override |
291 | 0 | { |
292 | 0 | return m_provider->GetRootExtPubKey(); |
293 | 0 | } |
294 | | std::unique_ptr<PubkeyProvider> Clone() const override |
295 | 0 | { |
296 | 0 | return std::make_unique<OriginPubkeyProvider>(m_expr_index, m_origin, m_provider->Clone(), m_apostrophe); |
297 | 0 | } |
298 | | }; |
299 | | |
300 | | /** An object representing a parsed constant public key in a descriptor. */ |
301 | | class ConstPubkeyProvider final : public PubkeyProvider |
302 | | { |
303 | | CPubKey m_pubkey; |
304 | | bool m_xonly; |
305 | | |
306 | | std::optional<CKey> GetPrivKey(const SigningProvider& arg) const |
307 | 0 | { |
308 | 0 | CKey key; |
309 | 0 | if (!(m_xonly ? arg.GetKeyByXOnly(XOnlyPubKey(m_pubkey), key) : |
310 | 0 | arg.GetKey(m_pubkey.GetID(), key))) return std::nullopt; |
311 | 0 | return key; |
312 | 0 | } |
313 | | |
314 | | public: |
315 | 0 | ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {} |
316 | | std::optional<CPubKey> GetPubKey(int pos, const SigningProvider&, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override |
317 | 0 | { |
318 | 0 | KeyOriginInfo info; |
319 | 0 | CKeyID keyid = m_pubkey.GetID(); |
320 | 0 | std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint); |
321 | 0 | out.origins.emplace(keyid, std::make_pair(m_pubkey, info)); |
322 | 0 | out.pubkeys.emplace(keyid, m_pubkey); |
323 | 0 | return m_pubkey; |
324 | 0 | } |
325 | 0 | bool IsRange() const override { return false; } |
326 | 0 | size_t GetSize() const override { return m_pubkey.size(); } |
327 | 0 | bool IsBIP32() const override { return false; } |
328 | 0 | std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); } |
329 | | bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override |
330 | 0 | { |
331 | 0 | std::optional<CKey> key = GetPrivKey(arg); |
332 | 0 | if (!key) return false; |
333 | 0 | ret = EncodeSecret(*key); |
334 | 0 | return true; |
335 | 0 | } |
336 | | bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override |
337 | 0 | { |
338 | 0 | ret = ToString(StringType::PUBLIC); |
339 | 0 | return true; |
340 | 0 | } |
341 | | void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override |
342 | 0 | { |
343 | 0 | std::optional<CKey> key = GetPrivKey(arg); |
344 | 0 | if (!key) return; |
345 | 0 | out.keys.emplace(key->GetPubKey().GetID(), *key); |
346 | 0 | } |
347 | | std::optional<CPubKey> GetRootPubKey() const override |
348 | 0 | { |
349 | 0 | return m_pubkey; |
350 | 0 | } |
351 | | std::optional<CExtPubKey> GetRootExtPubKey() const override |
352 | 0 | { |
353 | 0 | return std::nullopt; |
354 | 0 | } |
355 | | std::unique_ptr<PubkeyProvider> Clone() const override |
356 | 0 | { |
357 | 0 | return std::make_unique<ConstPubkeyProvider>(m_expr_index, m_pubkey, m_xonly); |
358 | 0 | } |
359 | | }; |
360 | | |
361 | | enum class DeriveType { |
362 | | NO, |
363 | | UNHARDENED, |
364 | | HARDENED, |
365 | | }; |
366 | | |
367 | | /** An object representing a parsed extended public key in a descriptor. */ |
368 | | class BIP32PubkeyProvider final : public PubkeyProvider |
369 | | { |
370 | | // Root xpub, path, and final derivation step type being used, if any |
371 | | CExtPubKey m_root_extkey; |
372 | | KeyPath m_path; |
373 | | DeriveType m_derive; |
374 | | // Whether ' or h is used in harded derivation |
375 | | bool m_apostrophe; |
376 | | |
377 | | bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const |
378 | 0 | { |
379 | 0 | CKey key; |
380 | 0 | if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false; |
381 | 0 | ret.nDepth = m_root_extkey.nDepth; |
382 | 0 | std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint); |
383 | 0 | ret.nChild = m_root_extkey.nChild; |
384 | 0 | ret.chaincode = m_root_extkey.chaincode; |
385 | 0 | ret.key = key; |
386 | 0 | return true; |
387 | 0 | } |
388 | | |
389 | | // Derives the last xprv |
390 | | bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const |
391 | 0 | { |
392 | 0 | if (!GetExtKey(arg, xprv)) return false; |
393 | 0 | for (auto entry : m_path) { |
394 | 0 | if (!xprv.Derive(xprv, entry)) return false; |
395 | 0 | if (entry >> 31) { |
396 | 0 | last_hardened = xprv; |
397 | 0 | } |
398 | 0 | } |
399 | 0 | return true; |
400 | 0 | } |
401 | | |
402 | | bool IsHardened() const |
403 | 0 | { |
404 | 0 | if (m_derive == DeriveType::HARDENED) return true; |
405 | 0 | for (auto entry : m_path) { |
406 | 0 | if (entry >> 31) return true; |
407 | 0 | } |
408 | 0 | return false; |
409 | 0 | } |
410 | | |
411 | | public: |
412 | 0 | BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {} |
413 | 0 | bool IsRange() const override { return m_derive != DeriveType::NO; } |
414 | 0 | size_t GetSize() const override { return 33; } |
415 | 0 | bool IsBIP32() const override { return true; } |
416 | | std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override |
417 | 0 | { |
418 | 0 | KeyOriginInfo info; |
419 | 0 | CKeyID keyid = m_root_extkey.pubkey.GetID(); |
420 | 0 | std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint); |
421 | 0 | info.path = m_path; |
422 | 0 | if (m_derive == DeriveType::UNHARDENED) info.path.push_back((uint32_t)pos); |
423 | 0 | if (m_derive == DeriveType::HARDENED) info.path.push_back(((uint32_t)pos) | 0x80000000L); |
424 | | |
425 | | // Derive keys or fetch them from cache |
426 | 0 | CExtPubKey final_extkey = m_root_extkey; |
427 | 0 | CExtPubKey parent_extkey = m_root_extkey; |
428 | 0 | CExtPubKey last_hardened_extkey; |
429 | 0 | bool der = true; |
430 | 0 | if (read_cache) { |
431 | 0 | if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) { |
432 | 0 | if (m_derive == DeriveType::HARDENED) return std::nullopt; |
433 | | // Try to get the derivation parent |
434 | 0 | if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return std::nullopt; |
435 | 0 | final_extkey = parent_extkey; |
436 | 0 | if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos); |
437 | 0 | } |
438 | 0 | } else if (IsHardened()) { |
439 | 0 | CExtKey xprv; |
440 | 0 | CExtKey lh_xprv; |
441 | 0 | if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return std::nullopt; |
442 | 0 | parent_extkey = xprv.Neuter(); |
443 | 0 | if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos); |
444 | 0 | if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL); |
445 | 0 | final_extkey = xprv.Neuter(); |
446 | 0 | if (lh_xprv.key.IsValid()) { |
447 | 0 | last_hardened_extkey = lh_xprv.Neuter(); |
448 | 0 | } |
449 | 0 | } else { |
450 | 0 | for (auto entry : m_path) { |
451 | 0 | if (!parent_extkey.Derive(parent_extkey, entry)) return std::nullopt; |
452 | 0 | } |
453 | 0 | final_extkey = parent_extkey; |
454 | 0 | if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos); |
455 | 0 | assert(m_derive != DeriveType::HARDENED); |
456 | 0 | } |
457 | 0 | if (!der) return std::nullopt; |
458 | | |
459 | 0 | out.origins.emplace(final_extkey.pubkey.GetID(), std::make_pair(final_extkey.pubkey, info)); |
460 | 0 | out.pubkeys.emplace(final_extkey.pubkey.GetID(), final_extkey.pubkey); |
461 | |
|
462 | 0 | if (write_cache) { |
463 | | // Only cache parent if there is any unhardened derivation |
464 | 0 | if (m_derive != DeriveType::HARDENED) { |
465 | 0 | write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey); |
466 | | // Cache last hardened xpub if we have it |
467 | 0 | if (last_hardened_extkey.pubkey.IsValid()) { |
468 | 0 | write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey); |
469 | 0 | } |
470 | 0 | } else if (info.path.size() > 0) { |
471 | 0 | write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey); |
472 | 0 | } |
473 | 0 | } |
474 | |
|
475 | 0 | return final_extkey.pubkey; |
476 | 0 | } |
477 | | std::string ToString(StringType type, bool normalized) const |
478 | 0 | { |
479 | | // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions |
480 | 0 | const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT; |
481 | 0 | std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe); |
482 | 0 | if (IsRange()) { |
483 | 0 | ret += "/*"; |
484 | 0 | if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h'; |
485 | 0 | } |
486 | 0 | return ret; |
487 | 0 | } |
488 | | std::string ToString(StringType type=StringType::PUBLIC) const override |
489 | 0 | { |
490 | 0 | return ToString(type, /*normalized=*/false); |
491 | 0 | } |
492 | | bool ToPrivateString(const SigningProvider& arg, std::string& out) const override |
493 | 0 | { |
494 | 0 | CExtKey key; |
495 | 0 | if (!GetExtKey(arg, key)) return false; |
496 | 0 | out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe); |
497 | 0 | if (IsRange()) { |
498 | 0 | out += "/*"; |
499 | 0 | if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h'; |
500 | 0 | } |
501 | 0 | return true; |
502 | 0 | } |
503 | | bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override |
504 | 0 | { |
505 | 0 | if (m_derive == DeriveType::HARDENED) { |
506 | 0 | out = ToString(StringType::PUBLIC, /*normalized=*/true); |
507 | |
|
508 | 0 | return true; |
509 | 0 | } |
510 | | // Step backwards to find the last hardened step in the path |
511 | 0 | int i = (int)m_path.size() - 1; |
512 | 0 | for (; i >= 0; --i) { |
513 | 0 | if (m_path.at(i) >> 31) { |
514 | 0 | break; |
515 | 0 | } |
516 | 0 | } |
517 | | // Either no derivation or all unhardened derivation |
518 | 0 | if (i == -1) { |
519 | 0 | out = ToString(); |
520 | 0 | return true; |
521 | 0 | } |
522 | | // Get the path to the last hardened stup |
523 | 0 | KeyOriginInfo origin; |
524 | 0 | int k = 0; |
525 | 0 | for (; k <= i; ++k) { |
526 | | // Add to the path |
527 | 0 | origin.path.push_back(m_path.at(k)); |
528 | 0 | } |
529 | | // Build the remaining path |
530 | 0 | KeyPath end_path; |
531 | 0 | for (; k < (int)m_path.size(); ++k) { |
532 | 0 | end_path.push_back(m_path.at(k)); |
533 | 0 | } |
534 | | // Get the fingerprint |
535 | 0 | CKeyID id = m_root_extkey.pubkey.GetID(); |
536 | 0 | std::copy(id.begin(), id.begin() + 4, origin.fingerprint); |
537 | |
|
538 | 0 | CExtPubKey xpub; |
539 | 0 | CExtKey lh_xprv; |
540 | | // If we have the cache, just get the parent xpub |
541 | 0 | if (cache != nullptr) { |
542 | 0 | cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub); |
543 | 0 | } |
544 | 0 | if (!xpub.pubkey.IsValid()) { |
545 | | // Cache miss, or nor cache, or need privkey |
546 | 0 | CExtKey xprv; |
547 | 0 | if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false; |
548 | 0 | xpub = lh_xprv.Neuter(); |
549 | 0 | } |
550 | 0 | assert(xpub.pubkey.IsValid()); |
551 | | |
552 | | // Build the string |
553 | 0 | std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path); |
554 | 0 | out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path); |
555 | 0 | if (IsRange()) { |
556 | 0 | out += "/*"; |
557 | 0 | assert(m_derive == DeriveType::UNHARDENED); |
558 | 0 | } |
559 | 0 | return true; |
560 | 0 | } |
561 | | void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override |
562 | 0 | { |
563 | 0 | CExtKey extkey; |
564 | 0 | CExtKey dummy; |
565 | 0 | if (!GetDerivedExtKey(arg, extkey, dummy)) return; |
566 | 0 | if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return; |
567 | 0 | if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return; |
568 | 0 | out.keys.emplace(extkey.key.GetPubKey().GetID(), extkey.key); |
569 | 0 | } |
570 | | std::optional<CPubKey> GetRootPubKey() const override |
571 | 0 | { |
572 | 0 | return std::nullopt; |
573 | 0 | } |
574 | | std::optional<CExtPubKey> GetRootExtPubKey() const override |
575 | 0 | { |
576 | 0 | return m_root_extkey; |
577 | 0 | } |
578 | | std::unique_ptr<PubkeyProvider> Clone() const override |
579 | 0 | { |
580 | 0 | return std::make_unique<BIP32PubkeyProvider>(m_expr_index, m_root_extkey, m_path, m_derive, m_apostrophe); |
581 | 0 | } |
582 | | }; |
583 | | |
584 | | /** PubkeyProvider for a musig() expression */ |
585 | | class MuSigPubkeyProvider final : public PubkeyProvider |
586 | | { |
587 | | private: |
588 | | //! PubkeyProvider for the participants |
589 | | const std::vector<std::unique_ptr<PubkeyProvider>> m_participants; |
590 | | //! Derivation path |
591 | | const KeyPath m_path; |
592 | | //! PubkeyProvider for the aggregate pubkey if it can be cached (i.e. participants are not ranged) |
593 | | mutable std::unique_ptr<PubkeyProvider> m_aggregate_provider; |
594 | | mutable std::optional<CPubKey> m_aggregate_pubkey; |
595 | | const DeriveType m_derive; |
596 | | const bool m_ranged_participants; |
597 | | |
598 | 0 | bool IsRangedDerivation() const { return m_derive != DeriveType::NO; } |
599 | | |
600 | | public: |
601 | | MuSigPubkeyProvider( |
602 | | uint32_t exp_index, |
603 | | std::vector<std::unique_ptr<PubkeyProvider>> providers, |
604 | | KeyPath path, |
605 | | DeriveType derive |
606 | | ) |
607 | 0 | : PubkeyProvider(exp_index), |
608 | 0 | m_participants(std::move(providers)), |
609 | 0 | m_path(std::move(path)), |
610 | 0 | m_derive(derive), |
611 | 0 | m_ranged_participants(std::any_of(m_participants.begin(), m_participants.end(), [](const auto& pubkey) { return pubkey->IsRange(); })) |
612 | 0 | { |
613 | 0 | if (!Assume(!(m_ranged_participants && IsRangedDerivation()))) { |
614 | 0 | throw std::runtime_error("musig(): Cannot have both ranged participants and ranged derivation"); |
615 | 0 | } |
616 | 0 | if (!Assume(m_derive != DeriveType::HARDENED)) { |
617 | 0 | throw std::runtime_error("musig(): Cannot have hardened derivation"); |
618 | 0 | } |
619 | 0 | } |
620 | | |
621 | | std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override |
622 | 0 | { |
623 | 0 | FlatSigningProvider dummy; |
624 | | // If the participants are not ranged, we can compute and cache the aggregate pubkey by creating a PubkeyProvider for it |
625 | 0 | if (!m_aggregate_provider && !m_ranged_participants) { |
626 | | // Retrieve the pubkeys from the providers |
627 | 0 | std::vector<CPubKey> pubkeys; |
628 | 0 | for (const auto& prov : m_participants) { |
629 | 0 | std::optional<CPubKey> pubkey = prov->GetPubKey(0, arg, dummy, read_cache, write_cache); |
