Coverage Report

Created: 2025-09-19 18:31

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/bitcoin/src/script/descriptor.cpp
Line
Count
Source
1
// Copyright (c) 2018-present The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <script/descriptor.h>
6
7
#include <hash.h>
8
#include <key_io.h>
9
#include <pubkey.h>
10
#include <musig.h>
11
#include <script/miniscript.h>
12
#include <script/parsing.h>
13
#include <script/script.h>
14
#include <script/signingprovider.h>
15
#include <script/solver.h>
16
#include <uint256.h>
17
18
#include <common/args.h>
19
#include <span.h>
20
#include <util/bip32.h>
21
#include <util/check.h>
22
#include <util/strencodings.h>
23
#include <util/vector.h>
24
25
#include <algorithm>
26
#include <memory>
27
#include <numeric>
28
#include <optional>
29
#include <string>
30
#include <vector>
31
32
using util::Split;
33
34
namespace {
35
36
////////////////////////////////////////////////////////////////////////////
37
// Checksum                                                               //
38
////////////////////////////////////////////////////////////////////////////
39
40
// This section implements a checksum algorithm for descriptors with the
41
// following properties:
42
// * Mistakes in a descriptor string are measured in "symbol errors". The higher
43
//   the number of symbol errors, the harder it is to detect:
44
//   * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
45
//     another in that set always counts as 1 symbol error.
46
//     * Note that hex encoded keys are covered by these characters. Xprvs and
47
//       xpubs use other characters too, but already have their own checksum
48
//       mechanism.
49
//     * Function names like "multi()" use other characters, but mistakes in
50
//       these would generally result in an unparsable descriptor.
51
//   * A case error always counts as 1 symbol error.
52
//   * Any other 1 character substitution error counts as 1 or 2 symbol errors.
53
// * Any 1 symbol error is always detected.
54
// * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
55
// * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
56
// * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
57
// * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
58
// * Random errors have a chance of 1 in 2**40 of being undetected.
59
//
60
// These properties are achieved by expanding every group of 3 (non checksum) characters into
61
// 4 GF(32) symbols, over which a cyclic code is defined.
62
63
/*
64
 * Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
65
 * multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
66
 *
67
 * This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
68
 * It is chosen to define an cyclic error detecting code which is selected by:
69
 * - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
70
 *   3 errors in windows up to 19000 symbols.
71
 * - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
72
 * - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
73
 * - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
74
 *
75
 * The generator and the constants to implement it can be verified using this Sage code:
76
 *   B = GF(2) # Binary field
77
 *   BP.<b> = B[] # Polynomials over the binary field
78
 *   F_mod = b**5 + b**3 + 1
79
 *   F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
80
 *   FP.<x> = F[] # Polynomials over GF(32)
81
 *   E_mod = x**3 + x + F.fetch_int(8)
82
 *   E.<e> = F.extension(E_mod) # Extension field definition
83
 *   alpha = e**2743 # Choice of an element in extension field
84
 *   for p in divisors(E.order() - 1): # Verify alpha has order 32767.
85
 *       assert((alpha**p == 1) == (p % 32767 == 0))
86
 *   G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
87
 *   print(G) # Print out the generator
88
 *   for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
89
 *       v = 0
90
 *       for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
91
 *           v = v*32 + coef.integer_representation()
92
 *       print("0x%x" % v)
93
 */
94
uint64_t PolyMod(uint64_t c, int val)
95
0
{
96
0
    uint8_t c0 = c >> 35;
97
0
    c = ((c & 0x7ffffffff) << 5) ^ val;
98
0
    if (c0 & 1) c ^= 0xf5dee51989;
99
0
    if (c0 & 2) c ^= 0xa9fdca3312;
100
0
    if (c0 & 4) c ^= 0x1bab10e32d;
101
0
    if (c0 & 8) c ^= 0x3706b1677a;
102
0
    if (c0 & 16) c ^= 0x644d626ffd;
103
0
    return c;
104
0
}
105
106
std::string DescriptorChecksum(const std::span<const char>& span)
107
0
{
108
    /** A character set designed such that:
109
     *  - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32.
110
     *  - Case errors cause an offset that's a multiple of 32.
111
     *  - As many alphabetic characters are in the same group (while following the above restrictions).
112
     *
113
     * If p(x) gives the position of a character c in this character set, every group of 3 characters
114
     * (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32).
115
     * This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just
116
     * affect a single symbol.
117
     *
118
     * As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect
119
     * the position within the groups.
120
     */
121
0
    static const std::string INPUT_CHARSET =
122
0
        "0123456789()[],'/*abcdefgh@:$%{}"
123
0
        "IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
124
0
        "ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
125
126
    /** The character set for the checksum itself (same as bech32). */
127
0
    static const std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
128
129
0
    uint64_t c = 1;
130
0
    int cls = 0;
131
0
    int clscount = 0;
132
0
    for (auto ch : span) {
133
0
        auto pos = INPUT_CHARSET.find(ch);
134
0
        if (pos == std::string::npos) return "";
135
0
        c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
136
0
        cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
137
0
        if (++clscount == 3) {
138
            // Emit an extra symbol representing the group numbers, for every 3 characters.
139
0
            c = PolyMod(c, cls);
140
0
            cls = 0;
141
0
            clscount = 0;
142
0
        }
143
0
    }
144
0
    if (clscount > 0) c = PolyMod(c, cls);
145
0
    for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
146
0
    c ^= 1; // Prevent appending zeroes from not affecting the checksum.
147
148
0
    std::string ret(8, ' ');
149
0
    for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
150
0
    return ret;
151
0
}
152
153
0
std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
154
155
////////////////////////////////////////////////////////////////////////////
156
// Internal representation                                                //
157
////////////////////////////////////////////////////////////////////////////
158
159
typedef std::vector<uint32_t> KeyPath;
160
161
/** Interface for public key objects in descriptors. */
162
struct PubkeyProvider
163
{
164
protected:
165
    //! Index of this key expression in the descriptor
166
    //! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0
167
    uint32_t m_expr_index;
168
169
public:
170
0
    explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
171
172
0
    virtual ~PubkeyProvider() = default;
173
174
    /** Compare two public keys represented by this provider.
175
     * Used by the Miniscript descriptors to check for duplicate keys in the script.
176
     */
177
0
    bool operator<(PubkeyProvider& other) const {
178
0
        FlatSigningProvider dummy;
179
180
0
        std::optional<CPubKey> a = GetPubKey(0, dummy, dummy);
181
0
        std::optional<CPubKey> b = other.GetPubKey(0, dummy, dummy);
182
183
0
        return a < b;
184
0
    }
185
186
    /** Derive a public key and put it into out.
187
     *  read_cache is the cache to read keys from (if not nullptr)
188
     *  write_cache is the cache to write keys to (if not nullptr)
189
     *  Caches are not exclusive but this is not tested. Currently we use them exclusively
190
     */
191
    virtual std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0;
192
193
    /** Whether this represent multiple public keys at different positions. */
194
    virtual bool IsRange() const = 0;
195
196
    /** Get the size of the generated public key(s) in bytes (33 or 65). */
197
    virtual size_t GetSize() const = 0;
198
199
    enum class StringType {
200
        PUBLIC,
201
        COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions
202
    };
203
204
    /** Get the descriptor string form. */
205
    virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0;
206
207
    /** Get the descriptor string form including private data (if available in arg). */
208
    virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
209
210
    /** Get the descriptor string form with the xpub at the last hardened derivation,
211
     *  and always use h for hardened derivation.
212
     */
213
    virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0;
214
215
    /** Derive a private key, if private data is available in arg and put it into out. */
216
    virtual void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const = 0;
217
218
    /** Return the non-extended public key for this PubkeyProvider, if it has one. */
219
    virtual std::optional<CPubKey> GetRootPubKey() const = 0;
220
    /** Return the extended public key for this PubkeyProvider, if it has one. */
221
    virtual std::optional<CExtPubKey> GetRootExtPubKey() const = 0;
222
223
    /** Make a deep copy of this PubkeyProvider */
224
    virtual std::unique_ptr<PubkeyProvider> Clone() const = 0;
225
226
    /** Whether this PubkeyProvider is a BIP 32 extended key that can be derived from */
227
    virtual bool IsBIP32() const = 0;
228
};
229
230
class OriginPubkeyProvider final : public PubkeyProvider
231
{
232
    KeyOriginInfo m_origin;
233
    std::unique_ptr<PubkeyProvider> m_provider;
234
    bool m_apostrophe;
235
236
    std::string OriginString(StringType type, bool normalized=false) const
237
0
    {
238
        // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
239
0
        bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
240
0
        return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe);
241
0
    }
242
243
public:
244
0
    OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {}
245
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
246
0
    {
247
0
        std::optional<CPubKey> pub = m_provider->GetPubKey(pos, arg, out, read_cache, write_cache);
248
0
        if (!pub) return std::nullopt;
249
0
        Assert(out.pubkeys.contains(pub->GetID()));
250
0
        auto& [pubkey, suborigin] = out.origins[pub->GetID()];
251
0
        Assert(pubkey == *pub); // m_provider must have a valid origin by this point.
252
0
        std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), suborigin.fingerprint);
253
0
        suborigin.path.insert(suborigin.path.begin(), m_origin.path.begin(), m_origin.path.end());
254
0
        return pub;
255
0
    }
256
0
    bool IsRange() const override { return m_provider->IsRange(); }
257
0
    size_t GetSize() const override { return m_provider->GetSize(); }
258
0
    bool IsBIP32() const override { return m_provider->IsBIP32(); }
259
0
    std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); }
260
    bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
261
0
    {
262
0
        std::string sub;
263
0
        if (!m_provider->ToPrivateString(arg, sub)) return false;
264
0
        ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub);
265
0
        return true;
266
0
    }
267
    bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
268
0
    {
269
0
        std::string sub;
270
0
        if (!m_provider->ToNormalizedString(arg, sub, cache)) return false;
271
        // If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
272
        // In that case, we need to strip out the leading square bracket and fingerprint from the substring,
273
        // and append that to our own origin string.
274
0
        if (sub[0] == '[') {
275
0
            sub = sub.substr(9);
276
0
            ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub);
277
0
        } else {
278
0
            ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub);
279
0
        }
280
0
        return true;
281
0
    }
282
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
283
0
    {
284
0
        m_provider->GetPrivKey(pos, arg, out);
285
0
    }
286
    std::optional<CPubKey> GetRootPubKey() const override
287
0
    {
288
0
        return m_provider->GetRootPubKey();
289
0
    }
290
    std::optional<CExtPubKey> GetRootExtPubKey() const override
291
0
    {
292
0
        return m_provider->GetRootExtPubKey();
293
0
    }
294
    std::unique_ptr<PubkeyProvider> Clone() const override
295
0
    {
296
0
        return std::make_unique<OriginPubkeyProvider>(m_expr_index, m_origin, m_provider->Clone(), m_apostrophe);
297
0
    }
298
};
299
300
/** An object representing a parsed constant public key in a descriptor. */
301
class ConstPubkeyProvider final : public PubkeyProvider
302
{
303
    CPubKey m_pubkey;
304
    bool m_xonly;
305
306
    std::optional<CKey> GetPrivKey(const SigningProvider& arg) const
307
0
    {
308
0
        CKey key;
309
0
        if (!(m_xonly ? arg.GetKeyByXOnly(XOnlyPubKey(m_pubkey), key) :
310
0
                        arg.GetKey(m_pubkey.GetID(), key))) return std::nullopt;
311
0
        return key;
312
0
    }
313
314
public:
315
0
    ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {}
316
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider&, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
317
0
    {
318
0
        KeyOriginInfo info;
319
0
        CKeyID keyid = m_pubkey.GetID();
320
0
        std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
321
0
        out.origins.emplace(keyid, std::make_pair(m_pubkey, info));
322
0
        out.pubkeys.emplace(keyid, m_pubkey);
323
0
        return m_pubkey;
324
0
    }
325
0
    bool IsRange() const override { return false; }
326
0
    size_t GetSize() const override { return m_pubkey.size(); }
327
0
    bool IsBIP32() const override { return false; }
328
0
    std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); }
329
    bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
330
0
    {
331
0
        std::optional<CKey> key = GetPrivKey(arg);
332
0
        if (!key) return false;
333
0
        ret = EncodeSecret(*key);
334
0
        return true;
335
0
    }
336
    bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
337
0
    {
338
0
        ret = ToString(StringType::PUBLIC);
339
0
        return true;
340
0
    }
341
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
342
0
    {
343
0
        std::optional<CKey> key = GetPrivKey(arg);
344
0
        if (!key) return;
345
0
        out.keys.emplace(key->GetPubKey().GetID(), *key);
346
0
    }
347
    std::optional<CPubKey> GetRootPubKey() const override
348
0
    {
349
0
        return m_pubkey;
350
0
    }
351
    std::optional<CExtPubKey> GetRootExtPubKey() const override
352
0
    {
353
0
        return std::nullopt;
354
0
    }
355
    std::unique_ptr<PubkeyProvider> Clone() const override
356
0
    {
357
0
        return std::make_unique<ConstPubkeyProvider>(m_expr_index, m_pubkey, m_xonly);
358
0
    }
359
};
360
361
enum class DeriveType {
362
    NO,
363
    UNHARDENED,
364
    HARDENED,
365
};
366
367
/** An object representing a parsed extended public key in a descriptor. */
368
class BIP32PubkeyProvider final : public PubkeyProvider
369
{
370
    // Root xpub, path, and final derivation step type being used, if any
371
    CExtPubKey m_root_extkey;
372
    KeyPath m_path;
373
    DeriveType m_derive;
374
    // Whether ' or h is used in harded derivation
375
    bool m_apostrophe;
376
377
    bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
378
0
    {
379
0
        CKey key;
380
0
        if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
381
0
        ret.nDepth = m_root_extkey.nDepth;
382
0
        std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
383
0
        ret.nChild = m_root_extkey.nChild;
384
0
        ret.chaincode = m_root_extkey.chaincode;
385
0
        ret.key = key;
386
0
        return true;
387
0
    }
388
389
    // Derives the last xprv
390
    bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const
391
0
    {
392
0
        if (!GetExtKey(arg, xprv)) return false;
393
0
        for (auto entry : m_path) {
394
0
            if (!xprv.Derive(xprv, entry)) return false;
395
0
            if (entry >> 31) {
396
0
                last_hardened = xprv;
397
0
            }
398
0
        }
399
0
        return true;
400
0
    }
401
402
    bool IsHardened() const
403
0
    {
404
0
        if (m_derive == DeriveType::HARDENED) return true;
405
0
        for (auto entry : m_path) {
406
0
            if (entry >> 31) return true;
407
0
        }
408
0
        return false;
409
0
    }
410
411
public:
412
0
    BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {}
413
0
    bool IsRange() const override { return m_derive != DeriveType::NO; }
414
0
    size_t GetSize() const override { return 33; }
415
0
    bool IsBIP32() const override { return true; }
416
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
417
0
    {
418
0
        KeyOriginInfo info;
419
0
        CKeyID keyid = m_root_extkey.pubkey.GetID();
420
0
        std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
421
0
        info.path = m_path;
422
0
        if (m_derive == DeriveType::UNHARDENED) info.path.push_back((uint32_t)pos);
423
0
        if (m_derive == DeriveType::HARDENED) info.path.push_back(((uint32_t)pos) | 0x80000000L);
424
425
        // Derive keys or fetch them from cache
426
0
        CExtPubKey final_extkey = m_root_extkey;
427
0
        CExtPubKey parent_extkey = m_root_extkey;
428
0
        CExtPubKey last_hardened_extkey;
429
0
        bool der = true;
430
0
        if (read_cache) {
431
0
            if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
432
0
                if (m_derive == DeriveType::HARDENED) return std::nullopt;
433
                // Try to get the derivation parent
434
0
                if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return std::nullopt;
435
0
                final_extkey = parent_extkey;
436
0
                if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
437
0
            }
438
0
        } else if (IsHardened()) {
439
0
            CExtKey xprv;
440
0
            CExtKey lh_xprv;
441
0
            if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return std::nullopt;
442
0
            parent_extkey = xprv.Neuter();
443
0
            if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
444
0
            if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
445
0
            final_extkey = xprv.Neuter();
446
0
            if (lh_xprv.key.IsValid()) {
447
0
                last_hardened_extkey = lh_xprv.Neuter();
448
0
            }
449
0
        } else {
450
0
            for (auto entry : m_path) {
451
0
                if (!parent_extkey.Derive(parent_extkey, entry)) return std::nullopt;
452
0
            }
453
0
            final_extkey = parent_extkey;
454
0
            if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
455
0
            assert(m_derive != DeriveType::HARDENED);
456
0
        }
457
0
        if (!der) return std::nullopt;
458
459
0
        out.origins.emplace(final_extkey.pubkey.GetID(), std::make_pair(final_extkey.pubkey, info));
460
0
        out.pubkeys.emplace(final_extkey.pubkey.GetID(), final_extkey.pubkey);
461
462
0
        if (write_cache) {
463
            // Only cache parent if there is any unhardened derivation
464
0
            if (m_derive != DeriveType::HARDENED) {
465
0
                write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
466
                // Cache last hardened xpub if we have it
467
0
                if (last_hardened_extkey.pubkey.IsValid()) {
468
0
                    write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey);
469
0
                }
470
0
            } else if (info.path.size() > 0) {
471
0
                write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
472
0
            }
473
0
        }
474
475
0
        return final_extkey.pubkey;
476
0
    }
477
    std::string ToString(StringType type, bool normalized) const
478
0
    {
479
        // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
480
0
        const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
481
0
        std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe);
482
0
        if (IsRange()) {
483
0
            ret += "/*";
484
0
            if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h';
485
0
        }
486
0
        return ret;
487
0
    }
488
    std::string ToString(StringType type=StringType::PUBLIC) const override
489
0
    {
490
0
        return ToString(type, /*normalized=*/false);
491
0
    }
492
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
493
0
    {
494
0
        CExtKey key;
495
0
        if (!GetExtKey(arg, key)) return false;
496
0
        out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe);
497
0
        if (IsRange()) {
498
0
            out += "/*";
499
0
            if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h';
500
0
        }
501
0
        return true;
502
0
    }
503
    bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override
504
0
    {
505
0
        if (m_derive == DeriveType::HARDENED) {
506
0
            out = ToString(StringType::PUBLIC, /*normalized=*/true);
507
508
0
            return true;
509
0