630 | 0 | if (!pubkey.has_value()) { |
631 | 0 | return std::nullopt; |
632 | 0 | } |
633 | 0 | pubkeys.push_back(pubkey.value()); |
634 | 0 | } |
635 | 0 | std::sort(pubkeys.begin(), pubkeys.end()); |
636 | | |
637 | | // Aggregate the pubkey |
638 | 0 | m_aggregate_pubkey = MuSig2AggregatePubkeys(pubkeys); |
639 | 0 | if (!Assume(m_aggregate_pubkey.has_value())) return std::nullopt; |
640 | | |
641 | | // Make our pubkey provider |
642 | 0 | if (IsRangedDerivation() || !m_path.empty()) { |
643 | | // Make the synthetic xpub and construct the BIP32PubkeyProvider |
644 | 0 | CExtPubKey extpub; |
645 | 0 | extpub.nDepth = 0; |
646 | 0 | std::memset(extpub.vchFingerprint, 0, 4); |
647 | 0 | extpub.nChild = 0; |
648 | 0 | extpub.chaincode = MUSIG_CHAINCODE; |
649 | 0 | extpub.pubkey = m_aggregate_pubkey.value(); |
650 | |
|
651 | 0 | m_aggregate_provider = std::make_unique<BIP32PubkeyProvider>(m_expr_index, extpub, m_path, m_derive, /*apostrophe=*/false); |
652 | 0 | } else { |
653 | 0 | m_aggregate_provider = std::make_unique<ConstPubkeyProvider>(m_expr_index, m_aggregate_pubkey.value(), /*xonly=*/false); |
654 | 0 | } |
655 | 0 | } |
656 | | |
657 | | // Retrieve all participant pubkeys |
658 | 0 | std::vector<CPubKey> pubkeys; |
659 | 0 | for (const auto& prov : m_participants) { |
660 | 0 | std::optional<CPubKey> pub = prov->GetPubKey(pos, arg, out, read_cache, write_cache); |
661 | 0 | if (!pub) return std::nullopt; |
662 | 0 | pubkeys.emplace_back(*pub); |
663 | 0 | } |
664 | 0 | std::sort(pubkeys.begin(), pubkeys.end()); |
665 | |
|
666 | 0 | CPubKey pubout; |
667 | 0 | if (m_aggregate_provider) { |
668 | | // When we have a cached aggregate key, we are either returning it or deriving from it |
669 | | // Either way, we can passthrough to its GetPubKey |
670 | | // Use a dummy signing provider as private keys do not exist for the aggregate pubkey |
671 | 0 | std::optional<CPubKey> pub = m_aggregate_provider->GetPubKey(pos, dummy, out, read_cache, write_cache); |
672 | 0 | if (!pub) return std::nullopt; |
673 | 0 | pubout = *pub; |
674 | 0 | out.aggregate_pubkeys.emplace(m_aggregate_pubkey.value(), pubkeys); |
675 | 0 | } else { |
676 | 0 | if (!Assume(m_ranged_participants) || !Assume(m_path.empty())) return std::nullopt; |
677 | | // Compute aggregate key from derived participants |
678 | 0 | std::optional<CPubKey> aggregate_pubkey = MuSig2AggregatePubkeys(pubkeys); |
679 | 0 | if (!aggregate_pubkey) return std::nullopt; |
680 | 0 | pubout = *aggregate_pubkey; |
681 | |
|
682 | 0 | std::unique_ptr<ConstPubkeyProvider> this_agg_provider = std::make_unique<ConstPubkeyProvider>(m_expr_index, aggregate_pubkey.value(), /*xonly=*/false); |
683 | 0 | this_agg_provider->GetPubKey(0, dummy, out, read_cache, write_cache); |
684 | 0 | out.aggregate_pubkeys.emplace(pubout, pubkeys); |
685 | 0 | } |
686 | | |
687 | 0 | if (!Assume(pubout.IsValid())) return std::nullopt; |
688 | 0 | return pubout; |
689 | 0 | } |
690 | 0 | bool IsRange() const override { return IsRangedDerivation() || m_ranged_participants; } |
691 | | // musig() expressions can only be used in tr() contexts which have 32 byte xonly pubkeys |
692 | 0 | size_t GetSize() const override { return 32; } |
693 | | |
694 | | std::string ToString(StringType type=StringType::PUBLIC) const override |
695 | 0 | { |
696 | 0 | std::string out = "musig("; |
697 | 0 | for (size_t i = 0; i < m_participants.size(); ++i) { |
698 | 0 | const auto& pubkey = m_participants.at(i); |
699 | 0 | if (i) out += ","; |
700 | 0 | out += pubkey->ToString(type); |
701 | 0 | } |
702 | 0 | out += ")"; |
703 | 0 | out += FormatHDKeypath(m_path); |
704 | 0 | if (IsRangedDerivation()) { |
705 | 0 | out += "/*"; |
706 | 0 | } |
707 | 0 | return out; |
708 | 0 | } |
709 | | bool ToPrivateString(const SigningProvider& arg, std::string& out) const override |
710 | 0 | { |
711 | 0 | bool any_privkeys = false; |
712 | 0 | out = "musig("; |
713 | 0 | for (size_t i = 0; i < m_participants.size(); ++i) { |
714 | 0 | const auto& pubkey = m_participants.at(i); |
715 | 0 | if (i) out += ","; |
716 | 0 | std::string tmp; |
717 | 0 | if (pubkey->ToPrivateString(arg, tmp)) { |
718 | 0 | any_privkeys = true; |
719 | 0 | out += tmp; |
720 | 0 | } else { |
721 | 0 | out += pubkey->ToString(); |
722 | 0 | } |
723 | 0 | } |
724 | 0 | out += ")"; |
725 | 0 | out += FormatHDKeypath(m_path); |
726 | 0 | if (IsRangedDerivation()) { |
727 | 0 | out += "/*"; |
728 | 0 | } |
729 | 0 | if (!any_privkeys) out.clear(); |
730 | 0 | return any_privkeys; |
731 | 0 | } |
732 | | bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const override |
733 | 0 | { |
734 | 0 | out = "musig("; |
735 | 0 | for (size_t i = 0; i < m_participants.size(); ++i) { |
736 | 0 | const auto& pubkey = m_participants.at(i); |
737 | 0 | if (i) out += ","; |
738 | 0 | std::string tmp; |
739 | 0 | if (!pubkey->ToNormalizedString(arg, tmp, cache)) { |
740 | 0 | return false; |
741 | 0 | } |
742 | 0 | out += tmp; |
743 | 0 | } |
744 | 0 | out += ")"; |
745 | 0 | out += FormatHDKeypath(m_path); |
746 | 0 | if (IsRangedDerivation()) { |
747 | 0 | out += "/*"; |
748 | 0 | } |
749 | 0 | return true; |
750 | 0 | } |
751 | | |
752 | | void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override |
753 | 0 | { |
754 | | // Get the private keys for any participants that we have |
755 | | // If there is participant derivation, it will be done. |
756 | | // If there is not, then the participant privkeys will be included directly |
757 | 0 | for (const auto& prov : m_participants) { |
758 | 0 | prov->GetPrivKey(pos, arg, out); |
759 | 0 | } |
760 | 0 | } |
761 | | |
762 | | // Get RootPubKey and GetRootExtPubKey are used to return the single pubkey underlying the pubkey provider |
763 | | // to be presented to the user in gethdkeys. As this is a multisig construction, there is no single underlying |
764 | | // pubkey hence nothing should be returned. |
765 | | // While the aggregate pubkey could be returned as the root (ext)pubkey, it is not a pubkey that anyone should |
766 | | // be using by itself in a descriptor as it is unspendable without knowing its participants. |
767 | | std::optional<CPubKey> GetRootPubKey() const override |
768 | 0 | { |
769 | 0 | return std::nullopt; |
770 | 0 | } |
771 | | std::optional<CExtPubKey> GetRootExtPubKey() const override |
772 | 0 | { |
773 | 0 | return std::nullopt; |
774 | 0 | } |
775 | | |
776 | | std::unique_ptr<PubkeyProvider> Clone() const override |
777 | 0 | { |
778 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> providers; |
779 | 0 | providers.reserve(m_participants.size()); |
780 | 0 | for (const std::unique_ptr<PubkeyProvider>& p : m_participants) { |
781 | 0 | providers.emplace_back(p->Clone()); |
782 | 0 | } |
783 | 0 | return std::make_unique<MuSigPubkeyProvider>(m_expr_index, std::move(providers), m_path, m_derive); |
784 | 0 | } |
785 | | bool IsBIP32() const override |
786 | 0 | { |
787 | | // musig() can only be a BIP 32 key if all participants are bip32 too |
788 | 0 | return std::all_of(m_participants.begin(), m_participants.end(), [](const auto& pubkey) { return pubkey->IsBIP32(); }); |
789 | 0 | } |
790 | | }; |
791 | | |
792 | | /** Base class for all Descriptor implementations. */ |
793 | | class DescriptorImpl : public Descriptor |
794 | | { |
795 | | protected: |
796 | | //! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for WSH and Multisig). |
797 | | const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args; |
798 | | //! The string name of the descriptor function. |
799 | | const std::string m_name; |
800 | | |
801 | | //! The sub-descriptor arguments (empty for everything but SH and WSH). |
802 | | //! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT) |
803 | | //! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions. |
804 | | //! Subdescriptors can only ever generate a single script. |
805 | | const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args; |
806 | | |
807 | | //! Return a serialization of anything except pubkey and script arguments, to be prepended to those. |
808 | 0 | virtual std::string ToStringExtra() const { return ""; } |
809 | | |
810 | | /** A helper function to construct the scripts for this descriptor. |
811 | | * |
812 | | * This function is invoked once by ExpandHelper. |
813 | | * |
814 | | * @param pubkeys The evaluations of the m_pubkey_args field. |
815 | | * @param scripts The evaluations of m_subdescriptor_args (one for each m_subdescriptor_args element). |
816 | | * @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver. |
817 | | * The origin info of the provided pubkeys is automatically added. |
818 | | * @return A vector with scriptPubKeys for this descriptor. |
819 | | */ |
820 | | virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, std::span<const CScript> scripts, FlatSigningProvider& out) const = 0; |
821 | | |
822 | | public: |
823 | 0 | DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {} |
824 | 0 | DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {} |
825 | 0 | DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {} |
826 | | |
827 | | enum class StringType |
828 | | { |
829 | | PUBLIC, |
830 | | PRIVATE, |
831 | | NORMALIZED, |
832 | | COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions |
833 | | }; |
834 | | |
835 | | // NOLINTNEXTLINE(misc-no-recursion) |
836 | | bool IsSolvable() const override |
837 | 0 | { |
838 | 0 | for (const auto& arg : m_subdescriptor_args) { |
839 | 0 | if (!arg->IsSolvable()) return false; |
840 | 0 | } |
841 | 0 | return true; |
842 | 0 | } |
843 | | |
844 | | // NOLINTNEXTLINE(misc-no-recursion) |
845 | | bool IsRange() const final |
846 | 0 | { |
847 | 0 | for (const auto& pubkey : m_pubkey_args) { |
848 | 0 | if (pubkey->IsRange()) return true; |
849 | 0 | } |
850 | 0 | for (const auto& arg : m_subdescriptor_args) { |
851 | 0 | if (arg->IsRange()) return true; |
852 | 0 | } |
853 | 0 | return false; |
854 | 0 | } |
855 | | |
856 | | // NOLINTNEXTLINE(misc-no-recursion) |
857 | | virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const |
858 | 0 | { |
859 | 0 | size_t pos = 0; |
860 | 0 | for (const auto& scriptarg : m_subdescriptor_args) { |
861 | 0 | if (pos++) ret += ","; |
862 | 0 | std::string tmp; |
863 | 0 | if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false; |
864 | 0 | ret += tmp; |
865 | 0 | } |
866 | 0 | return true; |
867 | 0 | } |
868 | | |
869 | | // NOLINTNEXTLINE(misc-no-recursion) |
870 | | virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const |
871 | 0 | { |
872 | 0 | std::string extra = ToStringExtra(); |
873 | 0 | size_t pos = extra.size() > 0 ? 1 : 0; |
874 | 0 | std::string ret = m_name + "(" + extra; |
875 | 0 | for (const auto& pubkey : m_pubkey_args) { |
876 | 0 | if (pos++) ret += ","; |
877 | 0 | std::string tmp; |
878 | 0 | switch (type) { |
879 | 0 | case StringType::NORMALIZED: |
880 | 0 | if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false; |
881 | 0 | break; |
882 | 0 | case StringType::PRIVATE: |
883 | 0 | if (!pubkey->ToPrivateString(*arg, tmp)) return false; |
884 | 0 | break; |
885 | 0 | case StringType::PUBLIC: |
886 | 0 | tmp = pubkey->ToString(); |
887 | 0 | break; |
888 | 0 | case StringType::COMPAT: |
889 | 0 | tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT); |
890 | 0 | break; |
891 | 0 | } |
892 | 0 | ret += tmp; |
893 | 0 | } |
894 | 0 | std::string subscript; |
895 | 0 | if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false; |
896 | 0 | if (pos && subscript.size()) ret += ','; |
897 | 0 | out = std::move(ret) + std::move(subscript) + ")"; |
898 | 0 | return true; |
899 | 0 | } |
900 | | |
901 | | std::string ToString(bool compat_format) const final |
902 | 0 | { |
903 | 0 | std::string ret; |
904 | 0 | ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC); |
905 | 0 | return AddChecksum(ret); |
906 | 0 | } |
907 | | |
908 | | bool ToPrivateString(const SigningProvider& arg, std::string& out) const override |
909 | 0 | { |
910 | 0 | bool ret = ToStringHelper(&arg, out, StringType::PRIVATE); |
911 | 0 | out = AddChecksum(out); |
912 | 0 | return ret; |
913 | 0 | } |
914 | | |
915 | | bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final |
916 | 0 | { |
917 | 0 | bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache); |
918 | 0 | out = AddChecksum(out); |
919 | 0 | return ret; |
920 | 0 | } |
921 | | |
922 | | // NOLINTNEXTLINE(misc-no-recursion) |
923 | | bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const |
924 | 0 | { |
925 | 0 | FlatSigningProvider subprovider; |
926 | 0 | std::vector<CPubKey> pubkeys; |
927 | 0 | pubkeys.reserve(m_pubkey_args.size()); |
928 | | |
929 | | // Construct temporary data in `pubkeys`, `subscripts`, and `subprovider` to avoid producing output in case of failure. |
930 | 0 | for (const auto& p : m_pubkey_args) { |
931 | 0 | std::optional<CPubKey> pubkey = p->GetPubKey(pos, arg, subprovider, read_cache, write_cache); |
932 | 0 | if (!pubkey) return false; |
933 | 0 | pubkeys.push_back(pubkey.value()); |
934 | 0 | } |
935 | 0 | std::vector<CScript> subscripts; |
936 | 0 | for (const auto& subarg : m_subdescriptor_args) { |
937 | 0 | std::vector<CScript> outscripts; |
938 | 0 | if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false; |
939 | 0 | assert(outscripts.size() == 1); |
940 | 0 | subscripts.emplace_back(std::move(outscripts[0])); |
941 | 0 | } |
942 | 0 | out.Merge(std::move(subprovider)); |
943 | |
|
944 | 0 | output_scripts = MakeScripts(pubkeys, std::span{subscripts}, out); |
945 | 0 | return true; |
946 | 0 | } |
947 | | |
948 | | bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final |
949 | 0 | { |
950 | 0 | return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache); |
951 | 0 | } |
952 | | |
953 | | bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final |
954 | 0 | { |
955 | 0 | return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr); |
956 | 0 | } |
957 | | |
958 | | // NOLINTNEXTLINE(misc-no-recursion) |
959 | | void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final |
960 | 0 | { |
961 | 0 | for (const auto& p : m_pubkey_args) { |
962 | 0 | p->GetPrivKey(pos, provider, out); |
963 | 0 | } |
964 | 0 | for (const auto& arg : m_subdescriptor_args) { |
965 | 0 | arg->ExpandPrivate(pos, provider, out); |
966 | 0 | } |
967 | 0 | } |
968 | | |
969 | 0 | std::optional<OutputType> GetOutputType() const override { return std::nullopt; } |
970 | | |
971 | 0 | std::optional<int64_t> ScriptSize() const override { return {}; } |
972 | | |
973 | | /** A helper for MaxSatisfactionWeight. |
974 | | * |
975 | | * @param use_max_sig Whether to assume ECDSA signatures will have a high-r. |
976 | | * @return The maximum size of the satisfaction in raw bytes (with no witness meaning). |
977 | | */ |
978 | 0 | virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; } |
979 | | |
980 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; } |
981 | | |
982 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return {}; } |
983 | | |
984 | | // NOLINTNEXTLINE(misc-no-recursion) |
985 | | void GetPubKeys(std::set<CPubKey>& pubkeys, std::set<CExtPubKey>& ext_pubs) const override |
986 | 0 | { |
987 | 0 | for (const auto& p : m_pubkey_args) { |
988 | 0 | std::optional<CPubKey> pub = p->GetRootPubKey(); |
989 | 0 | if (pub) pubkeys.insert(*pub); |
990 | 0 | std::optional<CExtPubKey> ext_pub = p->GetRootExtPubKey(); |
991 | 0 | if (ext_pub) ext_pubs.insert(*ext_pub); |
992 | 0 | } |
993 | 0 | for (const auto& arg : m_subdescriptor_args) { |
994 | 0 | arg->GetPubKeys(pubkeys, ext_pubs); |
995 | 0 | } |
996 | 0 | } |
997 | | |
998 | | virtual std::unique_ptr<DescriptorImpl> Clone() const = 0; |
999 | | }; |
1000 | | |
1001 | | /** A parsed addr(A) descriptor. */ |
1002 | | class AddressDescriptor final : public DescriptorImpl |
1003 | | { |
1004 | | const CTxDestination m_destination; |
1005 | | protected: |
1006 | 0 | std::string ToStringExtra() const override { return EncodeDestination(m_destination); } |
1007 | 0 | std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); } |
1008 | | public: |
1009 | 0 | AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {} |
1010 | 0 | bool IsSolvable() const final { return false; } |
1011 | | |
1012 | | std::optional<OutputType> GetOutputType() const override |
1013 | 0 | { |
1014 | 0 | return OutputTypeFromDestination(m_destination); |
1015 | 0 | } |
1016 | 0 | bool IsSingleType() const final { return true; } |
1017 | 0 | bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; } |
1018 | | |
1019 | 0 | std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); } |
1020 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1021 | 0 | { |
1022 | 0 | return std::make_unique<AddressDescriptor>(m_destination); |
1023 | 0 | } |
1024 | | }; |
1025 | | |
1026 | | /** A parsed raw(H) descriptor. */ |
1027 | | class RawDescriptor final : public DescriptorImpl |
1028 | | { |
1029 | | const CScript m_script; |
1030 | | protected: |
1031 | 0 | std::string ToStringExtra() const override { return HexStr(m_script); } |
1032 | 0 | std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); } |
1033 | | public: |
1034 | 0 | RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {} |
1035 | 0 | bool IsSolvable() const final { return false; } |
1036 | | |
1037 | | std::optional<OutputType> GetOutputType() const override |
1038 | 0 | { |
1039 | 0 | CTxDestination dest; |
1040 | 0 | ExtractDestination(m_script, dest); |
1041 | 0 | return OutputTypeFromDestination(dest); |
1042 | 0 | } |
1043 | 0 | bool IsSingleType() const final { return true; } |
1044 | 0 | bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; } |
1045 | | |
1046 | 0 | std::optional<int64_t> ScriptSize() const override { return m_script.size(); } |
1047 | | |
1048 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1049 | 0 | { |
1050 | 0 | return std::make_unique<RawDescriptor>(m_script); |
1051 | 0 | } |
1052 | | }; |
1053 | | |
1054 | | /** A parsed pk(P) descriptor. */ |
1055 | | class PKDescriptor final : public DescriptorImpl |
1056 | | { |
1057 | | private: |
1058 | | const bool m_xonly; |
1059 | | protected: |
1060 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override |
1061 | 0 | { |
1062 | 0 | if (m_xonly) { |
1063 | 0 | CScript script = CScript() << ToByteVector(XOnlyPubKey(keys[0])) << OP_CHECKSIG; |
1064 | 0 | return Vector(std::move(script)); |
1065 | 0 | } else { |
1066 | 0 | return Vector(GetScriptForRawPubKey(keys[0])); |
1067 | 0 | } |
1068 | 0 | } |
1069 | | public: |
1070 | 0 | PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {} |
1071 | 0 | bool IsSingleType() const final { return true; } |
1072 | | |
1073 | 0 | std::optional<int64_t> ScriptSize() const override { |
1074 | 0 | return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1; |
1075 | 0 | } |
1076 | | |
1077 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1078 | 0 | const auto ecdsa_sig_size = use_max_sig ? 72 : 71; |
1079 | 0 | return 1 + (m_xonly ? 65 : ecdsa_sig_size); |
1080 | 0 | } |
1081 | | |
1082 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1083 | 0 | return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR; |
1084 | 0 | } |
1085 | | |
1086 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return 1; } |
1087 | | |
1088 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1089 | 0 | { |
1090 | 0 | return std::make_unique<PKDescriptor>(m_pubkey_args.at(0)->Clone(), m_xonly); |
1091 | 0 | } |
1092 | | }; |
1093 | | |
1094 | | /** A parsed pkh(P) descriptor. */ |
1095 | | class PKHDescriptor final : public DescriptorImpl |
1096 | | { |
1097 | | protected: |
1098 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override |
1099 | 0 | { |
1100 | 0 | CKeyID id = keys[0].GetID(); |
1101 | 0 | return Vector(GetScriptForDestination(PKHash(id))); |
1102 | 0 | } |
1103 | | public: |
1104 | 0 | PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {} |
1105 | 0 | std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; } |
1106 | 0 | bool IsSingleType() const final { return true; } |
1107 | | |
1108 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; } |
1109 | | |
1110 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1111 | 0 | const auto sig_size = use_max_sig ? 72 : 71; |
1112 | 0 | return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize(); |
1113 | 0 | } |
1114 | | |
1115 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1116 | 0 | return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR; |
1117 | 0 | } |
1118 | | |
1119 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return 2; } |
1120 | | |
1121 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1122 | 0 | { |
1123 | 0 | return std::make_unique<PKHDescriptor>(m_pubkey_args.at(0)->Clone()); |
1124 | 0 | } |
1125 | | }; |
1126 | | |
1127 | | /** A parsed wpkh(P) descriptor. */ |
1128 | | class WPKHDescriptor final : public DescriptorImpl |
1129 | | { |
1130 | | protected: |
1131 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override |
1132 | 0 | { |
1133 | 0 | CKeyID id = keys[0].GetID(); |
1134 | 0 | return Vector(GetScriptForDestination(WitnessV0KeyHash(id))); |
1135 | 0 | } |
1136 | | public: |
1137 | 0 | WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {} |
1138 | 0 | std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; } |
1139 | 0 | bool IsSingleType() const final { return true; } |
1140 | | |
1141 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; } |
1142 | | |
1143 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1144 | 0 | const auto sig_size = use_max_sig ? 72 : 71; |
1145 | 0 | return (1 + sig_size + 1 + 33); |
1146 | 0 | } |
1147 | | |
1148 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1149 | 0 | return MaxSatSize(use_max_sig); |
1150 | 0 | } |
1151 | | |
1152 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return 2; } |
1153 | | |
1154 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1155 | 0 | { |
1156 | 0 | return std::make_unique<WPKHDescriptor>(m_pubkey_args.at(0)->Clone()); |
1157 | 0 | } |
1158 | | }; |
1159 | | |
1160 | | /** A parsed combo(P) descriptor. */ |
1161 | | class ComboDescriptor final : public DescriptorImpl |
1162 | | { |
1163 | | protected: |
1164 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override |
1165 | 0 | { |
1166 | 0 | std::vector<CScript> ret; |
1167 | 0 | CKeyID id = keys[0].GetID(); |
1168 | 0 | ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK |
1169 | 0 | ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH |
1170 | 0 | if (keys[0].IsCompressed()) { |
1171 | 0 | CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id)); |
1172 | 0 | out.scripts.emplace(CScriptID(p2wpkh), p2wpkh); |
1173 | 0 | ret.emplace_back(p2wpkh); |
1174 | 0 | ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH |
1175 | 0 | } |
1176 | 0 | return ret; |
1177 | 0 | } |
1178 | | public: |
1179 | 0 | ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {} |
1180 | 0 | bool IsSingleType() const final { return false; } |
1181 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1182 | 0 | { |
1183 | 0 | return std::make_unique<ComboDescriptor>(m_pubkey_args.at(0)->Clone()); |
1184 | 0 | } |
1185 | | }; |
1186 | | |
1187 | | /** A parsed multi(...) or sortedmulti(...) descriptor */ |
1188 | | class MultisigDescriptor final : public DescriptorImpl |
1189 | | { |
1190 | | const int m_threshold; |
1191 | | const bool m_sorted; |
1192 | | protected: |
1193 | 0 | std::string ToStringExtra() const override { return strprintf("%i", m_threshold); } |
1194 | 0 | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override { |
1195 | 0 | if (m_sorted) { |
1196 | 0 | std::vector<CPubKey> sorted_keys(keys); |
1197 | 0 | std::sort(sorted_keys.begin(), sorted_keys.end()); |
1198 | 0 | return Vector(GetScriptForMultisig(m_threshold, sorted_keys)); |
1199 | 0 | } |
1200 | 0 | return Vector(GetScriptForMultisig(m_threshold, keys)); |
1201 | 0 | } |
1202 | | public: |
1203 | 0 | MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {} |
1204 | 0 | bool IsSingleType() const final { return true; } |
1205 | | |
1206 | 0 | std::optional<int64_t> ScriptSize() const override { |
1207 | 0 | const auto n_keys = m_pubkey_args.size(); |
1208 | 0 | auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();}; |
1209 | 0 | const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)}; |
1210 | 0 | return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size; |
1211 | 0 | } |
1212 | | |
1213 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1214 | 0 | const auto sig_size = use_max_sig ? 72 : 71; |
1215 | 0 | return (1 + (1 + sig_size) * m_threshold); |
1216 | 0 | } |
1217 | | |
1218 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1219 | 0 | return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR; |
1220 | 0 | } |
1221 | | |
1222 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; } |
1223 | | |
1224 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1225 | 0 | { |
1226 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> providers; |
1227 | 0 | providers.reserve(m_pubkey_args.size()); |
1228 | 0 | std::transform(m_pubkey_args.begin(), m_pubkey_args.end(), providers.begin(), [](const std::unique_ptr<PubkeyProvider>& p) { return p->Clone(); }); |
1229 | 0 | return std::make_unique<MultisigDescriptor>(m_threshold, std::move(providers), m_sorted); |
1230 | 0 | } |
1231 | | }; |
1232 | | |
1233 | | /** A parsed (sorted)multi_a(...) descriptor. Always uses x-only pubkeys. */ |
1234 | | class MultiADescriptor final : public DescriptorImpl |
1235 | | { |
1236 | | const int m_threshold; |
1237 | | const bool m_sorted; |
1238 | | protected: |
1239 | 0 | std::string ToStringExtra() const override { return strprintf("%i", m_threshold); } |
1240 | 0 | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override { |
1241 | 0 | CScript ret; |
1242 | 0 | std::vector<XOnlyPubKey> xkeys; |
1243 | 0 | xkeys.reserve(keys.size()); |
1244 | 0 | for (const auto& key : keys) xkeys.emplace_back(key); |
1245 | 0 | if (m_sorted) std::sort(xkeys.begin(), xkeys.end()); |
1246 | 0 | ret << ToByteVector(xkeys[0]) << OP_CHECKSIG; |
1247 | 0 | for (size_t i = 1; i < keys.size(); ++i) { |
1248 | 0 | ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD; |
1249 | 0 | } |
1250 | 0 | ret << m_threshold << OP_NUMEQUAL; |
1251 | 0 | return Vector(std::move(ret)); |
1252 | 0 | } |
1253 | | public: |
1254 | 0 | MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {} |
1255 | 0 | bool IsSingleType() const final { return true; } |
1256 | | |
1257 | 0 | std::optional<int64_t> ScriptSize() const override { |
1258 | 0 | const auto n_keys = m_pubkey_args.size(); |
1259 | 0 | return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1; |
1260 | 0 | } |
1261 | | |
1262 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1263 | 0 | return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold); |
1264 | 0 | } |
1265 | | |
1266 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); } |
1267 | | |
1268 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1269 | 0 | { |
1270 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> providers; |
1271 | 0 | providers.reserve(m_pubkey_args.size()); |
1272 | 0 | for (const auto& arg : m_pubkey_args) { |
1273 | 0 | providers.push_back(arg->Clone()); |
1274 | 0 | } |
1275 | 0 | return std::make_unique<MultiADescriptor>(m_threshold, std::move(providers), m_sorted); |
1276 | 0 | } |
1277 | | }; |
1278 | | |
1279 | | /** A parsed sh(...) descriptor. */ |
1280 | | class SHDescriptor final : public DescriptorImpl |
1281 | | { |
1282 | | protected: |
1283 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override |
1284 | 0 | { |
1285 | 0 | auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0]))); |
1286 | 0 | if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]); |
1287 | 0 | return ret; |
1288 | 0 | } |
1289 | | |
1290 | 0 | bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; } |
1291 | | |
1292 | | public: |