        }
510
        // Step backwards to find the last hardened step in the path
511
0
        int i = (int)m_path.size() - 1;
512
0
        for (; i >= 0; --i) {
513
0
            if (m_path.at(i) >> 31) {
514
0
                break;
515
0
            }
516
0
        }
517
        // Either no derivation or all unhardened derivation
518
0
        if (i == -1) {
519
0
            out = ToString();
520
0
            return true;
521
0
        }
522
        // Get the path to the last hardened stup
523
0
        KeyOriginInfo origin;
524
0
        int k = 0;
525
0
        for (; k <= i; ++k) {
526
            // Add to the path
527
0
            origin.path.push_back(m_path.at(k));
528
0
        }
529
        // Build the remaining path
530
0
        KeyPath end_path;
531
0
        for (; k < (int)m_path.size(); ++k) {
532
0
            end_path.push_back(m_path.at(k));
533
0
        }
534
        // Get the fingerprint
535
0
        CKeyID id = m_root_extkey.pubkey.GetID();
536
0
        std::copy(id.begin(), id.begin() + 4, origin.fingerprint);
537
538
0
        CExtPubKey xpub;
539
0
        CExtKey lh_xprv;
540
        // If we have the cache, just get the parent xpub
541
0
        if (cache != nullptr) {
542
0
            cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub);
543
0
        }
544
0
        if (!xpub.pubkey.IsValid()) {
545
            // Cache miss, or nor cache, or need privkey
546
0
            CExtKey xprv;
547
0
            if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
548
0
            xpub = lh_xprv.Neuter();
549
0
        }
550
0
        assert(xpub.pubkey.IsValid());
551
552
        // Build the string
553
0
        std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
554
0
        out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path);
555
0
        if (IsRange()) {
556
0
            out += "/*";
557
0
            assert(m_derive == DeriveType::UNHARDENED);
558
0
        }
559
0
        return true;
560
0
    }
561
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
562
0
    {
563
0
        CExtKey extkey;
564
0
        CExtKey dummy;
565
0
        if (!GetDerivedExtKey(arg, extkey, dummy)) return;
566
0
        if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return;
567
0
        if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return;
568
0
        out.keys.emplace(extkey.key.GetPubKey().GetID(), extkey.key);
569
0
    }
570
    std::optional<CPubKey> GetRootPubKey() const override
571
0
    {
572
0
        return std::nullopt;
573
0
    }
574
    std::optional<CExtPubKey> GetRootExtPubKey() const override
575
0
    {
576
0
        return m_root_extkey;
577
0
    }
578
    std::unique_ptr<PubkeyProvider> Clone() const override
579
0
    {
580
0
        return std::make_unique<BIP32PubkeyProvider>(m_expr_index, m_root_extkey, m_path, m_derive, m_apostrophe);
581
0
    }
582
};
583
584
/** PubkeyProvider for a musig() expression */
585
class MuSigPubkeyProvider final : public PubkeyProvider
586
{
587
private:
588
    //! PubkeyProvider for the participants
589
    const std::vector<std::unique_ptr<PubkeyProvider>> m_participants;
590
    //! Derivation path
591
    const KeyPath m_path;
592
    //! PubkeyProvider for the aggregate pubkey if it can be cached (i.e. participants are not ranged)
593
    mutable std::unique_ptr<PubkeyProvider> m_aggregate_provider;
594
    mutable std::optional<CPubKey> m_aggregate_pubkey;
595
    const DeriveType m_derive;
596
    const bool m_ranged_participants;
597
598
0
    bool IsRangedDerivation() const { return m_derive != DeriveType::NO; }
599
600
public:
601
    MuSigPubkeyProvider(
602
        uint32_t exp_index,
603
        std::vector<std::unique_ptr<PubkeyProvider>> providers,
604
        KeyPath path,
605
        DeriveType derive
606
    )
607
0
        : PubkeyProvider(exp_index),
608
0
        m_participants(std::move(providers)),
609
0
        m_path(std::move(path)),
610
0
        m_derive(derive),
611
0
        m_ranged_participants(std::any_of(m_participants.begin(), m_participants.end(), [](const auto& pubkey) { return pubkey->IsRange(); }))
612
0
    {
613
0
        if (!Assume(!(m_ranged_participants && IsRangedDerivation()))) {
614
0
            throw std::runtime_error("musig(): Cannot have both ranged participants and ranged derivation");
615
0
        }
616
0
        if (!Assume(m_derive != DeriveType::HARDENED)) {
617
0
            throw std::runtime_error("musig(): Cannot have hardened derivation");
618
0
        }
619
0
    }
620
621
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
622
0
    {
623
0
        FlatSigningProvider dummy;
624
        // If the participants are not ranged, we can compute and cache the aggregate pubkey by creating a PubkeyProvider for it
625
0
        if (!m_aggregate_provider && !m_ranged_participants) {
626
            // Retrieve the pubkeys from the providers
627
0
            std::vector<CPubKey> pubkeys;
628
0
            for (const auto& prov : m_participants) {
629
0
                std::optional<CPubKey> pubkey = prov->GetPubKey(0, arg, dummy, read_cache, write_cache);
630
0
                if (!pubkey.has_value()) {
631
0
                    return std::nullopt;
632
0
                }
633
0
                pubkeys.push_back(pubkey.value());
634
0
            }
635
0
            std::sort(pubkeys.begin(), pubkeys.end());
636
637
            // Aggregate the pubkey
638
0
            m_aggregate_pubkey = MuSig2AggregatePubkeys(pubkeys);
639
0
            if (!Assume(m_aggregate_pubkey.has_value())) return std::nullopt;
640
641
            // Make our pubkey provider
642
0
            if (IsRangedDerivation() || !m_path.empty()) {
643
                // Make the synthetic xpub and construct the BIP32PubkeyProvider
644
0
                CExtPubKey extpub;
645
0
                extpub.nDepth = 0;
646
0
                std::memset(extpub.vchFingerprint, 0, 4);
647
0
                extpub.nChild = 0;
648
0
                extpub.chaincode = MUSIG_CHAINCODE;
649
0
                extpub.pubkey = m_aggregate_pubkey.value();
650
651
0
                m_aggregate_provider = std::make_unique<BIP32PubkeyProvider>(m_expr_index, extpub, m_path, m_derive, /*apostrophe=*/false);
652
0
            } else {
653
0
                m_aggregate_provider = std::make_unique<ConstPubkeyProvider>(m_expr_index, m_aggregate_pubkey.value(), /*xonly=*/false);
654
0
            }
655
0
        }
656
657
        // Retrieve all participant pubkeys
658
0
        std::vector<CPubKey> pubkeys;
659
0
        for (const auto& prov : m_participants) {
660
0
            std::optional<CPubKey> pub = prov->GetPubKey(pos, arg, out, read_cache, write_cache);
661
0
            if (!pub) return std::nullopt;
662
0
            pubkeys.emplace_back(*pub);
663
0
        }
664
0
        std::sort(pubkeys.begin(), pubkeys.end());
665
666
0
        CPubKey pubout;
667
0
        if (m_aggregate_provider) {
668
            // When we have a cached aggregate key, we are either returning it or deriving from it
669
            // Either way, we can passthrough to its GetPubKey
670
            // Use a dummy signing provider as private keys do not exist for the aggregate pubkey
671
0
            std::optional<CPubKey> pub = m_aggregate_provider->GetPubKey(pos, dummy, out, read_cache, write_cache);
672
0
            if (!pub) return std::nullopt;
673
0
            pubout = *pub;
674
0
            out.aggregate_pubkeys.emplace(m_aggregate_pubkey.value(), pubkeys);
675
0
        } else {
676
0
            if (!Assume(m_ranged_participants) || !Assume(m_path.empty())) return std::nullopt;
677
            // Compute aggregate key from derived participants
678
0
            std::optional<CPubKey> aggregate_pubkey = MuSig2AggregatePubkeys(pubkeys);
679
0
            if (!aggregate_pubkey) return std::nullopt;
680
0
            pubout = *aggregate_pubkey;
681
682
0
            std::unique_ptr<ConstPubkeyProvider> this_agg_provider = std::make_unique<ConstPubkeyProvider>(m_expr_index, aggregate_pubkey.value(), /*xonly=*/false);
683
0
            this_agg_provider->GetPubKey(0, dummy, out, read_cache, write_cache);
684
0
            out.aggregate_pubkeys.emplace(pubout, pubkeys);
685
0
        }
686
687
0
        if (!Assume(pubout.IsValid())) return std::nullopt;
688
0
        return pubout;
689
0
    }
690
0
    bool IsRange() const override { return IsRangedDerivation() || m_ranged_participants; }
691
    // musig() expressions can only be used in tr() contexts which have 32 byte xonly pubkeys
692
0
    size_t GetSize() const override { return 32; }
693
694
    std::string ToString(StringType type=StringType::PUBLIC) const override
695
0
    {
696
0
        std::string out = "musig(";
697
0
        for (size_t i = 0; i < m_participants.size(); ++i) {
698
0
            const auto& pubkey = m_participants.at(i);
699
0
            if (i) out += ",";
700
0
            out += pubkey->ToString(type);
701
0
        }
702
0
        out += ")";
703
0
        out += FormatHDKeypath(m_path);
704
0
        if (IsRangedDerivation()) {
705
0
            out += "/*";
706
0
        }
707
0
        return out;
708
0
    }
709
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
710
0
    {
711
0
        bool any_privkeys = false;
712
0
        out = "musig(";
713
0
        for (size_t i = 0; i < m_participants.size(); ++i) {
714
0
            const auto& pubkey = m_participants.at(i);
715
0
            if (i) out += ",";
716
0
            std::string tmp;
717
0
            if (pubkey->ToPrivateString(arg, tmp)) {
718
0
                any_privkeys = true;
719
0
                out += tmp;
720
0
            } else {
721
0
                out += pubkey->ToString();
722
0
            }
723
0
        }
724
0
        out += ")";
725
0
        out += FormatHDKeypath(m_path);
726
0
        if (IsRangedDerivation()) {
727
0
            out += "/*";
728
0
        }
729
0
        if (!any_privkeys) out.clear();
730
0
        return any_privkeys;
731
0
    }
732
    bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const override
733
0
    {
734
0
        out = "musig(";
735
0
        for (size_t i = 0; i < m_participants.size(); ++i) {
736
0
            const auto& pubkey = m_participants.at(i);
737
0
            if (i) out += ",";
738
0
            std::string tmp;
739
0
            if (!pubkey->ToNormalizedString(arg, tmp, cache)) {
740
0
                return false;
741
0
            }
742
0
            out += tmp;
743
0
        }
744
0
        out += ")";
745
0
        out += FormatHDKeypath(m_path);
746
0
        if (IsRangedDerivation()) {
747
0
            out += "/*";
748
0
        }
749
0
        return true;
750
0
    }
751
752
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
753
0
    {
754
        // Get the private keys for any participants that we have
755
        // If there is participant derivation, it will be done.