1293 | 0 | SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {} |
1294 | | |
1295 | | std::optional<OutputType> GetOutputType() const override |
1296 | 0 | { |
1297 | 0 | assert(m_subdescriptor_args.size() == 1); |
1298 | 0 | if (IsSegwit()) return OutputType::P2SH_SEGWIT; |
1299 | 0 | return OutputType::LEGACY; |
1300 | 0 | } |
1301 | 0 | bool IsSingleType() const final { return true; } |
1302 | | |
1303 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; } |
1304 | | |
1305 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1306 | 0 | if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) { |
1307 | 0 | if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) { |
1308 | | // The subscript is never witness data. |
1309 | 0 | const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR; |
1310 | | // The weight depends on whether the inner descriptor is satisfied using the witness stack. |
1311 | 0 | if (IsSegwit()) return subscript_weight + *sat_size; |
1312 | 0 | return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR; |
1313 | 0 | } |
1314 | 0 | } |
1315 | 0 | return {}; |
1316 | 0 | } |
1317 | | |
1318 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { |
1319 | 0 | if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems; |
1320 | 0 | return {}; |
1321 | 0 | } |
1322 | | |
1323 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1324 | 0 | { |
1325 | 0 | return std::make_unique<SHDescriptor>(m_subdescriptor_args.at(0)->Clone()); |
1326 | 0 | } |
1327 | | }; |
1328 | | |
1329 | | /** A parsed wsh(...) descriptor. */ |
1330 | | class WSHDescriptor final : public DescriptorImpl |
1331 | | { |
1332 | | protected: |
1333 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override |
1334 | 0 | { |
1335 | 0 | auto ret = Vector(GetScriptForDestination(WitnessV0ScriptHash(scripts[0]))); |
1336 | 0 | if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]); |
1337 | 0 | return ret; |
1338 | 0 | } |
1339 | | public: |
1340 | 0 | WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {} |
1341 | 0 | std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; } |
1342 | 0 | bool IsSingleType() const final { return true; } |
1343 | | |
1344 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; } |
1345 | | |
1346 | 0 | std::optional<int64_t> MaxSatSize(bool use_max_sig) const override { |
1347 | 0 | if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) { |
1348 | 0 | if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) { |
1349 | 0 | return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size; |
1350 | 0 | } |
1351 | 0 | } |
1352 | 0 | return {}; |
1353 | 0 | } |
1354 | | |
1355 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override { |
1356 | 0 | return MaxSatSize(use_max_sig); |
1357 | 0 | } |
1358 | | |
1359 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { |
1360 | 0 | if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems; |
1361 | 0 | return {}; |
1362 | 0 | } |
1363 | | |
1364 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1365 | 0 | { |
1366 | 0 | return std::make_unique<WSHDescriptor>(m_subdescriptor_args.at(0)->Clone()); |
1367 | 0 | } |
1368 | | }; |
1369 | | |
1370 | | /** A parsed tr(...) descriptor. */ |
1371 | | class TRDescriptor final : public DescriptorImpl |
1372 | | { |
1373 | | std::vector<int> m_depths; |
1374 | | protected: |
1375 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override |
1376 | 0 | { |
1377 | 0 | TaprootBuilder builder; |
1378 | 0 | assert(m_depths.size() == scripts.size()); |
1379 | 0 | for (size_t pos = 0; pos < m_depths.size(); ++pos) { |
1380 | 0 | builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT); |
1381 | 0 | } |
1382 | 0 | if (!builder.IsComplete()) return {}; |
1383 | 0 | assert(keys.size() == 1); |
1384 | 0 | XOnlyPubKey xpk(keys[0]); |
1385 | 0 | if (!xpk.IsFullyValid()) return {}; |
1386 | 0 | builder.Finalize(xpk); |
1387 | 0 | WitnessV1Taproot output = builder.GetOutput(); |
1388 | 0 | out.tr_trees[output] = builder; |
1389 | 0 | return Vector(GetScriptForDestination(output)); |
1390 | 0 | } |
1391 | | bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override |
1392 | 0 | { |
1393 | 0 | if (m_depths.empty()) return true; |
1394 | 0 | std::vector<bool> path; |
1395 | 0 | for (size_t pos = 0; pos < m_depths.size(); ++pos) { |
1396 | 0 | if (pos) ret += ','; |
1397 | 0 | while ((int)path.size() <= m_depths[pos]) { |
1398 | 0 | if (path.size()) ret += '{'; |
1399 | 0 | path.push_back(false); |
1400 | 0 | } |
1401 | 0 | std::string tmp; |
1402 | 0 | if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false; |
1403 | 0 | ret += tmp; |
1404 | 0 | while (!path.empty() && path.back()) { |
1405 | 0 | if (path.size() > 1) ret += '}'; |
1406 | 0 | path.pop_back(); |
1407 | 0 | } |
1408 | 0 | if (!path.empty()) path.back() = true; |
1409 | 0 | } |
1410 | 0 | return true; |
1411 | 0 | } |
1412 | | public: |
1413 | | TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) : |
1414 | 0 | DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths)) |
1415 | 0 | { |
1416 | 0 | assert(m_subdescriptor_args.size() == m_depths.size()); |
1417 | 0 | } |
1418 | 0 | std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; } |
1419 | 0 | bool IsSingleType() const final { return true; } |
1420 | | |
1421 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; } |
1422 | | |
1423 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool) const override { |
1424 | | // FIXME: We assume keypath spend, which can lead to very large underestimations. |
1425 | 0 | return 1 + 65; |
1426 | 0 | } |
1427 | | |
1428 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { |
1429 | | // FIXME: See above, we assume keypath spend. |
1430 | 0 | return 1; |
1431 | 0 | } |
1432 | | |
1433 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1434 | 0 | { |
1435 | 0 | std::vector<std::unique_ptr<DescriptorImpl>> subdescs; |
1436 | 0 | subdescs.reserve(m_subdescriptor_args.size()); |
1437 | 0 | std::transform(m_subdescriptor_args.begin(), m_subdescriptor_args.end(), subdescs.begin(), [](const std::unique_ptr<DescriptorImpl>& d) { return d->Clone(); }); |
1438 | 0 | return std::make_unique<TRDescriptor>(m_pubkey_args.at(0)->Clone(), std::move(subdescs), m_depths); |
1439 | 0 | } |
1440 | | }; |
1441 | | |
1442 | | /* We instantiate Miniscript here with a simple integer as key type. |
1443 | | * The value of these key integers are an index in the |
1444 | | * DescriptorImpl::m_pubkey_args vector. |
1445 | | */ |
1446 | | |
1447 | | /** |
1448 | | * The context for converting a Miniscript descriptor into a Script. |
1449 | | */ |
1450 | | class ScriptMaker { |
1451 | | //! Keys contained in the Miniscript (the evaluation of DescriptorImpl::m_pubkey_args). |
1452 | | const std::vector<CPubKey>& m_keys; |
1453 | | //! The script context we're operating within (Tapscript or P2WSH). |
1454 | | const miniscript::MiniscriptContext m_script_ctx; |
1455 | | |
1456 | | //! Get the ripemd160(sha256()) hash of this key. |
1457 | | //! Any key that is valid in a descriptor serializes as 32 bytes within a Tapscript context. So we |
1458 | | //! must not hash the sign-bit byte in this case. |
1459 | 0 | uint160 GetHash160(uint32_t key) const { |
1460 | 0 | if (miniscript::IsTapscript(m_script_ctx)) { |
1461 | 0 | return Hash160(XOnlyPubKey{m_keys[key]}); |
1462 | 0 | } |
1463 | 0 | return m_keys[key].GetID(); |
1464 | 0 | } |
1465 | | |
1466 | | public: |
1467 | 0 | ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND, const miniscript::MiniscriptContext script_ctx) : m_keys(keys), m_script_ctx{script_ctx} {} |
1468 | | |
1469 | 0 | std::vector<unsigned char> ToPKBytes(uint32_t key) const { |
1470 | | // In Tapscript keys always serialize as x-only, whether an x-only key was used in the descriptor or not. |
1471 | 0 | if (!miniscript::IsTapscript(m_script_ctx)) { |
1472 | 0 | return {m_keys[key].begin(), m_keys[key].end()}; |
1473 | 0 | } |
1474 | 0 | const XOnlyPubKey xonly_pubkey{m_keys[key]}; |
1475 | 0 | return {xonly_pubkey.begin(), xonly_pubkey.end()}; |
1476 | 0 | } |
1477 | | |
1478 | 0 | std::vector<unsigned char> ToPKHBytes(uint32_t key) const { |
1479 | 0 | auto id = GetHash160(key); |
1480 | 0 | return {id.begin(), id.end()}; |
1481 | 0 | } |
1482 | | }; |
1483 | | |
1484 | | /** |
1485 | | * The context for converting a Miniscript descriptor to its textual form. |
1486 | | */ |
1487 | | class StringMaker { |
1488 | | //! To convert private keys for private descriptors. |
1489 | | const SigningProvider* m_arg; |
1490 | | //! Keys contained in the Miniscript (a reference to DescriptorImpl::m_pubkey_args). |
1491 | | const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys; |
1492 | | //! Whether to serialize keys as private or public. |
1493 | | bool m_private; |
1494 | | |
1495 | | public: |
1496 | | StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv) |
1497 | 0 | : m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {} |
1498 | | |
1499 | | std::optional<std::string> ToString(uint32_t key) const |
1500 | 0 | { |
1501 | 0 | std::string ret; |
1502 | 0 | if (m_private) { |
1503 | 0 | if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {}; |
1504 | 0 | } else { |
1505 | 0 | ret = m_pubkeys[key]->ToString(); |
1506 | 0 | } |
1507 | 0 | return ret; |
1508 | 0 | } |
1509 | | }; |
1510 | | |
1511 | | class MiniscriptDescriptor final : public DescriptorImpl |
1512 | | { |
1513 | | private: |
1514 | | miniscript::NodeRef<uint32_t> m_node; |
1515 | | |
1516 | | protected: |
1517 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, |
1518 | | FlatSigningProvider& provider) const override |
1519 | 0 | { |
1520 | 0 | const auto script_ctx{m_node->GetMsCtx()}; |
1521 | 0 | for (const auto& key : keys) { |
1522 | 0 | if (miniscript::IsTapscript(script_ctx)) { |
1523 | 0 | provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key); |
1524 | 0 | } else { |
1525 | 0 | provider.pubkeys.emplace(key.GetID(), key); |
1526 | 0 | } |
1527 | 0 | } |
1528 | 0 | return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx))); |
1529 | 0 | } |
1530 | | |
1531 | | public: |
1532 | | MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node) |
1533 | 0 | : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {} |
1534 | | |
1535 | | bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, |
1536 | | const DescriptorCache* cache = nullptr) const override |
1537 | 0 | { |
1538 | 0 | if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) { |
1539 | 0 | out = *res; |
1540 | 0 | return true; |
1541 | 0 | } |
1542 | 0 | return false; |
1543 | 0 | } |
1544 | | |
1545 | 0 | bool IsSolvable() const override { return true; } |
1546 | 0 | bool IsSingleType() const final { return true; } |
1547 | | |
1548 | 0 | std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); } |
1549 | | |
1550 | 0 | std::optional<int64_t> MaxSatSize(bool) const override { |
1551 | | // For Miniscript we always assume high-R ECDSA signatures. |
1552 | 0 | return m_node->GetWitnessSize(); |
1553 | 0 | } |
1554 | | |
1555 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { |
1556 | 0 | return m_node->GetStackSize(); |
1557 | 0 | } |
1558 | | |
1559 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1560 | 0 | { |
1561 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> providers; |
1562 | 0 | providers.reserve(m_pubkey_args.size()); |
1563 | 0 | for (const auto& arg : m_pubkey_args) { |
1564 | 0 | providers.push_back(arg->Clone()); |
1565 | 0 | } |
1566 | 0 | return std::make_unique<MiniscriptDescriptor>(std::move(providers), m_node->Clone()); |
1567 | 0 | } |
1568 | | }; |
1569 | | |
1570 | | /** A parsed rawtr(...) descriptor. */ |
1571 | | class RawTRDescriptor final : public DescriptorImpl |
1572 | | { |
1573 | | protected: |
1574 | | std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override |
1575 | 0 | { |
1576 | 0 | assert(keys.size() == 1); |
1577 | 0 | XOnlyPubKey xpk(keys[0]); |
1578 | 0 | if (!xpk.IsFullyValid()) return {}; |
1579 | 0 | WitnessV1Taproot output{xpk}; |
1580 | 0 | return Vector(GetScriptForDestination(output)); |
1581 | 0 | } |
1582 | | public: |
1583 | 0 | RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {} |
1584 | 0 | std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; } |
1585 | 0 | bool IsSingleType() const final { return true; } |
1586 | | |
1587 | 0 | std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; } |
1588 | | |
1589 | 0 | std::optional<int64_t> MaxSatisfactionWeight(bool) const override { |
1590 | | // We can't know whether there is a script path, so assume key path spend. |
1591 | 0 | return 1 + 65; |
1592 | 0 | } |
1593 | | |
1594 | 0 | std::optional<int64_t> MaxSatisfactionElems() const override { |
1595 | | // See above, we assume keypath spend. |
1596 | 0 | return 1; |
1597 | 0 | } |
1598 | | |
1599 | | std::unique_ptr<DescriptorImpl> Clone() const override |
1600 | 0 | { |
1601 | 0 | return std::make_unique<RawTRDescriptor>(m_pubkey_args.at(0)->Clone()); |
1602 | 0 | } |
1603 | | }; |
1604 | | |
1605 | | //////////////////////////////////////////////////////////////////////////// |
1606 | | // Parser // |
1607 | | //////////////////////////////////////////////////////////////////////////// |
1608 | | |
1609 | | enum class ParseScriptContext { |
1610 | | TOP, //!< Top-level context (script goes directly in scriptPubKey) |
1611 | | P2SH, //!< Inside sh() (script becomes P2SH redeemScript) |
1612 | | P2WPKH, //!< Inside wpkh() (no script, pubkey only) |
1613 | | P2WSH, //!< Inside wsh() (script becomes v0 witness script) |
1614 | | P2TR, //!< Inside tr() (either internal key, or BIP342 script leaf) |
1615 | | MUSIG, //!< Inside musig() (implies P2TR, cannot have nested musig()) |
1616 | | }; |
1617 | | |
1618 | | std::optional<uint32_t> ParseKeyPathNum(std::span<const char> elem, bool& apostrophe, std::string& error, bool& has_hardened) |
1619 | 0 | { |
1620 | 0 | bool hardened = false; |
1621 | 0 | if (elem.size() > 0) { |
1622 | 0 | const char last = elem[elem.size() - 1]; |
1623 | 0 | if (last == '\'' || last == 'h') { |
1624 | 0 | elem = elem.first(elem.size() - 1); |
1625 | 0 | hardened = true; |
1626 | 0 | apostrophe = last == '\''; |
1627 | 0 | } |
1628 | 0 | } |
1629 | 0 | const auto p{ToIntegral<uint32_t>(std::string_view{elem.begin(), elem.end()})}; |
1630 | 0 | if (!p) { |
1631 | 0 | error = strprintf("Key path value '%s' is not a valid uint32", std::string_view{elem.begin(), elem.end()}); |
1632 | 0 | return std::nullopt; |
1633 | 0 | } else if (*p > 0x7FFFFFFFUL) { |
1634 | 0 | error = strprintf("Key path value %u is out of range", *p); |
1635 | 0 | return std::nullopt; |
1636 | 0 | } |
1637 | 0 | has_hardened = has_hardened || hardened; |
1638 | |
|
1639 | 0 | return std::make_optional<uint32_t>(*p | (((uint32_t)hardened) << 31)); |
1640 | 0 | } |
1641 | | |
1642 | | /** |
1643 | | * Parse a key path, being passed a split list of elements (the first element is ignored because it is always the key). |
1644 | | * |
1645 | | * @param[in] split BIP32 path string, using either ' or h for hardened derivation |
1646 | | * @param[out] out Vector of parsed key paths |
1647 | | * @param[out] apostrophe only updated if hardened derivation is found |
1648 | | * @param[out] error parsing error message |
1649 | | * @param[in] allow_multipath Allows the parsed path to use the multipath specifier |
1650 | | * @returns false if parsing failed |
1651 | | **/ |
1652 | | [[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath, bool& has_hardened) |
1653 | 0 | { |
1654 | 0 | KeyPath path; |
1655 | 0 | struct MultipathSubstitutes { |
1656 | 0 | size_t placeholder_index; |
1657 | 0 | std::vector<uint32_t> values; |
1658 | 0 | }; |
1659 | 0 | std::optional<MultipathSubstitutes> substitutes; |
1660 | 0 | has_hardened = false; |
1661 | |
|
1662 | 0 | for (size_t i = 1; i < split.size(); ++i) { |
1663 | 0 | const std::span<const char>& elem = split[i]; |
1664 | | |
1665 | | // Check if element contains multipath specifier |
1666 | 0 | if (!elem.empty() && elem.front() == '<' && elem.back() == '>') { |
1667 | 0 | if (!allow_multipath) { |
1668 | 0 | error = strprintf("Key path value '%s' specifies multipath in a section where multipath is not allowed", std::string(elem.begin(), elem.end())); |
1669 | 0 | return false; |
1670 | 0 | } |
1671 | 0 | if (substitutes) { |
1672 | 0 | error = "Multiple multipath key path specifiers found"; |
1673 | 0 | return false; |
1674 | 0 | } |
1675 | | |
1676 | | // Parse each possible value |
1677 | 0 | std::vector<std::span<const char>> nums = Split(std::span(elem.begin()+1, elem.end()-1), ";"); |
1678 | 0 | if (nums.size() < 2) { |
1679 | 0 | error = "Multipath key path specifiers must have at least two items"; |
1680 | 0 | return false; |
1681 | 0 | } |
1682 | | |
1683 | 0 | substitutes.emplace(); |
1684 | 0 | std::unordered_set<uint32_t> seen_substitutes; |
1685 | 0 | for (const auto& num : nums) { |
1686 | 0 | const auto& op_num = ParseKeyPathNum(num, apostrophe, error, has_hardened); |
1687 | 0 | if (!op_num) return false; |
1688 | 0 | auto [_, inserted] = seen_substitutes.insert(*op_num); |
1689 | 0 | if (!inserted) { |
1690 | 0 | error = strprintf("Duplicated key path value %u in multipath specifier", *op_num); |
1691 | 0 | return false; |
1692 | 0 | } |
1693 | 0 | substitutes->values.emplace_back(*op_num); |
1694 | 0 | } |
1695 | | |
1696 | 0 | path.emplace_back(); // Placeholder for multipath segment |
1697 | 0 | substitutes->placeholder_index = path.size() - 1; |
1698 | 0 | } else { |
1699 | 0 | const auto& op_num = ParseKeyPathNum(elem, apostrophe, error, has_hardened); |
1700 | 0 | if (!op_num) return false; |
1701 | 0 | path.emplace_back(*op_num); |
1702 | 0 | } |
1703 | 0 | } |
1704 | | |
1705 | 0 | if (!substitutes) { |
1706 | 0 | out.emplace_back(std::move(path)); |
1707 | 0 | } else { |
1708 | | // Replace the multipath placeholder with each value while generating paths |
1709 | 0 | for (uint32_t substitute : substitutes->values) { |
1710 | 0 | KeyPath branch_path = path; |
1711 | 0 | branch_path[substitutes->placeholder_index] = substitute; |
1712 | 0 | out.emplace_back(std::move(branch_path)); |
1713 | 0 | } |
1714 | 0 | } |
1715 | 0 | return true; |
1716 | 0 | } |
1717 | | |
1718 | | [[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath) |
1719 | 0 | { |
1720 | 0 | bool dummy; |
1721 | 0 | return ParseKeyPath(split, out, apostrophe, error, allow_multipath, /*has_hardened=*/dummy); |
1722 | 0 | } |
1723 | | |
1724 | | static DeriveType ParseDeriveType(std::vector<std::span<const char>>& split, bool& apostrophe) |
1725 | 0 | { |
1726 | 0 | DeriveType type = DeriveType::NO; |
1727 | 0 | if (std::ranges::equal(split.back(), std::span{"*"}.first(1))) { |
1728 | 0 | split.pop_back(); |
1729 | 0 | type = DeriveType::UNHARDENED; |
1730 | 0 | } else if (std::ranges::equal(split.back(), std::span{"*'"}.first(2)) || std::ranges::equal(split.back(), std::span{"*h"}.first(2))) { |
1731 | 0 | apostrophe = std::ranges::equal(split.back(), std::span{"*'"}.first(2)); |
1732 | 0 | split.pop_back(); |
1733 | 0 | type = DeriveType::HARDENED; |
1734 | 0 | } |
1735 | 0 | return type; |
1736 | 0 | } |
1737 | | |
1738 | | /** Parse a public key that excludes origin information. */ |
1739 | | std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkeyInner(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error) |
1740 | 0 | { |
1741 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> ret; |
1742 | 0 | bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH; |
1743 | 0 | auto split = Split(sp, '/'); |
1744 | 0 | std::string str(split[0].begin(), split[0].end()); |
1745 | 0 | if (str.size() == 0) { |
1746 | 0 | error = "No key provided"; |
1747 | 0 | return {}; |
1748 | 0 | } |
1749 | 0 | if (IsSpace(str.front()) || IsSpace(str.back())) { |
1750 | 0 | error = strprintf("Key '%s' is invalid due to whitespace", str); |
1751 | 0 | return {}; |
1752 | 0 | } |
1753 | 0 | if (split.size() == 1) { |
1754 | 0 | if (IsHex(str)) { |
1755 | 0 | std::vector<unsigned char> data = ParseHex(str); |
1756 | 0 | CPubKey pubkey(data); |
1757 | 0 | if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) { |
1758 | 0 | error = "Hybrid public keys are not allowed"; |
1759 | 0 | return {}; |
1760 | 0 | } |
1761 | 0 | if (pubkey.IsFullyValid()) { |
1762 | 0 | if (permit_uncompressed || pubkey.IsCompressed()) { |
1763 | 0 | ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false)); |
1764 | 0 | return ret; |
1765 | 0 | } else { |
1766 | 0 | error = "Uncompressed keys are not allowed"; |
1767 | 0 | return {}; |
1768 | 0 | } |
1769 | 0 | } else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) { |
1770 | 0 | unsigned char fullkey[33] = {0x02}; |
1771 | 0 | std::copy(data.begin(), data.end(), fullkey + 1); |
1772 | 0 | pubkey.Set(std::begin(fullkey), std::end(fullkey)); |
1773 | 0 | if (pubkey.IsFullyValid()) { |
1774 | 0 | ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true)); |
1775 | 0 | return ret; |
1776 | 0 | } |
1777 | 0 | } |
1778 | 0 | error = strprintf("Pubkey '%s' is invalid", str); |
1779 | 0 | return {}; |
1780 | 0 | } |
1781 | 0 | CKey key = DecodeSecret(str); |
1782 | 0 | if (key.IsValid()) { |
1783 | 0 | if (permit_uncompressed || key.IsCompressed()) { |
1784 | 0 | CPubKey pubkey = key.GetPubKey(); |
1785 | 0 | out.keys.emplace(pubkey.GetID(), key); |
1786 | 0 | ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR)); |
1787 | 0 | return ret; |
1788 | 0 | } else { |
1789 | 0 | error = "Uncompressed keys are not allowed"; |
1790 | 0 | return {}; |
1791 | 0 | } |
1792 | 0 | } |
1793 | 0 | } |
1794 | 0 | CExtKey extkey = DecodeExtKey(str); |
1795 | 0 | CExtPubKey extpubkey = DecodeExtPubKey(str); |
1796 | 0 | if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) { |
1797 | 0 | error = strprintf("key '%s' is not valid", str); |
1798 | 0 | return {}; |
1799 | 0 | } |
1800 | 0 | std::vector<KeyPath> paths; |
1801 | 0 | DeriveType type = ParseDeriveType(split, apostrophe); |
1802 | 0 | if (!ParseKeyPath(split, paths, apostrophe, error, /*allow_multipath=*/true)) return {}; |
1803 | 0 | if (extkey.key.IsValid()) { |
1804 | 0 | extpubkey = extkey.Neuter(); |
1805 | 0 | out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key); |
1806 | 0 | } |
1807 | 0 | for (auto& path : paths) { |
1808 | 0 | ret.emplace_back(std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe)); |
1809 | 0 | } |
1810 | 0 | return ret; |
1811 | 0 | } |
1812 | | |
1813 | | /** Parse a public key including origin information (if enabled). */ |
1814 | | // NOLINTNEXTLINE(misc-no-recursion) |
1815 | | std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkey(uint32_t& key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error) |
1816 | 0 | { |
1817 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> ret; |
1818 | |
|
1819 | 0 | using namespace script; |
1820 | | |
1821 | | // musig cannot be nested inside of an origin |
1822 | 0 | std::span<const char> span = sp; |
1823 | 0 | if (Const("musig(", span, /*skip=*/false)) { |
1824 | 0 | if (ctx != ParseScriptContext::P2TR) { |
1825 | 0 | error = "musig() is only allowed in tr() and rawtr()"; |
1826 | 0 | return {}; |
1827 | 0 | } |
1828 | | |
1829 | | // Split the span on the end parentheses. The end parentheses must |
1830 | | // be included in the resulting span so that Expr is happy. |
1831 | 0 | auto split = Split(sp, ')', /*include_sep=*/true); |
1832 | 0 | if (split.size() > 2) { |
1833 | 0 | error = "Too many ')' in musig() expression"; |
1834 | 0 | return {}; |
1835 | 0 | } |
1836 | 0 | std::span<const char> expr(split.at(0).begin(), split.at(0).end()); |
1837 | 0 | if (!Func("musig", expr)) { |
1838 | 0 | error = "Invalid musig() expression"; |
1839 | 0 | return {}; |
1840 | 0 | } |
1841 | | |
1842 | | // Parse the participant pubkeys |
1843 | 0 | bool any_ranged = false; |
1844 | 0 | bool all_bip32 = true; |
1845 | 0 | std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers; |
1846 | 0 | bool any_key_parsed = true; |
1847 | 0 | size_t max_multipath_len = 0; |
1848 | 0 | while (expr.size()) { |
1849 | 0 | if (!any_key_parsed && !Const(",", expr)) { |
1850 | 0 | error = strprintf("musig(): expected ',', got '%c'", expr[0]); |
1851 | 0 | return {}; |
1852 | 0 | } |
1853 | 0 | any_key_parsed = false; |
1854 | 0 | auto arg = Expr(expr); |
1855 | 0 | auto pk = ParsePubkey(key_exp_index, arg, ParseScriptContext::MUSIG, out, error); |
1856 | 0 | if (pk.empty()) { |
1857 | 0 | error = strprintf("musig(): %s", error); |
1858 | 0 | return {}; |
1859 | 0 | } |
1860 | | |
1861 | 0 | any_ranged = any_ranged || pk.at(0)->IsRange(); |
1862 | 0 | all_bip32 = all_bip32 && pk.at(0)->IsBIP32(); |
1863 | |
|
1864 | 0 | max_multipath_len = std::max(max_multipath_len, pk.size()); |
1865 | |
|
1866 | 0 | providers.emplace_back(std::move(pk)); |
1867 | 0 | key_exp_index++; |
1868 | 0 | } |
1869 | 0 | if (any_key_parsed) { |
1870 | 0 | error = "musig(): Must contain key expressions"; |
1871 | 0 | return {}; |
1872 | 0 | } |
1873 | | |
1874 | | // Parse any derivation |
1875 | 0 | DeriveType deriv_type = DeriveType::NO; |
1876 | 0 | std::vector<KeyPath> derivation_multipaths; |
1877 | 0 | if (split.size() == 2 && Const("/", split.at(1), /*skip=*/false)) { |
1878 | 0 | if (!all_bip32) { |
1879 | 0 | error = "musig(): derivation requires all participants to be xpubs or xprvs"; |
1880 | 0 | return {}; |
1881 | 0 | } |
1882 | 0 | if (any_ranged) { |
1883 | 0 | error = "musig(): Cannot have ranged participant keys if musig() also has derivation"; |
1884 | 0 | return {}; |
1885 | 0 | } |
1886 | 0 | bool dummy = false; |
1887 | 0 | auto deriv_split = Split(split.at(1), '/'); |
1888 | 0 | deriv_type = ParseDeriveType(deriv_split, dummy); |
1889 | 0 | if (deriv_type == DeriveType::HARDENED) { |
1890 | 0 | error = "musig(): Cannot have hardened child derivation"; |
1891 | 0 | return {}; |
1892 | 0 | } |
1893 | 0 | bool has_hardened = false; |
1894 | 0 | if (!ParseKeyPath(deriv_split, derivation_multipaths, dummy, error, /*allow_multipath=*/true, has_hardened)) { |
1895 | 0 | error = "musig(): " + error; |
1896 | 0 | return {}; |
1897 | 0 | } |
1898 | 0 | if (has_hardened) { |
1899 | 0 | error = "musig(): cannot have hardened derivation steps"; |
1900 | 0 | return {}; |
1901 | 0 | } |
1902 | 0 | } else { |
1903 | 0 | derivation_multipaths.emplace_back(); |
1904 | 0 | } |
1905 | | |
1906 | | // Makes sure that all providers vectors in providers are the given length, or exactly length 1 |
1907 | | // Length 1 vectors have the single provider cloned until it matches the given length. |
1908 | 0 | const auto& clone_providers = [&providers](size_t length) -> bool { |
1909 | 0 | for (auto& multipath_providers : providers) { |
1910 | 0 | if (multipath_providers.size() == 1) { |
1911 | 0 | for (size_t i = 1; i < length; ++i) { |
1912 | 0 | multipath_providers.emplace_back(multipath_providers.at(0)->Clone()); |
1913 | 0 | } |
1914 | 0 | } else if (multipath_providers.size() != length) { |
1915 | 0 | return false; |
1916 | 0 | } |
1917 | 0 | } |
1918 | 0 | return true; |
1919 | 0 | }; |
1920 | | |
1921 | | // Emplace the final MuSigPubkeyProvider into ret with the pubkey providers from the specified provider vectors index |
1922 | | // and the path from the specified path index |
1923 | 0 | const auto& emplace_final_provider = [&ret, &key_exp_index, &deriv_type, &derivation_multipaths, &providers](size_t vec_idx, size_t path_idx) -> void { |
1924 | 0 | KeyPath& path = derivation_multipaths.at(path_idx); |
1925 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> pubs; |
1926 | 0 | pubs.reserve(providers.size()); |
1927 | 0 | for (auto& vec : providers) { |
1928 | 0 | pubs.emplace_back(std::move(vec.at(vec_idx))); |
1929 | 0 | } |
1930 | 0 | ret.emplace_back(std::make_unique<MuSigPubkeyProvider>(key_exp_index, std::move(pubs), path, deriv_type)); |
1931 | 0 | }; |
1932 | |
|
1933 | 0 | if (max_multipath_len > 1 && derivation_multipaths.size() > 1) { |
1934 | 0 | error = "musig(): Cannot have multipath participant keys if musig() is also multipath"; |