756
        // If there is not, then the participant privkeys will be included directly
757
0
        for (const auto& prov : m_participants) {
758
0
            prov->GetPrivKey(pos, arg, out);
759
0
        }
760
0
    }
761
762
    // Get RootPubKey and GetRootExtPubKey are used to return the single pubkey underlying the pubkey provider
763
    // to be presented to the user in gethdkeys. As this is a multisig construction, there is no single underlying
764
    // pubkey hence nothing should be returned.
765
    // While the aggregate pubkey could be returned as the root (ext)pubkey, it is not a pubkey that anyone should
766
    // be using by itself in a descriptor as it is unspendable without knowing its participants.
767
    std::optional<CPubKey> GetRootPubKey() const override
768
0
    {
769
0
        return std::nullopt;
770
0
    }
771
    std::optional<CExtPubKey> GetRootExtPubKey() const override
772
0
    {
773
0
        return std::nullopt;
774
0
    }
775
776
    std::unique_ptr<PubkeyProvider> Clone() const override
777
0
    {
778
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
779
0
        providers.reserve(m_participants.size());
780
0
        for (const std::unique_ptr<PubkeyProvider>& p : m_participants) {
781
0
            providers.emplace_back(p->Clone());
782
0
        }
783
0
        return std::make_unique<MuSigPubkeyProvider>(m_expr_index, std::move(providers), m_path, m_derive);
784
0
    }
785
    bool IsBIP32() const override
786
0
    {
787
        // musig() can only be a BIP 32 key if all participants are bip32 too
788
0
        return std::all_of(m_participants.begin(), m_participants.end(), [](const auto& pubkey) { return pubkey->IsBIP32(); });
789
0
    }
790
};
791
792
/** Base class for all Descriptor implementations. */
793
class DescriptorImpl : public Descriptor
794
{
795
protected:
796
    //! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for WSH and Multisig).
797
    const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
798
    //! The string name of the descriptor function.
799
    const std::string m_name;
800
801
    //! The sub-descriptor arguments (empty for everything but SH and WSH).
802
    //! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT)
803
    //! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions.
804
    //! Subdescriptors can only ever generate a single script.
805
    const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args;
806
807
    //! Return a serialization of anything except pubkey and script arguments, to be prepended to those.
808
0
    virtual std::string ToStringExtra() const { return ""; }
809
810
    /** A helper function to construct the scripts for this descriptor.
811
     *
812
     *  This function is invoked once by ExpandHelper.
813
     *
814
     *  @param pubkeys The evaluations of the m_pubkey_args field.
815
     *  @param scripts The evaluations of m_subdescriptor_args (one for each m_subdescriptor_args element).
816
     *  @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver.
817
     *             The origin info of the provided pubkeys is automatically added.
818
     *  @return A vector with scriptPubKeys for this descriptor.
819
     */
820
    virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, std::span<const CScript> scripts, FlatSigningProvider& out) const = 0;
821
822
public:
823
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {}
824
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {}
825
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {}
826
827
    enum class StringType
828
    {
829
        PUBLIC,
830
        PRIVATE,
831
        NORMALIZED,
832
        COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions
833
    };
834
835
    // NOLINTNEXTLINE(misc-no-recursion)
836
    bool IsSolvable() const override
837
0
    {
838
0
        for (const auto& arg : m_subdescriptor_args) {
839
0
            if (!arg->IsSolvable()) return false;
840
0
        }
841
0
        return true;
842
0
    }
843
844
    // NOLINTNEXTLINE(misc-no-recursion)
845
    bool IsRange() const final
846
0
    {
847
0
        for (const auto& pubkey : m_pubkey_args) {
848
0
            if (pubkey->IsRange()) return true;
849
0
        }
850
0
        for (const auto& arg : m_subdescriptor_args) {
851
0
            if (arg->IsRange()) return true;
852
0
        }
853
0
        return false;
854
0
    }
855
856
    // NOLINTNEXTLINE(misc-no-recursion)
857
    virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const
858
0
    {
859
0
        size_t pos = 0;
860
0
        for (const auto& scriptarg : m_subdescriptor_args) {
861
0
            if (pos++) ret += ",";
862
0
            std::string tmp;
863
0
            if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false;
864
0
            ret += tmp;
865
0
        }
866
0
        return true;
867
0
    }
868
869
    // NOLINTNEXTLINE(misc-no-recursion)
870
    virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const
871
0
    {
872
0
        std::string extra = ToStringExtra();
873
0
        size_t pos = extra.size() > 0 ? 1 : 0;
874
0
        std::string ret = m_name + "(" + extra;
875
0
        for (const auto& pubkey : m_pubkey_args) {
876
0
            if (pos++) ret += ",";
877
0
            std::string tmp;
878
0
            switch (type) {
879
0
                case StringType::NORMALIZED:
880
0
                    if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false;
881
0
                    break;
882
0
                case StringType::PRIVATE:
883
0
                    if (!pubkey->ToPrivateString(*arg, tmp)) return false;
884
0
                    break;
885
0
                case StringType::PUBLIC:
886
0
                    tmp = pubkey->ToString();
887
0
                    break;
888
0
                case StringType::COMPAT:
889
0
                    tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT);
890
0
                    break;
891
0
            }
892
0
            ret += tmp;
893
0
        }
894
0
        std::string subscript;
895
0
        if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false;
896
0
        if (pos && subscript.size()) ret += ',';
897
0
        out = std::move(ret) + std::move(subscript) + ")";
898
0
        return true;
899
0
    }
900
901
    std::string ToString(bool compat_format) const final
902
0
    {
903
0
        std::string ret;
904
0
        ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC);
905
0
        return AddChecksum(ret);
906
0
    }
907
908
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
909
0
    {
910
0
        bool ret = ToStringHelper(&arg, out, StringType::PRIVATE);
911
0
        out = AddChecksum(out);
912
0
        return ret;
913
0
    }
914
915
    bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final
916
0
    {
917
0
        bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache);
918
0
        out = AddChecksum(out);
919
0
        return ret;
920
0
    }
921
922
    // NOLINTNEXTLINE(misc-no-recursion)
923
    bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
924
0
    {
925
0
        FlatSigningProvider subprovider;
926
0
        std::vector<CPubKey> pubkeys;
927
0
        pubkeys.reserve(m_pubkey_args.size());
928
929
        // Construct temporary data in `pubkeys`, `subscripts`, and `subprovider` to avoid producing output in case of failure.
930
0
        for (const auto& p : m_pubkey_args) {
931
0
            std::optional<CPubKey> pubkey = p->GetPubKey(pos, arg, subprovider, read_cache, write_cache);
932
0
            if (!pubkey) return false;
933
0
            pubkeys.push_back(pubkey.value());
934
0
        }
935
0
        std::vector<CScript> subscripts;
936
0
        for (const auto& subarg : m_subdescriptor_args) {
937
0
            std::vector<CScript> outscripts;
938
0
            if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false;
939
0
            assert(outscripts.size() == 1);
940
0
            subscripts.emplace_back(std::move(outscripts[0]));
941
0
        }
942
0
        out.Merge(std::move(subprovider));
943
944
0
        output_scripts = MakeScripts(pubkeys, std::span{subscripts}, out);
945
0
        return true;
946
0
    }
947
948
    bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
949
0
    {
950
0
        return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
951
0
    }
952
953
    bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
954
0
    {
955
0
        return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
956
0
    }
957
958
    // NOLINTNEXTLINE(misc-no-recursion)
959
    void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
960
0
    {
961
0
        for (const auto& p : m_pubkey_args) {
962
0
            p->GetPrivKey(pos, provider, out);
963
0
        }
964
0
        for (const auto& arg : m_subdescriptor_args) {
965
0
            arg->ExpandPrivate(pos, provider, out);
966
0
        }
967
0
    }
968
969
0
    std::optional<OutputType> GetOutputType() const override { return std::nullopt; }
970
971
0
    std::optional<int64_t> ScriptSize() const override { return {}; }
972
973
    /** A helper for MaxSatisfactionWeight.
974
     *
975
     * @param use_max_sig Whether to assume ECDSA signatures will have a high-r.
976
     * @return The maximum size of the satisfaction in raw bytes (with no witness meaning).