1935 | 0 | return {}; |
1936 | 0 | } else if (max_multipath_len > 1) { |
1937 | 0 | if (!clone_providers(max_multipath_len)) { |
1938 | 0 | error = strprintf("musig(): Multipath derivation paths have mismatched lengths"); |
1939 | 0 | return {}; |
1940 | 0 | } |
1941 | 0 | for (size_t i = 0; i < max_multipath_len; ++i) { |
1942 | | // Final MuSigPubkeyProvider uses participant pubkey providers at each multipath position, and the first (and only) path |
1943 | 0 | emplace_final_provider(i, 0); |
1944 | 0 | } |
1945 | 0 | } else if (derivation_multipaths.size() > 1) { |
1946 | | // All key provider vectors should be length 1. Clone them until they have the same length as paths |
1947 | 0 | if (!Assume(clone_providers(derivation_multipaths.size()))) { |
1948 | 0 | error = "musig(): Multipath derivation path with multipath participants is disallowed"; // This error is unreachable due to earlier check |
1949 | 0 | return {}; |
1950 | 0 | } |
1951 | 0 | for (size_t i = 0; i < derivation_multipaths.size(); ++i) { |
1952 | | // Final MuSigPubkeyProvider uses cloned participant pubkey providers, and the multipath derivation paths |
1953 | 0 | emplace_final_provider(i, i); |
1954 | 0 | } |
1955 | 0 | } else { |
1956 | | // No multipath derivation, MuSigPubkeyProvider uses the first (and only) participant pubkey providers, and the first (and only) path |
1957 | 0 | emplace_final_provider(0, 0); |
1958 | 0 | } |
1959 | 0 | return ret; |
1960 | 0 | } |
1961 | | |
1962 | 0 | auto origin_split = Split(sp, ']'); |
1963 | 0 | if (origin_split.size() > 2) { |
1964 | 0 | error = "Multiple ']' characters found for a single pubkey"; |
1965 | 0 | return {}; |
1966 | 0 | } |
1967 | | // This is set if either the origin or path suffix contains a hardened derivation. |
1968 | 0 | bool apostrophe = false; |
1969 | 0 | if (origin_split.size() == 1) { |
1970 | 0 | return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error); |
1971 | 0 | } |
1972 | 0 | if (origin_split[0].empty() || origin_split[0][0] != '[') { |
1973 | 0 | error = strprintf("Key origin start '[ character expected but not found, got '%c' instead", |
1974 | 0 | origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]); |
1975 | 0 | return {}; |
1976 | 0 | } |
1977 | 0 | auto slash_split = Split(origin_split[0].subspan(1), '/'); |
1978 | 0 | if (slash_split[0].size() != 8) { |
1979 | 0 | error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size()); |
1980 | 0 | return {}; |
1981 | 0 | } |
1982 | 0 | std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end()); |
1983 | 0 | if (!IsHex(fpr_hex)) { |
1984 | 0 | error = strprintf("Fingerprint '%s' is not hex", fpr_hex); |
1985 | 0 | return {}; |
1986 | 0 | } |
1987 | 0 | auto fpr_bytes = ParseHex(fpr_hex); |
1988 | 0 | KeyOriginInfo info; |
1989 | 0 | static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes"); |
1990 | 0 | assert(fpr_bytes.size() == 4); |
1991 | 0 | std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint); |
1992 | 0 | std::vector<KeyPath> path; |
1993 | 0 | if (!ParseKeyPath(slash_split, path, apostrophe, error, /*allow_multipath=*/false)) return {}; |
1994 | 0 | info.path = path.at(0); |
1995 | 0 | auto providers = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error); |
1996 | 0 | if (providers.empty()) return {}; |
1997 | 0 | ret.reserve(providers.size()); |
1998 | 0 | for (auto& prov : providers) { |
1999 | 0 | ret.emplace_back(std::make_unique<OriginPubkeyProvider>(key_exp_index, info, std::move(prov), apostrophe)); |
2000 | 0 | } |
2001 | 0 | return ret; |
2002 | 0 | } |
2003 | | |
2004 | | std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext ctx, const SigningProvider& provider) |
2005 | 0 | { |
2006 | | // Key cannot be hybrid |
2007 | 0 | if (!pubkey.IsValidNonHybrid()) { |
2008 | 0 | return nullptr; |
2009 | 0 | } |
2010 | | // Uncompressed is only allowed in TOP and P2SH contexts |
2011 | 0 | if (ctx != ParseScriptContext::TOP && ctx != ParseScriptContext::P2SH && !pubkey.IsCompressed()) { |
2012 | 0 | return nullptr; |
2013 | 0 | } |
2014 | 0 | std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false); |
2015 | 0 | KeyOriginInfo info; |
2016 | 0 | if (provider.GetKeyOrigin(pubkey.GetID(), info)) { |
2017 | 0 | return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false); |
2018 | 0 | } |
2019 | 0 | return key_provider; |
2020 | 0 | } |
2021 | | |
2022 | | std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider) |
2023 | 0 | { |
2024 | 0 | CPubKey pubkey{xkey.GetEvenCorrespondingCPubKey()}; |
2025 | 0 | std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true); |
2026 | 0 | KeyOriginInfo info; |
2027 | 0 | if (provider.GetKeyOriginByXOnly(xkey, info)) { |
2028 | 0 | return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false); |
2029 | 0 | } |
2030 | 0 | return key_provider; |
2031 | 0 | } |
2032 | | |
2033 | | /** |
2034 | | * The context for parsing a Miniscript descriptor (either from Script or from its textual representation). |
2035 | | */ |
2036 | | struct KeyParser { |
2037 | | //! The Key type is an index in DescriptorImpl::m_pubkey_args |
2038 | | using Key = uint32_t; |
2039 | | //! Must not be nullptr if parsing from string. |
2040 | | FlatSigningProvider* m_out; |
2041 | | //! Must not be nullptr if parsing from Script. |
2042 | | const SigningProvider* m_in; |
2043 | | //! List of multipath expanded keys contained in the Miniscript. |
2044 | | mutable std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> m_keys; |
2045 | | //! Used to detect key parsing errors within a Miniscript. |
2046 | | mutable std::string m_key_parsing_error; |
2047 | | //! The script context we're operating within (Tapscript or P2WSH). |
2048 | | const miniscript::MiniscriptContext m_script_ctx; |
2049 | | //! The number of keys that were parsed before starting to parse this Miniscript descriptor. |
2050 | | uint32_t m_offset; |
2051 | | |
2052 | | KeyParser(FlatSigningProvider* out LIFETIMEBOUND, const SigningProvider* in LIFETIMEBOUND, |
2053 | | miniscript::MiniscriptContext ctx, uint32_t offset = 0) |
2054 | 0 | : m_out(out), m_in(in), m_script_ctx(ctx), m_offset(offset) {} |
2055 | | |
2056 | 0 | bool KeyCompare(const Key& a, const Key& b) const { |
2057 | 0 | return *m_keys.at(a).at(0) < *m_keys.at(b).at(0); |
2058 | 0 | } |
2059 | | |
2060 | 0 | ParseScriptContext ParseContext() const { |
2061 | 0 | switch (m_script_ctx) { |
2062 | 0 | case miniscript::MiniscriptContext::P2WSH: return ParseScriptContext::P2WSH; |
2063 | 0 | case miniscript::MiniscriptContext::TAPSCRIPT: return ParseScriptContext::P2TR; |
2064 | 0 | } |
2065 | 0 | assert(false); |
2066 | 0 | } |
2067 | | |
2068 | | template<typename I> std::optional<Key> FromString(I begin, I end) const |
2069 | 0 | { |
2070 | 0 | assert(m_out); |
2071 | 0 | Key key = m_keys.size(); |
2072 | 0 | uint32_t exp_index = m_offset + key; |
2073 | 0 | auto pk = ParsePubkey(exp_index, {&*begin, &*end}, ParseContext(), *m_out, m_key_parsing_error); |
2074 | 0 | if (pk.empty()) return {}; |
2075 | 0 | m_keys.emplace_back(std::move(pk)); |
2076 | 0 | return key; |
2077 | 0 | } |
2078 | | |
2079 | | std::optional<std::string> ToString(const Key& key) const |
2080 | 0 | { |
2081 | 0 | return m_keys.at(key).at(0)->ToString(); |
2082 | 0 | } |
2083 | | |
2084 | | template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const |
2085 | 0 | { |
2086 | 0 | assert(m_in); |
2087 | 0 | Key key = m_keys.size(); |
2088 | 0 | if (miniscript::IsTapscript(m_script_ctx) && end - begin == 32) { |
2089 | 0 | XOnlyPubKey pubkey; |
2090 | 0 | std::copy(begin, end, pubkey.begin()); |
2091 | 0 | if (auto pubkey_provider = InferXOnlyPubkey(pubkey, ParseContext(), *m_in)) { |
2092 | 0 | m_keys.emplace_back(); |
2093 | 0 | m_keys.back().push_back(std::move(pubkey_provider)); |
2094 | 0 | return key; |
2095 | 0 | } |
2096 | 0 | } else if (!miniscript::IsTapscript(m_script_ctx)) { |
2097 | 0 | CPubKey pubkey(begin, end); |
2098 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) { |
2099 | 0 | m_keys.emplace_back(); |
2100 | 0 | m_keys.back().push_back(std::move(pubkey_provider)); |
2101 | 0 | return key; |
2102 | 0 | } |
2103 | 0 | } |
2104 | 0 | return {}; |
2105 | 0 | } |
2106 | | |
2107 | | template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const |
2108 | 0 | { |
2109 | 0 | assert(end - begin == 20); |
2110 | 0 | assert(m_in); |
2111 | 0 | uint160 hash; |
2112 | 0 | std::copy(begin, end, hash.begin()); |
2113 | 0 | CKeyID keyid(hash); |
2114 | 0 | CPubKey pubkey; |
2115 | 0 | if (m_in->GetPubKey(keyid, pubkey)) { |
2116 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) { |
2117 | 0 | Key key = m_keys.size(); |
2118 | 0 | m_keys.emplace_back(); |
2119 | 0 | m_keys.back().push_back(std::move(pubkey_provider)); |
2120 | 0 | return key; |
2121 | 0 | } |
2122 | 0 | } |
2123 | 0 | return {}; |
2124 | 0 | } |
2125 | | |
2126 | 0 | miniscript::MiniscriptContext MsContext() const { |
2127 | 0 | return m_script_ctx; |
2128 | 0 | } |
2129 | | }; |
2130 | | |
2131 | | /** Parse a script in a particular context. */ |
2132 | | // NOLINTNEXTLINE(misc-no-recursion) |
2133 | | std::vector<std::unique_ptr<DescriptorImpl>> ParseScript(uint32_t& key_exp_index, std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error) |
2134 | 0 | { |
2135 | 0 | using namespace script; |
2136 | 0 | Assume(ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR); |
2137 | 0 | std::vector<std::unique_ptr<DescriptorImpl>> ret; |
2138 | 0 | auto expr = Expr(sp); |
2139 | 0 | if (Func("pk", expr)) { |
2140 | 0 | auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error); |
2141 | 0 | if (pubkeys.empty()) { |
2142 | 0 | error = strprintf("pk(): %s", error); |
2143 | 0 | return {}; |
2144 | 0 | } |
2145 | 0 | ++key_exp_index; |
2146 | 0 | for (auto& pubkey : pubkeys) { |
2147 | 0 | ret.emplace_back(std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR)); |
2148 | 0 | } |
2149 | 0 | return ret; |
2150 | 0 | } |
2151 | 0 | if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) { |
2152 | 0 | auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error); |
2153 | 0 | if (pubkeys.empty()) { |
2154 | 0 | error = strprintf("pkh(): %s", error); |
2155 | 0 | return {}; |
2156 | 0 | } |
2157 | 0 | ++key_exp_index; |
2158 | 0 | for (auto& pubkey : pubkeys) { |
2159 | 0 | ret.emplace_back(std::make_unique<PKHDescriptor>(std::move(pubkey))); |
2160 | 0 | } |
2161 | 0 | return ret; |
2162 | 0 | } |
2163 | 0 | if (ctx == ParseScriptContext::TOP && Func("combo", expr)) { |
2164 | 0 | auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error); |
2165 | 0 | if (pubkeys.empty()) { |
2166 | 0 | error = strprintf("combo(): %s", error); |
2167 | 0 | return {}; |
2168 | 0 | } |
2169 | 0 | ++key_exp_index; |
2170 | 0 | for (auto& pubkey : pubkeys) { |
2171 | 0 | ret.emplace_back(std::make_unique<ComboDescriptor>(std::move(pubkey))); |
2172 | 0 | } |
2173 | 0 | return ret; |
2174 | 0 | } else if (Func("combo", expr)) { |
2175 | 0 | error = "Can only have combo() at top level"; |
2176 | 0 | return {}; |
2177 | 0 | } |
2178 | 0 | const bool multi = Func("multi", expr); |
2179 | 0 | const bool sortedmulti = !multi && Func("sortedmulti", expr); |
2180 | 0 | const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr); |
2181 | 0 | const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr); |
2182 | 0 | if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) || |
2183 | 0 | (ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) { |
2184 | 0 | auto threshold = Expr(expr); |
2185 | 0 | uint32_t thres; |
2186 | 0 | std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers; // List of multipath expanded pubkeys |
2187 | 0 | if (const auto maybe_thres{ToIntegral<uint32_t>(std::string_view{threshold.begin(), threshold.end()})}) { |
2188 | 0 | thres = *maybe_thres; |
2189 | 0 | } else { |
2190 | 0 | error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end())); |
2191 | 0 | return {}; |
2192 | 0 | } |
2193 | 0 | size_t script_size = 0; |
2194 | 0 | size_t max_providers_len = 0; |
2195 | 0 | while (expr.size()) { |
2196 | 0 | if (!Const(",", expr)) { |
2197 | 0 | error = strprintf("Multi: expected ',', got '%c'", expr[0]); |
2198 | 0 | return {}; |
2199 | 0 | } |
2200 | 0 | auto arg = Expr(expr); |
2201 | 0 | auto pks = ParsePubkey(key_exp_index, arg, ctx, out, error); |
2202 | 0 | if (pks.empty()) { |
2203 | 0 | error = strprintf("Multi: %s", error); |
2204 | 0 | return {}; |
2205 | 0 | } |
2206 | 0 | script_size += pks.at(0)->GetSize() + 1; |
2207 | 0 | max_providers_len = std::max(max_providers_len, pks.size()); |
2208 | 0 | providers.emplace_back(std::move(pks)); |
2209 | 0 | key_exp_index++; |
2210 | 0 | } |
2211 | 0 | if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) { |
2212 | 0 | error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG); |
2213 | 0 | return {}; |
2214 | 0 | } else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) { |
2215 | 0 | error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A); |
2216 | 0 | return {}; |
2217 | 0 | } else if (thres < 1) { |
2218 | 0 | error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres); |
2219 | 0 | return {}; |
2220 | 0 | } else if (thres > providers.size()) { |
2221 | 0 | error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size()); |
2222 | 0 | return {}; |
2223 | 0 | } |
2224 | 0 | if (ctx == ParseScriptContext::TOP) { |
2225 | 0 | if (providers.size() > 3) { |
2226 | 0 | error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size()); |
2227 | 0 | return {}; |
2228 | 0 | } |
2229 | 0 | } |
2230 | 0 | if (ctx == ParseScriptContext::P2SH) { |
2231 | | // This limits the maximum number of compressed pubkeys to 15. |
2232 | 0 | if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) { |
2233 | 0 | error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE); |
2234 | 0 | return {}; |
2235 | 0 | } |
2236 | 0 | } |
2237 | | |
2238 | | // Make sure all vecs are of the same length, or exactly length 1 |
2239 | | // For length 1 vectors, clone key providers until vector is the same length |
2240 | 0 | for (auto& vec : providers) { |
2241 | 0 | if (vec.size() == 1) { |
2242 | 0 | for (size_t i = 1; i < max_providers_len; ++i) { |
2243 | 0 | vec.emplace_back(vec.at(0)->Clone()); |
2244 | 0 | } |
2245 | 0 | } else if (vec.size() != max_providers_len) { |
2246 | 0 | error = strprintf("multi(): Multipath derivation paths have mismatched lengths"); |
2247 | 0 | return {}; |
2248 | 0 | } |
2249 | 0 | } |
2250 | | |
2251 | | // Build the final descriptors vector |
2252 | 0 | for (size_t i = 0; i < max_providers_len; ++i) { |
2253 | | // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts |
2254 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> pubs; |
2255 | 0 | pubs.reserve(providers.size()); |
2256 | 0 | for (auto& pub : providers) { |
2257 | 0 | pubs.emplace_back(std::move(pub.at(i))); |
2258 | 0 | } |
2259 | 0 | if (multi || sortedmulti) { |
2260 | 0 | ret.emplace_back(std::make_unique<MultisigDescriptor>(thres, std::move(pubs), sortedmulti)); |
2261 | 0 | } else { |
2262 | 0 | ret.emplace_back(std::make_unique<MultiADescriptor>(thres, std::move(pubs), sortedmulti_a)); |
2263 | 0 | } |
2264 | 0 | } |
2265 | 0 | return ret; |
2266 | 0 | } else if (multi || sortedmulti) { |
2267 | 0 | error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()"; |
2268 | 0 | return {}; |
2269 | 0 | } else if (multi_a || sortedmulti_a) { |
2270 | 0 | error = "Can only have multi_a/sortedmulti_a inside tr()"; |
2271 | 0 | return {}; |
2272 | 0 | } |
2273 | 0 | if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) { |
2274 | 0 | auto pubkeys = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error); |
2275 | 0 | if (pubkeys.empty()) { |
2276 | 0 | error = strprintf("wpkh(): %s", error); |
2277 | 0 | return {}; |
2278 | 0 | } |
2279 | 0 | key_exp_index++; |
2280 | 0 | for (auto& pubkey : pubkeys) { |
2281 | 0 | ret.emplace_back(std::make_unique<WPKHDescriptor>(std::move(pubkey))); |
2282 | 0 | } |
2283 | 0 | return ret; |
2284 | 0 | } else if (Func("wpkh", expr)) { |
2285 | 0 | error = "Can only have wpkh() at top level or inside sh()"; |
2286 | 0 | return {}; |
2287 | 0 | } |
2288 | 0 | if (ctx == ParseScriptContext::TOP && Func("sh", expr)) { |
2289 | 0 | auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error); |
2290 | 0 | if (descs.empty() || expr.size()) return {}; |
2291 | 0 | std::vector<std::unique_ptr<DescriptorImpl>> ret; |
2292 | 0 | ret.reserve(descs.size()); |
2293 | 0 | for (auto& desc : descs) { |
2294 | 0 | ret.push_back(std::make_unique<SHDescriptor>(std::move(desc))); |
2295 | 0 | } |
2296 | 0 | return ret; |
2297 | 0 | } else if (Func("sh", expr)) { |
2298 | 0 | error = "Can only have sh() at top level"; |
2299 | 0 | return {}; |
2300 | 0 | } |
2301 | 0 | if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) { |
2302 | 0 | auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error); |
2303 | 0 | if (descs.empty() || expr.size()) return {}; |
2304 | 0 | for (auto& desc : descs) { |
2305 | 0 | ret.emplace_back(std::make_unique<WSHDescriptor>(std::move(desc))); |
2306 | 0 | } |
2307 | 0 | return ret; |
2308 | 0 | } else if (Func("wsh", expr)) { |
2309 | 0 | error = "Can only have wsh() at top level or inside sh()"; |
2310 | 0 | return {}; |
2311 | 0 | } |
2312 | 0 | if (ctx == ParseScriptContext::TOP && Func("addr", expr)) { |
2313 | 0 | CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end())); |
2314 | 0 | if (!IsValidDestination(dest)) { |
2315 | 0 | error = "Address is not valid"; |
2316 | 0 | return {}; |
2317 | 0 | } |
2318 | 0 | ret.emplace_back(std::make_unique<AddressDescriptor>(std::move(dest))); |
2319 | 0 | return ret; |
2320 | 0 | } else if (Func("addr", expr)) { |
2321 | 0 | error = "Can only have addr() at top level"; |
2322 | 0 | return {}; |
2323 | 0 | } |
2324 | 0 | if (ctx == ParseScriptContext::TOP && Func("tr", expr)) { |
2325 | 0 | auto arg = Expr(expr); |
2326 | 0 | auto internal_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error); |
2327 | 0 | if (internal_keys.empty()) { |
2328 | 0 | error = strprintf("tr(): %s", error); |
2329 | 0 | return {}; |
2330 | 0 | } |
2331 | 0 | size_t max_providers_len = internal_keys.size(); |
2332 | 0 | ++key_exp_index; |
2333 | 0 | std::vector<std::vector<std::unique_ptr<DescriptorImpl>>> subscripts; //!< list of multipath expanded script subexpressions |
2334 | 0 | std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts) |
2335 | 0 | if (expr.size()) { |
2336 | 0 | if (!Const(",", expr)) { |
2337 | 0 | error = strprintf("tr: expected ',', got '%c'", expr[0]); |
2338 | 0 | return {}; |
2339 | 0 | } |
2340 | | /** The path from the top of the tree to what we're currently processing. |
2341 | | * branches[i] == false: left branch in the i'th step from the top; true: right branch. |
2342 | | */ |
2343 | 0 | std::vector<bool> branches; |
2344 | | // Loop over all provided scripts. In every iteration exactly one script will be processed. |
2345 | | // Use a do-loop because inside this if-branch we expect at least one script. |
2346 | 0 | do { |
2347 | | // First process all open braces. |
2348 | 0 | while (Const("{", expr)) { |
2349 | 0 | branches.push_back(false); // new left branch |
2350 | 0 | if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) { |
2351 | 0 | error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT); |
2352 | 0 | return {}; |
2353 | 0 | } |
2354 | 0 | } |
2355 | | // Process the actual script expression. |
2356 | 0 | auto sarg = Expr(expr); |
2357 | 0 | subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error)); |
2358 | 0 | if (subscripts.back().empty()) return {}; |
2359 | 0 | max_providers_len = std::max(max_providers_len, subscripts.back().size()); |
2360 | 0 | depths.push_back(branches.size()); |
2361 | | // Process closing braces; one is expected for every right branch we were in. |
2362 | 0 | while (branches.size() && branches.back()) { |
2363 | 0 | if (!Const("}", expr)) { |
2364 | 0 | error = strprintf("tr(): expected '}' after script expression"); |
2365 | 0 | return {}; |
2366 | 0 | } |
2367 | 0 | branches.pop_back(); // move up one level after encountering '}' |
2368 | 0 | } |
2369 | | // If after that, we're at the end of a left branch, expect a comma. |
2370 | 0 | if (branches.size() && !branches.back()) { |
2371 | 0 | if (!Const(",", expr)) { |
2372 | 0 | error = strprintf("tr(): expected ',' after script expression"); |
2373 | 0 | return {}; |
2374 | 0 | } |
2375 | 0 | branches.back() = true; // And now we're in a right branch. |
2376 | 0 | } |
2377 | 0 | } while (branches.size()); |
2378 | | // After we've explored a whole tree, we must be at the end of the expression. |
2379 | 0 | if (expr.size()) { |
2380 | 0 | error = strprintf("tr(): expected ')' after script expression"); |
2381 | 0 | return {}; |
2382 | 0 | } |
2383 | 0 | } |
2384 | 0 | assert(TaprootBuilder::ValidDepths(depths)); |
2385 | | |
2386 | | // Make sure all vecs are of the same length, or exactly length 1 |
2387 | | // For length 1 vectors, clone subdescs until vector is the same length |
2388 | 0 | for (auto& vec : subscripts) { |
2389 | 0 | if (vec.size() == 1) { |
2390 | 0 | for (size_t i = 1; i < max_providers_len; ++i) { |
2391 | 0 | vec.emplace_back(vec.at(0)->Clone()); |
2392 | 0 | } |
2393 | 0 | } else if (vec.size() != max_providers_len) { |
2394 | 0 | error = strprintf("tr(): Multipath subscripts have mismatched lengths"); |
2395 | 0 | return {}; |
2396 | 0 | } |
2397 | 0 | } |
2398 | | |
2399 | 0 | if (internal_keys.size() > 1 && internal_keys.size() != max_providers_len) { |
2400 | 0 | error = strprintf("tr(): Multipath internal key mismatches multipath subscripts lengths"); |
2401 | 0 | return {}; |
2402 | 0 | } |
2403 | | |
2404 | 0 | while (internal_keys.size() < max_providers_len) { |
2405 | 0 | internal_keys.emplace_back(internal_keys.at(0)->Clone()); |
2406 | 0 | } |
2407 | | |
2408 | | // Build the final descriptors vector |
2409 | 0 | for (size_t i = 0; i < max_providers_len; ++i) { |
2410 | | // Build final subscripts vectors by retrieving the i'th subscript for each vector in subscripts |
2411 | 0 | std::vector<std::unique_ptr<DescriptorImpl>> this_subs; |
2412 | 0 | this_subs.reserve(subscripts.size()); |
2413 | 0 | for (auto& subs : subscripts) { |
2414 | 0 | this_subs.emplace_back(std::move(subs.at(i))); |
2415 | 0 | } |
2416 | 0 | ret.emplace_back(std::make_unique<TRDescriptor>(std::move(internal_keys.at(i)), std::move(this_subs), depths)); |
2417 | 0 | } |
2418 | 0 | return ret; |
2419 | | |
2420 | |
|
2421 | 0 | } else if (Func("tr", expr)) { |
2422 | 0 | error = "Can only have tr at top level"; |
2423 | 0 | return {}; |
2424 | 0 | } |
2425 | 0 | if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) { |
2426 | 0 | auto arg = Expr(expr); |
2427 | 0 | if (expr.size()) { |
2428 | 0 | error = strprintf("rawtr(): only one key expected."); |
2429 | 0 | return {}; |
2430 | 0 | } |
2431 | 0 | auto output_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error); |
2432 | 0 | if (output_keys.empty()) { |
2433 | 0 | error = strprintf("rawtr(): %s", error); |
2434 | 0 | return {}; |
2435 | 0 | } |
2436 | 0 | ++key_exp_index; |
2437 | 0 | for (auto& pubkey : output_keys) { |
2438 | 0 | ret.emplace_back(std::make_unique<RawTRDescriptor>(std::move(pubkey))); |
2439 | 0 | } |
2440 | 0 | return ret; |
2441 | 0 | } else if (Func("rawtr", expr)) { |
2442 | 0 | error = "Can only have rawtr at top level"; |
2443 | 0 | return {}; |
2444 | 0 | } |
2445 | 0 | if (ctx == ParseScriptContext::TOP && Func("raw", expr)) { |
2446 | 0 | std::string str(expr.begin(), expr.end()); |
2447 | 0 | if (!IsHex(str)) { |
2448 | 0 | error = "Raw script is not hex"; |
2449 | 0 | return {}; |
2450 | 0 | } |
2451 | 0 | auto bytes = ParseHex(str); |
2452 | 0 | ret.emplace_back(std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end()))); |
2453 | 0 | return ret; |
2454 | 0 | } else if (Func("raw", expr)) { |
2455 | 0 | error = "Can only have raw() at top level"; |
2456 | 0 | return {}; |
2457 | 0 | } |
2458 | | // Process miniscript expressions. |
2459 | 0 | { |
2460 | 0 | const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT}; |
2461 | 0 | KeyParser parser(/*out = */&out, /* in = */nullptr, /* ctx = */script_ctx, key_exp_index); |
2462 | 0 | auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser); |
2463 | 0 | if (parser.m_key_parsing_error != "") { |
2464 | 0 | error = std::move(parser.m_key_parsing_error); |
2465 | 0 | return {}; |
2466 | 0 | } |
2467 | 0 | if (node) { |
2468 | 0 | if (ctx != ParseScriptContext::P2WSH && ctx != ParseScriptContext::P2TR) { |
2469 | 0 | error = "Miniscript expressions can only be used in wsh or tr."; |
2470 | 0 | return {}; |
2471 | 0 | } |
2472 | 0 | if (!node->IsSane() || node->IsNotSatisfiable()) { |
2473 | | // Try to find the first insane sub for better error reporting. |
2474 | 0 | auto insane_node = node.get(); |
2475 | 0 | if (const auto sub = node->FindInsaneSub()) insane_node = sub; |
2476 | 0 | if (const auto str = insane_node->ToString(parser)) error = *str; |
2477 | 0 | if (!insane_node->IsValid()) { |
2478 | 0 | error += " is invalid"; |
2479 | 0 | } else if (!node->IsSane()) { |
2480 | 0 | error += " is not sane"; |
2481 | 0 | if (!insane_node->IsNonMalleable()) { |
2482 | 0 | error += ": malleable witnesses exist"; |
2483 | 0 | } else if (insane_node == node.get() && !insane_node->NeedsSignature()) { |
2484 | 0 | error += ": witnesses without signature exist"; |
2485 | 0 | } else if (!insane_node->CheckTimeLocksMix()) { |
2486 | 0 | error += ": contains mixes of timelocks expressed in blocks and seconds"; |
2487 | 0 | } else if (!insane_node->CheckDuplicateKey()) { |
2488 | 0 | error += ": contains duplicate public keys"; |
2489 | 0 | } else if (!insane_node->ValidSatisfactions()) { |
2490 | 0 | error += ": needs witnesses that may exceed resource limits"; |
2491 | 0 | } |
2492 | 0 | } else { |
2493 | 0 | error += " is not satisfiable"; |
2494 | 0 | } |
2495 | 0 | return {}; |
2496 | 0 | } |
2497 | | // A signature check is required for a miniscript to be sane. Therefore no sane miniscript |
2498 | | // may have an empty list of public keys. |
2499 | 0 | CHECK_NONFATAL(!parser.m_keys.empty()); |
2500 | 0 | key_exp_index += parser.m_keys.size(); |
2501 | | // Make sure all vecs are of the same length, or exactly length 1 |
2502 | | // For length 1 vectors, clone subdescs until vector is the same length |
2503 | 0 | size_t num_multipath = std::max_element(parser.m_keys.begin(), parser.m_keys.end(), |
2504 | 0 | [](const std::vector<std::unique_ptr<PubkeyProvider>>& a, const std::vector<std::unique_ptr<PubkeyProvider>>& b) { |
2505 | 0 | return a.size() < b.size(); |
2506 | 0 | })->size(); |
2507 | |
|
2508 | 0 | for (auto& vec : parser.m_keys) { |
2509 | 0 | if (vec.size() == 1) { |
2510 | 0 | for (size_t i = 1; i < num_multipath; ++i) { |
2511 | 0 | vec.emplace_back(vec.at(0)->Clone()); |
2512 | 0 | } |
2513 | 0 | } else if (vec.size() != num_multipath) { |
2514 | 0 | error = strprintf("Miniscript: Multipath derivation paths have mismatched lengths"); |
2515 | 0 | return {}; |
2516 | 0 | } |
2517 | 0 | } |
2518 | | |
2519 | | // Build the final descriptors vector |
2520 | 0 | for (size_t i = 0; i < num_multipath; ++i) { |
2521 | | // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts |
2522 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> pubs; |
2523 | 0 | pubs.reserve(parser.m_keys.size()); |
2524 | 0 | for (auto& pub : parser.m_keys) { |
2525 | 0 | pubs.emplace_back(std::move(pub.at(i))); |
2526 | 0 | } |
2527 | 0 | ret.emplace_back(std::make_unique<MiniscriptDescriptor>(std::move(pubs), node->Clone())); |
2528 | 0 | } |
2529 | 0 | return ret; |
2530 | 0 | } |
2531 | 0 | } |
2532 | 0 | if (ctx == ParseScriptContext::P2SH) { |
2533 | 0 | error = "A function is needed within P2SH"; |
2534 | 0 | return {}; |
2535 | 0 | } else if (ctx == ParseScriptContext::P2WSH) { |
2536 | 0 | error = "A function is needed within P2WSH"; |