977
     */
978
0
    virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; }
979
980
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; }
981
982
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return {}; }
983
984
    // NOLINTNEXTLINE(misc-no-recursion)
985
    void GetPubKeys(std::set<CPubKey>& pubkeys, std::set<CExtPubKey>& ext_pubs) const override
986
0
    {
987
0
        for (const auto& p : m_pubkey_args) {
988
0
            std::optional<CPubKey> pub = p->GetRootPubKey();
989
0
            if (pub) pubkeys.insert(*pub);
990
0
            std::optional<CExtPubKey> ext_pub = p->GetRootExtPubKey();
991
0
            if (ext_pub) ext_pubs.insert(*ext_pub);
992
0
        }
993
0
        for (const auto& arg : m_subdescriptor_args) {
994
0
            arg->GetPubKeys(pubkeys, ext_pubs);
995
0
        }
996
0
    }
997
998
    virtual std::unique_ptr<DescriptorImpl> Clone() const = 0;
999
};
1000
1001
/** A parsed addr(A) descriptor. */
1002
class AddressDescriptor final : public DescriptorImpl
1003
{
1004
    const CTxDestination m_destination;
1005
protected:
1006
0
    std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
1007
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
1008
public:
1009
0
    AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {}
1010
0
    bool IsSolvable() const final { return false; }
1011
1012
    std::optional<OutputType> GetOutputType() const override
1013
0
    {
1014
0
        return OutputTypeFromDestination(m_destination);
1015
0
    }
1016
0
    bool IsSingleType() const final { return true; }
1017
0
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
1018
1019
0
    std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); }
1020
    std::unique_ptr<DescriptorImpl> Clone() const override
1021
0
    {
1022
0
        return std::make_unique<AddressDescriptor>(m_destination);
1023
0
    }
1024
};
1025
1026
/** A parsed raw(H) descriptor. */
1027
class RawDescriptor final : public DescriptorImpl
1028
{
1029
    const CScript m_script;
1030
protected:
1031
0
    std::string ToStringExtra() const override { return HexStr(m_script); }
1032
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); }
1033
public:
1034
0
    RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {}
1035
0
    bool IsSolvable() const final { return false; }
1036
1037
    std::optional<OutputType> GetOutputType() const override
1038
0
    {
1039
0
        CTxDestination dest;
1040
0
        ExtractDestination(m_script, dest);
1041
0
        return OutputTypeFromDestination(dest);
1042
0
    }
1043
0
    bool IsSingleType() const final { return true; }
1044
0
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
1045
1046
0
    std::optional<int64_t> ScriptSize() const override { return m_script.size(); }
1047
1048
    std::unique_ptr<DescriptorImpl> Clone() const override
1049
0
    {
1050
0
        return std::make_unique<RawDescriptor>(m_script);
1051
0
    }
1052
};
1053
1054
/** A parsed pk(P) descriptor. */
1055
class PKDescriptor final : public DescriptorImpl
1056
{
1057
private:
1058
    const bool m_xonly;
1059
protected:
1060
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
1061
0
    {
1062
0
        if (m_xonly) {
1063
0
            CScript script = CScript() << ToByteVector(XOnlyPubKey(keys[0])) << OP_CHECKSIG;
1064
0
            return Vector(std::move(script));
1065
0
        } else {
1066
0
            return Vector(GetScriptForRawPubKey(keys[0]));
1067
0
        }
1068
0
    }
1069
public:
1070
0
    PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {}
1071
0
    bool IsSingleType() const final { return true; }
1072
1073
0
    std::optional<int64_t> ScriptSize() const override {
1074
0
        return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1;
1075
0
    }
1076
1077
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1078
0
        const auto ecdsa_sig_size = use_max_sig ? 72 : 71;
1079
0
        return 1 + (m_xonly ? 65 : ecdsa_sig_size);
1080
0
    }
1081
1082
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1083
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
1084
0
    }
1085
1086
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 1; }
1087
1088
    std::unique_ptr<DescriptorImpl> Clone() const override
1089
0
    {
1090
0
        return std::make_unique<PKDescriptor>(m_pubkey_args.at(0)->Clone(), m_xonly);
1091
0
    }
1092
};
1093
1094
/** A parsed pkh(P) descriptor. */
1095
class PKHDescriptor final : public DescriptorImpl
1096
{
1097
protected:
1098
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
1099
0
    {
1100
0
        CKeyID id = keys[0].GetID();
1101
0
        return Vector(GetScriptForDestination(PKHash(id)));
1102
0
    }
1103
public:
1104
0
    PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {}
1105
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
1106
0
    bool IsSingleType() const final { return true; }
1107
1108
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; }
1109
1110
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1111
0
        const auto sig_size = use_max_sig ? 72 : 71;
1112
0
        return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize();
1113
0
    }
1114
1115
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1116
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
1117
0
    }
1118
1119
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
1120
1121
    std::unique_ptr<DescriptorImpl> Clone() const override
1122
0
    {
1123
0
        return std::make_unique<PKHDescriptor>(m_pubkey_args.at(0)->Clone());
1124
0
    }
1125
};
1126
1127
/** A parsed wpkh(P) descriptor. */
1128
class WPKHDescriptor final : public DescriptorImpl
1129
{
1130
protected:
1131
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
1132
0
    {
1133
0
        CKeyID id = keys[0].GetID();
1134
0
        return Vector(GetScriptForDestination(WitnessV0KeyHash(id)));
1135
0
    }
1136
public:
1137
0
    WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {}
1138
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
1139
0
    bool IsSingleType() const final { return true; }
1140
1141
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; }
1142
1143
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1144
0
        const auto sig_size = use_max_sig ? 72 : 71;
1145
0
        return (1 + sig_size + 1 + 33);
1146
0
    }
1147
1148
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1149
0
        return MaxSatSize(use_max_sig);
1150
0
    }
1151
1152
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
1153
1154
    std::unique_ptr<DescriptorImpl> Clone() const override
1155
0
    {
1156
0
        return std::make_unique<WPKHDescriptor>(m_pubkey_args.at(0)->Clone());
1157
0
    }
1158
};
1159
1160
/** A parsed combo(P) descriptor. */
1161
class ComboDescriptor final : public DescriptorImpl
1162
{
1163
protected:
1164
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override
1165
0
    {
1166
0
        std::vector<CScript> ret;
1167
0
        CKeyID id = keys[0].GetID();
1168
0
        ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
1169
0
        ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
1170
0
        if (keys[0].IsCompressed()) {
1171
0
            CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id));
1172
0
            out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
1173
0
            ret.emplace_back(p2wpkh);
1174
0
            ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
1175
0
        }
1176
0
        return ret;
1177
0
    }
1178
public:
1179
0
    ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {}
1180
0
    bool IsSingleType() const final { return false; }
1181
    std::unique_ptr<DescriptorImpl> Clone() const override
1182
0
    {
1183
0
        return std::make_unique<ComboDescriptor>(m_pubkey_args.at(0)->Clone());
1184
0
    }
1185
};
1186
1187
/** A parsed multi(...) or sortedmulti(...) descriptor */
1188
class MultisigDescriptor final : public DescriptorImpl
1189
{
1190
    const int m_threshold;
1191
    const bool m_sorted;
1192
protected:
1193
0
    std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
1194
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
1195
0
        if (m_sorted) {
1196
0
            std::vector<CPubKey> sorted_keys(keys);
1197
0
            std::sort(sorted_keys.begin(), sorted_keys.end());
1198
0
            return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
1199
0
        }
1200
0
        return Vector(GetScriptForMultisig(m_threshold, keys));
1201
0
    }
1202
public:
1203
0
    MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
1204
0
    bool IsSingleType() const final { return true; }
1205
1206
0
    std::optional<int64_t> ScriptSize() const override {
1207
0
        const auto n_keys = m_pubkey_args.size();
1208
0
        auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();};
1209
0
        const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)};
1210
0
        return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size;
1211
0
    }
1212
1213
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1214
0
        const auto sig_size = use_max_sig ? 72 : 71;
1215
0
        return (1 + (1 + sig_size) * m_threshold);
1216
0
    }
1217
1218
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1219
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
1220
0
    }
1221
1222
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; }
1223
1224
    std::unique_ptr<DescriptorImpl> Clone() const override
1225
0
    {
1226
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1227
0
        providers.reserve(m_pubkey_args.size());
1228
0
        std::transform(m_pubkey_args.begin(), m_pubkey_args.end(), providers.begin(), [](const std::unique_ptr<PubkeyProvider>& p) { return p->Clone(); });
1229
0
        return std::make_unique<MultisigDescriptor>(m_threshold, std::move(providers), m_sorted);
1230
0
    }
1231
};
1232
1233
/** A parsed (sorted)multi_a(...) descriptor. Always uses x-only pubkeys. */
1234
class MultiADescriptor final : public DescriptorImpl
1235
{
1236
    const int m_threshold;
1237
    const bool m_sorted;
1238
protected:
1239
0
    std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
1240
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
1241
0
        CScript ret;
1242
0
        std::vector<XOnlyPubKey> xkeys;
1243
0
        xkeys.reserve(keys.size());
1244
0
        for (const auto& key : keys) xkeys.emplace_back(key);
1245
0
        if (m_sorted) std::sort(xkeys.begin(), xkeys.end());
1246
0
        ret << ToByteVector(xkeys[0]) << OP_CHECKSIG;
1247
0
        for (size_t i = 1; i < keys.size(); ++i) {
1248
0
            ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD;
1249
0
        }
1250
0
        ret << m_threshold << OP_NUMEQUAL;
1251
0
        return Vector(std::move(ret));
1252
0
    }
1253
public:
1254
0
    MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {}
1255
0
    bool IsSingleType() const final { return true; }
1256
1257
0
    std::optional<int64_t> ScriptSize() const override {
1258
0
        const auto n_keys = m_pubkey_args.size();
1259
0
        return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1;
1260
0
    }
1261
1262
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1263
0
        return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold);
1264
0
    }
1265
1266
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); }
1267
1268
    std::unique_ptr<DescriptorImpl> Clone() const override
1269
0
    {
1270
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1271
0
        providers.reserve(m_pubkey_args.size());
1272
0
        for (const auto& arg : m_pubkey_args) {
1273
0
            providers.push_back(arg->Clone());
1274
0
        }
1275
0
        return std::make_unique<MultiADescriptor>(m_threshold, std::move(providers), m_sorted);
1276
0
    }
1277
};
1278
1279
/** A parsed sh(...) descriptor. */
1280
class SHDescriptor final : public DescriptorImpl
1281
{
1282
protected:
1283
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1284
0
    {
1285
0
        auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0])));
1286
0
        if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1287
0
        return ret;
1288
0
    }
1289
1290
0
    bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; }
1291
1292
public:
1293
0
    SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
1294
1295
    std::optional<OutputType> GetOutputType() const override
1296
0
    {
1297
0
        assert(m_subdescriptor_args.size() == 1);
1298
0
        if (IsSegwit()) return OutputType::P2SH_SEGWIT;
1299
0
        return OutputType::LEGACY;
1300
0
    }
1301
0
    bool IsSingleType() const final { return true; }
1302
1303
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; }
1304
1305
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1306
0
        if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1307
0
            if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1308
                // The subscript is never witness data.