2537 | 0 | return {}; |
2538 | 0 | } |
2539 | 0 | error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end())); |
2540 | 0 | return {}; |
2541 | 0 | } |
2542 | | |
2543 | | std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider) |
2544 | 0 | { |
2545 | 0 | auto match = MatchMultiA(script); |
2546 | 0 | if (!match) return {}; |
2547 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> keys; |
2548 | 0 | keys.reserve(match->second.size()); |
2549 | 0 | for (const auto keyspan : match->second) { |
2550 | 0 | if (keyspan.size() != 32) return {}; |
2551 | 0 | auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider); |
2552 | 0 | if (!key) return {}; |
2553 | 0 | keys.push_back(std::move(key)); |
2554 | 0 | } |
2555 | 0 | return std::make_unique<MultiADescriptor>(match->first, std::move(keys)); |
2556 | 0 | } |
2557 | | |
2558 | | // NOLINTNEXTLINE(misc-no-recursion) |
2559 | | std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider) |
2560 | 0 | { |
2561 | 0 | if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) { |
2562 | 0 | XOnlyPubKey key{std::span{script}.subspan(1, 32)}; |
2563 | 0 | return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true); |
2564 | 0 | } |
2565 | | |
2566 | 0 | if (ctx == ParseScriptContext::P2TR) { |
2567 | 0 | auto ret = InferMultiA(script, ctx, provider); |
2568 | 0 | if (ret) return ret; |
2569 | 0 | } |
2570 | | |
2571 | 0 | std::vector<std::vector<unsigned char>> data; |
2572 | 0 | TxoutType txntype = Solver(script, data); |
2573 | |
|
2574 | 0 | if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) { |
2575 | 0 | CPubKey pubkey(data[0]); |
2576 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) { |
2577 | 0 | return std::make_unique<PKDescriptor>(std::move(pubkey_provider)); |
2578 | 0 | } |
2579 | 0 | } |
2580 | 0 | if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) { |
2581 | 0 | uint160 hash(data[0]); |
2582 | 0 | CKeyID keyid(hash); |
2583 | 0 | CPubKey pubkey; |
2584 | 0 | if (provider.GetPubKey(keyid, pubkey)) { |
2585 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) { |
2586 | 0 | return std::make_unique<PKHDescriptor>(std::move(pubkey_provider)); |
2587 | 0 | } |
2588 | 0 | } |
2589 | 0 | } |
2590 | 0 | if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) { |
2591 | 0 | uint160 hash(data[0]); |
2592 | 0 | CKeyID keyid(hash); |
2593 | 0 | CPubKey pubkey; |
2594 | 0 | if (provider.GetPubKey(keyid, pubkey)) { |
2595 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ParseScriptContext::P2WPKH, provider)) { |
2596 | 0 | return std::make_unique<WPKHDescriptor>(std::move(pubkey_provider)); |
2597 | 0 | } |
2598 | 0 | } |
2599 | 0 | } |
2600 | 0 | if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) { |
2601 | 0 | bool ok = true; |
2602 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> providers; |
2603 | 0 | for (size_t i = 1; i + 1 < data.size(); ++i) { |
2604 | 0 | CPubKey pubkey(data[i]); |
2605 | 0 | if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) { |
2606 | 0 | providers.push_back(std::move(pubkey_provider)); |
2607 | 0 | } else { |
2608 | 0 | ok = false; |
2609 | 0 | break; |
2610 | 0 | } |
2611 | 0 | } |
2612 | 0 | if (ok) return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers)); |
2613 | 0 | } |
2614 | 0 | if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) { |
2615 | 0 | uint160 hash(data[0]); |
2616 | 0 | CScriptID scriptid(hash); |
2617 | 0 | CScript subscript; |
2618 | 0 | if (provider.GetCScript(scriptid, subscript)) { |
2619 | 0 | auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider); |
2620 | 0 | if (sub) return std::make_unique<SHDescriptor>(std::move(sub)); |
2621 | 0 | } |
2622 | 0 | } |
2623 | 0 | if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) { |
2624 | 0 | CScriptID scriptid{RIPEMD160(data[0])}; |
2625 | 0 | CScript subscript; |
2626 | 0 | if (provider.GetCScript(scriptid, subscript)) { |
2627 | 0 | auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider); |
2628 | 0 | if (sub) return std::make_unique<WSHDescriptor>(std::move(sub)); |
2629 | 0 | } |
2630 | 0 | } |
2631 | 0 | if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) { |
2632 | | // Extract x-only pubkey from output. |
2633 | 0 | XOnlyPubKey pubkey; |
2634 | 0 | std::copy(data[0].begin(), data[0].end(), pubkey.begin()); |
2635 | | // Request spending data. |
2636 | 0 | TaprootSpendData tap; |
2637 | 0 | if (provider.GetTaprootSpendData(pubkey, tap)) { |
2638 | | // If found, convert it back to tree form. |
2639 | 0 | auto tree = InferTaprootTree(tap, pubkey); |
2640 | 0 | if (tree) { |
2641 | | // If that works, try to infer subdescriptors for all leaves. |
2642 | 0 | bool ok = true; |
2643 | 0 | std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions |
2644 | 0 | std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts) |
2645 | 0 | for (const auto& [depth, script, leaf_ver] : *tree) { |
2646 | 0 | std::unique_ptr<DescriptorImpl> subdesc; |
2647 | 0 | if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) { |
2648 | 0 | subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider); |
2649 | 0 | } |
2650 | 0 | if (!subdesc) { |
2651 | 0 | ok = false; |
2652 | 0 | break; |
2653 | 0 | } else { |
2654 | 0 | subscripts.push_back(std::move(subdesc)); |
2655 | 0 | depths.push_back(depth); |
2656 | 0 | } |
2657 | 0 | } |
2658 | 0 | if (ok) { |
2659 | 0 | auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider); |
2660 | 0 | return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths)); |
2661 | 0 | } |
2662 | 0 | } |
2663 | 0 | } |
2664 | | // If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey. |
2665 | 0 | if (pubkey.IsFullyValid()) { |
2666 | 0 | auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider); |
2667 | 0 | if (key) { |
2668 | 0 | return std::make_unique<RawTRDescriptor>(std::move(key)); |
2669 | 0 | } |
2670 | 0 | } |
2671 | 0 | } |
2672 | | |
2673 | 0 | if (ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR) { |
2674 | 0 | const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT}; |
2675 | 0 | KeyParser parser(/* out = */nullptr, /* in = */&provider, /* ctx = */script_ctx); |
2676 | 0 | auto node = miniscript::FromScript(script, parser); |
2677 | 0 | if (node && node->IsSane()) { |
2678 | 0 | std::vector<std::unique_ptr<PubkeyProvider>> keys; |
2679 | 0 | keys.reserve(parser.m_keys.size()); |
2680 | 0 | for (auto& key : parser.m_keys) { |
2681 | 0 | keys.emplace_back(std::move(key.at(0))); |
2682 | 0 | } |
2683 | 0 | return std::make_unique<MiniscriptDescriptor>(std::move(keys), std::move(node)); |
2684 | 0 | } |
2685 | 0 | } |
2686 | | |
2687 | | // The following descriptors are all top-level only descriptors. |
2688 | | // So if we are not at the top level, return early. |
2689 | 0 | if (ctx != ParseScriptContext::TOP) return nullptr; |
2690 | | |
2691 | 0 | CTxDestination dest; |
2692 | 0 | if (ExtractDestination(script, dest)) { |
2693 | 0 | if (GetScriptForDestination(dest) == script) { |
2694 | 0 | return std::make_unique<AddressDescriptor>(std::move(dest)); |
2695 | 0 | } |
2696 | 0 | } |
2697 | | |
2698 | 0 | return std::make_unique<RawDescriptor>(script); |
2699 | 0 | } |
2700 | | |
2701 | | |
2702 | | } // namespace |
2703 | | |
2704 | | /** Check a descriptor checksum, and update desc to be the checksum-less part. */ |
2705 | | bool CheckChecksum(std::span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr) |
2706 | 0 | { |
2707 | 0 | auto check_split = Split(sp, '#'); |
2708 | 0 | if (check_split.size() > 2) { |
2709 | 0 | error = "Multiple '#' symbols"; |
2710 | 0 | return false; |
2711 | 0 | } |
2712 | 0 | if (check_split.size() == 1 && require_checksum){ |
2713 | 0 | error = "Missing checksum"; |
2714 | 0 | return false; |
2715 | 0 | } |
2716 | 0 | if (check_split.size() == 2) { |
2717 | 0 | if (check_split[1].size() != 8) { |
2718 | 0 | error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size()); |
2719 | 0 | return false; |
2720 | 0 | } |
2721 | 0 | } |
2722 | 0 | auto checksum = DescriptorChecksum(check_split[0]); |
2723 | 0 | if (checksum.empty()) { |
2724 | 0 | error = "Invalid characters in payload"; |
2725 | 0 | return false; |
2726 | 0 | } |
2727 | 0 | if (check_split.size() == 2) { |
2728 | 0 | if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) { |
2729 | 0 | error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum); |
2730 | 0 | return false; |
2731 | 0 | } |
2732 | 0 | } |
2733 | 0 | if (out_checksum) *out_checksum = std::move(checksum); |
2734 | 0 | sp = check_split[0]; |
2735 | 0 | return true; |
2736 | 0 | } |
2737 | | |
2738 | | std::vector<std::unique_ptr<Descriptor>> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum) |
2739 | 0 | { |
2740 | 0 | std::span<const char> sp{descriptor}; |
2741 | 0 | if (!CheckChecksum(sp, require_checksum, error)) return {}; |
2742 | 0 | uint32_t key_exp_index = 0; |
2743 | 0 | auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error); |
2744 | 0 | if (sp.size() == 0 && !ret.empty()) { |
2745 | 0 | std::vector<std::unique_ptr<Descriptor>> descs; |
2746 | 0 | descs.reserve(ret.size()); |
2747 | 0 | for (auto& r : ret) { |
2748 | 0 | descs.emplace_back(std::unique_ptr<Descriptor>(std::move(r))); |
2749 | 0 | } |
2750 | 0 | return descs; |
2751 | 0 | } |
2752 | 0 | return {}; |
2753 | 0 | } |
2754 | | |
2755 | | std::string GetDescriptorChecksum(const std::string& descriptor) |
2756 | 0 | { |
2757 | 0 | std::string ret; |
2758 | 0 | std::string error; |
2759 | 0 | std::span<const char> sp{descriptor}; |
2760 | 0 | if (!CheckChecksum(sp, false, error, &ret)) return ""; |
2761 | 0 | return ret; |
2762 | 0 | } |
2763 | | |
2764 | | std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider) |
2765 | 0 | { |
2766 | 0 | return InferScript(script, ParseScriptContext::TOP, provider); |
2767 | 0 | } |
2768 | | |
2769 | | uint256 DescriptorID(const Descriptor& desc) |
2770 | 0 | { |
2771 | 0 | std::string desc_str = desc.ToString(/*compat_format=*/true); |
2772 | 0 | uint256 id; |
2773 | 0 | CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin()); |
2774 | 0 | return id; |
2775 | 0 | } |
2776 | | |
2777 | | void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub) |
2778 | 0 | { |
2779 | 0 | m_parent_xpubs[key_exp_pos] = xpub; |
2780 | 0 | } |
2781 | | |
2782 | | void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub) |
2783 | 0 | { |
2784 | 0 | auto& xpubs = m_derived_xpubs[key_exp_pos]; |
2785 | 0 | xpubs[der_index] = xpub; |
2786 | 0 | } |
2787 | | |
2788 | | void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub) |
2789 | 0 | { |
2790 | 0 | m_last_hardened_xpubs[key_exp_pos] = xpub; |
2791 | 0 | } |
2792 | | |
2793 | | bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const |
2794 | 0 | { |
2795 | 0 | const auto& it = m_parent_xpubs.find(key_exp_pos); |
2796 | 0 | if (it == m_parent_xpubs.end()) return false; |
2797 | 0 | xpub = it->second; |
2798 | 0 | return true; |
2799 | 0 | } |
2800 | | |
2801 | | bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const |
2802 | 0 | { |
2803 | 0 | const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos); |
2804 | 0 | if (key_exp_it == m_derived_xpubs.end()) return false; |
2805 | 0 | const auto& der_it = key_exp_it->second.find(der_index); |
2806 | 0 | if (der_it == key_exp_it->second.end()) return false; |
2807 | 0 | xpub = der_it->second; |
2808 | 0 | return true; |
2809 | 0 | } |
2810 | | |
2811 | | bool DescriptorCache::GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const |
2812 | 0 | { |
2813 | 0 | const auto& it = m_last_hardened_xpubs.find(key_exp_pos); |
2814 | 0 | if (it == m_last_hardened_xpubs.end()) return false; |
2815 | 0 | xpub = it->second; |
2816 | 0 | return true; |
2817 | 0 | } |
2818 | | |
2819 | | DescriptorCache DescriptorCache::MergeAndDiff(const DescriptorCache& other) |
2820 | 0 | { |
2821 | 0 | DescriptorCache diff; |
2822 | 0 | for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) { |
2823 | 0 | CExtPubKey xpub; |
2824 | 0 | if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) { |
2825 | 0 | if (xpub != parent_xpub_pair.second) { |
2826 | 0 | throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub"); |
2827 | 0 | } |
2828 | 0 | continue; |
2829 | 0 | } |
2830 | 0 | CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second); |
2831 | 0 | diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second); |
2832 | 0 | } |
2833 | 0 | for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) { |
2834 | 0 | for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) { |
2835 | 0 | CExtPubKey xpub; |
2836 | 0 | if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) { |
2837 | 0 | if (xpub != derived_xpub_pair.second) { |
2838 | 0 | throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub"); |
2839 | 0 | } |
2840 | 0 | continue; |
2841 | 0 | } |
2842 | 0 | CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second); |
2843 | 0 | diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second); |
2844 | 0 | } |
2845 | 0 | } |
2846 | 0 | for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) { |
2847 | 0 | CExtPubKey xpub; |
2848 | 0 | if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) { |
2849 | 0 | if (xpub != lh_xpub_pair.second) { |
2850 | 0 | throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub"); |
2851 | 0 | } |
2852 | 0 | continue; |
2853 | 0 | } |
2854 | 0 | CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second); |
2855 | 0 | diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second); |
2856 | 0 | } |
2857 | 0 | return diff; |
2858 | 0 | } |
2859 | | |
2860 | | ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const |
2861 | 0 | { |
2862 | 0 | return m_parent_xpubs; |
2863 | 0 | } |
2864 | | |
2865 | | std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const |
2866 | 0 | { |
2867 | 0 | return m_derived_xpubs; |
2868 | 0 | } |
2869 | | |
2870 | | ExtPubKeyMap DescriptorCache::GetCachedLastHardenedExtPubKeys() const |
2871 | 0 | { |
2872 | 0 | return m_last_hardened_xpubs; |
2873 | 0 | } |