1309
0
                const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR;
1310
                // The weight depends on whether the inner descriptor is satisfied using the witness stack.
1311
0
                if (IsSegwit()) return subscript_weight + *sat_size;
1312
0
                return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR;
1313
0
            }
1314
0
        }
1315
0
        return {};
1316
0
    }
1317
1318
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1319
0
        if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1320
0
        return {};
1321
0
    }
1322
1323
    std::unique_ptr<DescriptorImpl> Clone() const override
1324
0
    {
1325
0
        return std::make_unique<SHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1326
0
    }
1327
};
1328
1329
/** A parsed wsh(...) descriptor. */
1330
class WSHDescriptor final : public DescriptorImpl
1331
{
1332
protected:
1333
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1334
0
    {
1335
0
        auto ret = Vector(GetScriptForDestination(WitnessV0ScriptHash(scripts[0])));
1336
0
        if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1337
0
        return ret;
1338
0
    }
1339
public:
1340
0
    WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
1341
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
1342
0
    bool IsSingleType() const final { return true; }
1343
1344
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1345
1346
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1347
0
        if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1348
0
            if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1349
0
                return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size;
1350
0
            }
1351
0
        }
1352
0
        return {};
1353
0
    }
1354
1355
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1356
0
        return MaxSatSize(use_max_sig);
1357
0
    }
1358
1359
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1360
0
        if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1361
0
        return {};
1362
0
    }
1363
1364
    std::unique_ptr<DescriptorImpl> Clone() const override
1365
0
    {
1366
0
        return std::make_unique<WSHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1367
0
    }
1368
};
1369
1370
/** A parsed tr(...) descriptor. */
1371
class TRDescriptor final : public DescriptorImpl
1372
{
1373
    std::vector<int> m_depths;
1374
protected:
1375
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1376
0
    {
1377
0
        TaprootBuilder builder;
1378
0
        assert(m_depths.size() == scripts.size());
1379
0
        for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1380
0
            builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT);
1381
0
        }
1382
0
        if (!builder.IsComplete()) return {};
1383
0
        assert(keys.size() == 1);
1384
0
        XOnlyPubKey xpk(keys[0]);
1385
0
        if (!xpk.IsFullyValid()) return {};
1386
0
        builder.Finalize(xpk);
1387
0
        WitnessV1Taproot output = builder.GetOutput();
1388
0
        out.tr_trees[output] = builder;
1389
0
        return Vector(GetScriptForDestination(output));
1390
0
    }
1391
    bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override
1392
0
    {
1393
0
        if (m_depths.empty()) return true;
1394
0
        std::vector<bool> path;
1395
0
        for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1396
0
            if (pos) ret += ',';
1397
0
            while ((int)path.size() <= m_depths[pos]) {
1398
0
                if (path.size()) ret += '{';
1399
0
                path.push_back(false);
1400
0
            }
1401
0
            std::string tmp;
1402
0
            if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false;
1403
0
            ret += tmp;
1404
0
            while (!path.empty() && path.back()) {
1405
0
                if (path.size() > 1) ret += '}';
1406
0
                path.pop_back();
1407
0
            }
1408
0
            if (!path.empty()) path.back() = true;
1409
0
        }
1410
0
        return true;
1411
0
    }
1412
public:
1413
    TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) :
1414
0
        DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths))
1415
0
    {
1416
0
        assert(m_subdescriptor_args.size() == m_depths.size());
1417
0
    }
1418
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1419
0
    bool IsSingleType() const final { return true; }
1420
1421
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1422
1423
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1424
        // FIXME: We assume keypath spend, which can lead to very large underestimations.
1425
0
        return 1 + 65;
1426
0
    }
1427
1428
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1429
        // FIXME: See above, we assume keypath spend.
1430
0
        return 1;
1431
0
    }
1432
1433
    std::unique_ptr<DescriptorImpl> Clone() const override
1434
0
    {
1435
0
        std::vector<std::unique_ptr<DescriptorImpl>> subdescs;
1436
0
        subdescs.reserve(m_subdescriptor_args.size());
1437
0
        std::transform(m_subdescriptor_args.begin(), m_subdescriptor_args.end(), subdescs.begin(), [](const std::unique_ptr<DescriptorImpl>& d) { return d->Clone(); });
1438
0
        return std::make_unique<TRDescriptor>(m_pubkey_args.at(0)->Clone(), std::move(subdescs), m_depths);
1439
0
    }
1440
};
1441
1442
/* We instantiate Miniscript here with a simple integer as key type.
1443
 * The value of these key integers are an index in the
1444
 * DescriptorImpl::m_pubkey_args vector.
1445
 */
1446
1447
/**
1448
 * The context for converting a Miniscript descriptor into a Script.
1449
 */
1450
class ScriptMaker {
1451
    //! Keys contained in the Miniscript (the evaluation of DescriptorImpl::m_pubkey_args).
1452
    const std::vector<CPubKey>& m_keys;
1453
    //! The script context we're operating within (Tapscript or P2WSH).
1454
    const miniscript::MiniscriptContext m_script_ctx;
1455
1456
    //! Get the ripemd160(sha256()) hash of this key.
1457
    //! Any key that is valid in a descriptor serializes as 32 bytes within a Tapscript context. So we
1458
    //! must not hash the sign-bit byte in this case.
1459
0
    uint160 GetHash160(uint32_t key) const {
1460
0
        if (miniscript::IsTapscript(m_script_ctx)) {
1461
0
            return Hash160(XOnlyPubKey{m_keys[key]});
1462
0
        }
1463
0
        return m_keys[key].GetID();
1464
0
    }
1465
1466
public:
1467
0
    ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND, const miniscript::MiniscriptContext script_ctx) : m_keys(keys), m_script_ctx{script_ctx} {}
1468
1469
0
    std::vector<unsigned char> ToPKBytes(uint32_t key) const {
1470
        // In Tapscript keys always serialize as x-only, whether an x-only key was used in the descriptor or not.
1471
0
        if (!miniscript::IsTapscript(m_script_ctx)) {
1472
0
            return {m_keys[key].begin(), m_keys[key].end()};
1473
0
        }
1474
0
        const XOnlyPubKey xonly_pubkey{m_keys[key]};
1475
0
        return {xonly_pubkey.begin(), xonly_pubkey.end()};
1476
0
    }
1477
1478
0
    std::vector<unsigned char> ToPKHBytes(uint32_t key) const {
1479
0
        auto id = GetHash160(key);
1480
0
        return {id.begin(), id.end()};
1481
0
    }
1482
};
1483
1484
/**
1485
 * The context for converting a Miniscript descriptor to its textual form.
1486
 */
1487
class StringMaker {
1488
    //! To convert private keys for private descriptors.
1489
    const SigningProvider* m_arg;
1490
    //! Keys contained in the Miniscript (a reference to DescriptorImpl::m_pubkey_args).
1491
    const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys;
1492
    //! Whether to serialize keys as private or public.
1493
    bool m_private;
1494
1495
public:
1496
    StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv)
1497
0
        : m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {}
1498
1499
    std::optional<std::string> ToString(uint32_t key) const
1500
0
    {
1501
0
        std::string ret;
1502
0
        if (m_private) {
1503
0
            if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {};
1504
0
        } else {
1505
0
            ret = m_pubkeys[key]->ToString();
1506
0
        }
1507
0
        return ret;
1508
0
    }
1509
};
1510
1511
class MiniscriptDescriptor final : public DescriptorImpl
1512
{
1513
private:
1514
    miniscript::NodeRef<uint32_t> m_node;
1515
1516
protected:
1517
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts,
1518
                                     FlatSigningProvider& provider) const override
1519
0
    {
1520
0
        const auto script_ctx{m_node->GetMsCtx()};
1521
0
        for (const auto& key : keys) {
1522
0
            if (miniscript::IsTapscript(script_ctx)) {
1523
0
                provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key);
1524
0
            } else {
1525
0
                provider.pubkeys.emplace(key.GetID(), key);
1526
0
            }
1527
0
        }
1528
0
        return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx)));
1529
0
    }
1530
1531
public:
1532
    MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node)
1533
0
        : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {}
1534
1535
    bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type,
1536
                        const DescriptorCache* cache = nullptr) const override
1537
0
    {
1538
0
        if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) {
1539
0
            out = *res;
1540
0
            return true;
1541
0
        }
1542
0
        return false;
1543
0
    }
1544
1545
0
    bool IsSolvable() const override { return true; }
1546
0
    bool IsSingleType() const final { return true; }
1547
1548
0
    std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); }
1549
1550
0
    std::optional<int64_t> MaxSatSize(bool) const override {
1551
        // For Miniscript we always assume high-R ECDSA signatures.
1552
0
        return m_node->GetWitnessSize();
1553
0
    }
1554
1555
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1556
0
        return m_node->GetStackSize();
1557
0
    }
1558
1559
    std::unique_ptr<DescriptorImpl> Clone() const override
1560
0
    {
1561
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1562
0
        providers.reserve(m_pubkey_args.size());
1563
0
        for (const auto& arg : m_pubkey_args) {
1564
0
            providers.push_back(arg->Clone());
1565
0
        }
1566
0
        return std::make_unique<MiniscriptDescriptor>(std::move(providers), m_node->Clone());
1567
0
    }
1568
};
1569
1570
/** A parsed rawtr(...) descriptor. */
1571
class RawTRDescriptor final : public DescriptorImpl
1572
{
1573
protected:
1574
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1575
0
    {
1576
0
        assert(keys.size() == 1);
1577
0
        XOnlyPubKey xpk(keys[0]);
1578
0
        if (!xpk.IsFullyValid()) return {};
1579
0
        WitnessV1Taproot output{xpk};
1580
0
        return Vector(GetScriptForDestination(output));
1581
0
    }
1582
public:
1583
0
    RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {}
1584
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1585
0
    bool IsSingleType() const final { return true; }
1586
1587
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1588
1589
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1590
        // We can't know whether there is a script path, so assume key path spend.
1591
0
        return 1 + 65;
1592
0
    }
1593
1594
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1595
        // See above, we assume keypath spend.
1596
0
        return 1;
1597
0
    }
1598
1599
    std::unique_ptr<DescriptorImpl> Clone() const override
1600
0
    {
1601
0
        return std::make_unique<RawTRDescriptor>(m_pubkey_args.at(0)->Clone());
1602
0
    }
1603
};
1604
1605
////////////////////////////////////////////////////////////////////////////
1606
// Parser                                                                 //
1607
////////////////////////////////////////////////////////////////////////////
1608
1609
enum class ParseScriptContext {
1610
    TOP,     //!< Top-level context (script goes directly in scriptPubKey)
1611
    P2SH,    //!< Inside sh() (script becomes P2SH redeemScript)
1612
    P2WPKH,  //!< Inside wpkh() (no script, pubkey only)
1613
    P2WSH,   //!< Inside wsh() (script becomes v0 witness script)
1614
    P2TR,    //!< Inside tr() (either internal key, or BIP342 script leaf)
1615
    MUSIG,   //!< Inside musig() (implies P2TR, cannot have nested musig())
1616
};
1617
1618
std::optional<uint32_t> ParseKeyPathNum(std::span<const char> elem, bool& apostrophe, std::string& error, bool& has_hardened)
1619
0
{
1620
0
    bool hardened = false;
1621
0
    if (elem.size() > 0) {
1622
0
        const char last = elem[elem.size() - 1];
1623
0
        if (last == '\'' || last == 'h') {
1624
0
            elem = elem.first(elem.size() - 1);
1625
0
            hardened = true;
1626
0
            apostrophe = last == '\'';
1627
0
        }
1628
0
    }
1629
0
    const auto p{ToIntegral<uint32_t>(std::string_view{elem.begin(), elem.end()})};
1630
0
    if (!p) {
1631
0
        error = strprintf("Key path value '%s' is not a valid uint32", std::string_view{elem.begin(), elem.end()});
1632
0
        return std::nullopt;
1633
0
    } else if (*p > 0x7FFFFFFFUL) {
1634
0
        error = strprintf("Key path value %u is out of range", *p);
1635
0
        return std::nullopt;
1636
0
    }
1637
0
    has_hardened = has_hardened || hardened;
1638
1639
0
    return std::make_optional<uint32_t>(*p | (((uint32_t)hardened) << 31));
1640
0
}
1641
1642
/**
1643
 * Parse a key path, being passed a split list of elements (the first element is ignored because it is always the key).
1644
 *
1645
 * @param[in] split BIP32 path string, using either ' or h for hardened derivation
1646
 * @param[out] out Vector of parsed key paths
1647
 * @param[out] apostrophe only updated if hardened derivation is found
1648
 * @param[out] error parsing error message
1649
 * @param[in] allow_multipath Allows the parsed path to use the multipath specifier
1650
 * @returns false if parsing failed
1651
 **/
1652
[[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath, bool& has_hardened)
1653
0
{
1654
0
    KeyPath path;
1655
0
    struct MultipathSubstitutes {
1656
0
        size_t placeholder_index;
1657
0
        std::vector<uint32_t> values;
1658
0
    };
1659
0
    std::optional<MultipathSubstitutes> substitutes;
1660
0
    has_hardened = false;
1661
1662
0
    for (size_t i = 1; i < split.size(); ++i) {
1663
0
        const std::span<const char>& elem = split[i];
1664
1665
        // Check if element contains multipath specifier
1666
0
        if (!elem.empty() && elem.front() == '<' && elem.back() == '>') {
1667
0
            if (!allow_multipath) {
1668
0
                error = strprintf("Key path value '%s' specifies multipath in a section where multipath is not allowed", std::string(elem.begin(), elem.end()));
1669
0
                return false;
1670
0
            }
1671
0
            if (substitutes) {
1672
0
                error = "Multiple multipath key path specifiers found";
1673
0
                return false;
1674
0
            }
1675
1676
            // Parse each possible value
1677
0
            std::vector<std::span<const char>> nums = Split(std::span(elem.begin()+1, elem.end()-1), ";");
1678
0
            if (nums.size() < 2) {
1679
0
                error = "Multipath key path specifiers must have at least two items";
1680
0
                return false;
1681
0
            }
1682
1683
0
            substitutes.emplace();
1684
0
            std::unordered_set<uint32_t> seen_substitutes;
1685
0
            for (const auto& num : nums) {
1686
0
                const auto& op_num = ParseKeyPathNum(num, apostrophe, error, has_hardened);
1687
0
                if (!op_num) return false;
1688
0
                auto [_, inserted] = seen_substitutes.insert(*op_num);
1689
0
                if (!inserted) {
1690
0
                    error = strprintf("Duplicated key path value %u in multipath specifier", *op_num);
1691
0
                    return false;
1692
0
                }
1693
0
                substitutes->values.emplace_back(*op_num);
1694
0
            }
1695
1696
0
            path.emplace_back(); // Placeholder for multipath segment
1697
0
            substitutes->placeholder_index = path.size() - 1;
1698
0
        } else {
1699
0
            const auto& op_num = ParseKeyPathNum(elem, apostrophe, error, has_hardened);
1700
0
            if (!op_num) return false;
1701
0
            path.emplace_back(*op_num);
1702
0
        }
1703
0
    }
1704
1705
0
    if (!substitutes) {
1706
0
        out.emplace_back(std::move(path));
1707
0
    } else {
1708
        // Replace the multipath placeholder with each value while generating paths
1709
0
        for (uint32_t substitute : substitutes->values) {
1710
0
            KeyPath branch_path = path;
1711
0
            branch_path[substitutes->placeholder_index] = substitute;
1712
0
            out.emplace_back(std::move(branch_path));
1713
0
        }
1714
0
    }
1715
0
    return true;
1716
0
}
1717
1718
[[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath)
1719
0
{
1720
0
    bool dummy;
1721
0
    return ParseKeyPath(split, out, apostrophe, error, allow_multipath, /*has_hardened=*/dummy);
1722
0
}
1723
1724
static DeriveType ParseDeriveType(std::vector<std::span<const char>>& split, bool& apostrophe)
1725
0
{
1726
0
    DeriveType type = DeriveType::NO;
1727
0
    if (std::ranges::equal(split.back(), std::span{"*"}.first(1))) {
1728
0
        split.pop_back();
1729
0
        type = DeriveType::UNHARDENED;
1730
0
    } else if (std::ranges::equal(split.back(), std::span{"*'"}.first(2)) || std::ranges::equal(split.back(), std::span{"*h"}.first(2))) {
1731
0
        apostrophe = std::ranges::equal(split.back(), std::span{"*'"}.first(2));
1732
0
        split.pop_back();
1733
0
        type = DeriveType::HARDENED;
1734
0
    }
1735
0
    return type;
1736
0
}
1737
1738
/** Parse a public key that excludes origin information. */
1739
std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkeyInner(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error)
1740
0
{
1741
0
    std::vector<std::unique_ptr<PubkeyProvider>> ret;
1742
0
    bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH;
1743
0
    auto split = Split(sp, '/');
1744
0
    std::string str(split[0].begin(), split[0].end());
1745
0
    if (str.size() == 0) {
1746
0
        error = "No key provided";
1747
0
        return {};
1748
0
    }
1749
0
    if (IsSpace(str.front()) || IsSpace(str.back())) {
1750
0
        error = strprintf("Key '%s' is invalid due to whitespace", str);
1751
0
        return {};
1752
0
    }
1753
0
    if (split.size() == 1) {
1754
0
        if (IsHex(str)) {
1755
0
            std::vector<unsigned char> data = ParseHex(str);
1756
0
            CPubKey pubkey(data);
1757
0
            if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) {
1758
0
                error = "Hybrid public keys are not allowed";
1759
0
                return {};
1760
0
            }
1761
0
            if (pubkey.IsFullyValid()) {
1762
0
                if (permit_uncompressed || pubkey.IsCompressed()) {
1763
0
                    ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false));
1764
0
                    return ret;
1765
0
                } else {
1766
0
                    error = "Uncompressed keys are not allowed";
1767
0
                    return {};
1768
0
                }
1769
0
            } else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) {
1770
0
                unsigned char fullkey[33] = {0x02};
1771
0
                std::copy(data.begin(), data.end(), fullkey + 1);
1772
0
                pubkey.Set(std::begin(fullkey), std::end(fullkey));
1773
0
                if (pubkey.IsFullyValid()) {
1774
0
                    ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true));
1775
0
                    return ret;
1776
0
                }
1777
0
            }
1778
0
            error = strprintf("Pubkey '%s' is invalid", str);
1779
0
            return {};
1780
0
        }
1781
0
        CKey key = DecodeSecret(str);
1782
0
        if (key.IsValid()) {
1783
0
            if (permit_uncompressed || key.IsCompressed()) {
1784
0
                CPubKey pubkey = key.GetPubKey();
1785
0
                out.keys.emplace(pubkey.GetID(), key);
1786
0
                ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR));
1787
0
                return ret;
1788
0
            } else {
1789
0
                error = "Uncompressed keys are not allowed";
1790
0
                return {};
1791
0
            }
1792
0
        }
1793
0
    }
1794
0
    CExtKey extkey = DecodeExtKey(str);
1795
0
    CExtPubKey extpubkey = DecodeExtPubKey(str);
1796
0
    if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
1797
0
        error = strprintf("key '%s' is not valid", str);
1798
0
        return {};
1799
0
    }
1800
0
    std::vector<KeyPath> paths;
1801
0
    DeriveType type = ParseDeriveType(split, apostrophe);
1802
0
    if (!ParseKeyPath(split, paths, apostrophe, error, /*allow_multipath=*/true)) return {};
1803
0
    if (extkey.key.IsValid()) {
1804
0
        extpubkey = extkey.Neuter();
1805
0
        out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
1806
0
    }
1807
0
    for (auto& path : paths) {
1808
0
        ret.emplace_back(std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe));
1809
0
    }
1810
0
    return ret;
1811
0
}
1812
1813
/** Parse a public key including origin information (if enabled). */
1814
// NOLINTNEXTLINE(misc-no-recursion)
1815
std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkey(uint32_t& key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1816
0
{
1817
0
    std::vector<std::unique_ptr<PubkeyProvider>> ret;
1818
1819
0
    using namespace script;
1820
1821
    // musig cannot be nested inside of an origin
1822
0
    std::span<const char> span = sp;
1823
0
    if (Const("musig(", span, /*skip=*/false)) {
1824
0
        if (ctx != ParseScriptContext::P2TR) {
1825
0
            error = "musig() is only allowed in tr() and rawtr()";
1826
0
            return {};
1827
0
        }
1828
1829
        // Split the span on the end parentheses. The end parentheses must
1830
        // be included in the resulting span so that Expr is happy.
1831
0
        auto split = Split(sp, ')', /*include_sep=*/true);
1832
0
        if (split.size() > 2) {
1833
0
            error = "Too many ')' in musig() expression";
1834
0
            return {};
1835
0
        }
1836
0
        std::span<const char> expr(split.at(0).begin(), split.at(0).end());
1837
0
        if (!Func("musig", expr)) {
1838
0
            error = "Invalid musig() expression";
1839
0
            return {};
1840
0
        }
1841
1842
        // Parse the participant pubkeys
1843
0
        bool any_ranged = false;
1844
0
        bool all_bip32 = true;
1845
0
        std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers;
1846
0
        bool any_key_parsed = true;
1847
0
        size_t max_multipath_len = 0;
1848
0
        while (expr.size()) {
1849
0
            if (!any_key_parsed && !Const(",", expr)) {
1850
0
                error = strprintf("musig(): expected ',', got '%c'", expr[0]);
1851
0
                return {};
1852
0
            }
1853
0
            any_key_parsed = false;
1854
0
            auto arg = Expr(expr);
1855
0
            auto pk = ParsePubkey(key_exp_index, arg, ParseScriptContext::MUSIG, out, error);
1856
0
            if (pk.empty()) {
1857
0
                error = strprintf("musig(): %s", error);
1858
0
                return {};
1859
0
            }
1860
1861
0
            any_ranged = any_ranged || pk.at(0)->IsRange();
1862
0
            all_bip32 = all_bip32 &&  pk.at(0)->IsBIP32();
1863
1864
0
            max_multipath_len = std::max(max_multipath_len, pk.size());
1865
1866
0
            providers.emplace_back(std::move(pk));
1867
0
            key_exp_index++;
1868
0
        }
1869
0
        if (any_key_parsed) {
1870
0
            error = "musig(): Must contain key expressions";
1871
0
            return {};
1872
0
        }
1873
1874
        // Parse any derivation
1875
0
        DeriveType deriv_type = DeriveType::NO;
1876
0
        std::vector<KeyPath> derivation_multipaths;
1877
0
        if (split.size() == 2 && Const("/", split.at(1), /*skip=*/false)) {
1878
0
            if (!all_bip32) {
1879
0
                error = "musig(): derivation requires all participants to be xpubs or xprvs";
1880
0
                return {};
1881
0
            }
1882
0
            if (any_ranged) {
1883
0
                error = "musig(): Cannot have ranged participant keys if musig() also has derivation";
1884
0
                return {};
1885
0
            }
1886
0
            bool dummy = false;
1887
0
            auto deriv_split = Split(split.at(1), '/');
1888
0
            deriv_type = ParseDeriveType(deriv_split, dummy);
1889
0
            if (deriv_type == DeriveType::HARDENED) {
1890
0
                error = "musig(): Cannot have hardened child derivation";
1891
0
                return {};
1892
0
            }
1893
0
            bool has_hardened = false;
1894
0
            if (!ParseKeyPath(deriv_split, derivation_multipaths, dummy, error, /*allow_multipath=*/true, has_hardened)) {
1895
0
                error = "musig(): " + error;
1896
0
                return {};
1897
0
            }
1898
0
            if (has_hardened) {
1899
0
                error = "musig(): cannot have hardened derivation steps";
1900
0
                return {};
1901
0
            }
1902
0
        } else {
1903
0
            derivation_multipaths.emplace_back();
1904
0
        }
1905
1906
        // Makes sure that all providers vectors in providers are the given length, or exactly length 1
1907
        // Length 1 vectors have the single provider cloned until it matches the given length.
1908
0
        const auto& clone_providers = [&providers](size_t length) -> bool {
1909
0
            for (auto& multipath_providers : providers) {
1910
0
                if (multipath_providers.size() == 1) {
1911
0
                    for (size_t i = 1; i < length; ++i) {
1912
0
                        multipath_providers.emplace_back(multipath_providers.at(0)->Clone());
1913
0
                    }
1914
0
                } else if (multipath_providers.size() != length) {
1915
0
                    return false;
1916
0
                }
1917
0
            }
1918
0
            return true;
1919
0
        };
1920
1921
        // Emplace the final MuSigPubkeyProvider into ret with the pubkey providers from the specified provider vectors index
1922
        // and the path from the specified path index
1923
0
        const auto& emplace_final_provider = [&ret, &key_exp_index, &deriv_type, &derivation_multipaths, &providers](size_t vec_idx, size_t path_idx) -> void {
1924
0
            KeyPath& path = derivation_multipaths.at(path_idx);
1925
0
            std::vector<std::unique_ptr<PubkeyProvider>> pubs;
1926
0
            pubs.reserve(providers.size());
1927
0
            for (auto& vec : providers) {
1928
0
                pubs.emplace_back(std::move(vec.at(vec_idx)));
1929
0
            }
1930
0
            ret.emplace_back(std::make_unique<MuSigPubkeyProvider>(key_exp_index, std::move(pubs), path, deriv_type));
1931
0
        };
1932
1933
0
        if (max_multipath_len > 1 && derivation_multipaths.size() > 1) {
1934
0
            error = "musig(): Cannot have multipath participant keys if musig() is also multipath";
1935
0
            return {};
1936
0
        } else if (max_multipath_len > 1) {
1937
0
            if (!clone_providers(max_multipath_len)) {
1938
0
                error = strprintf("musig(): Multipath derivation paths have mismatched lengths");
1939
0
                return {};
1940
0
            }
1941
0
            for (size_t i = 0; i < max_multipath_len; ++i) {
1942
                // Final MuSigPubkeyProvider uses participant pubkey providers at each multipath position, and the first (and only) path
1943
0
                emplace_final_provider(i, 0);
1944
0
            }
1945
0
        } else if (derivation_multipaths.size() > 1) {
1946
            // All key provider vectors should be length 1. Clone them until they have the same length as paths
1947
0
            if (!Assume(clone_providers(derivation_multipaths.size()))) {
1948
0
                error = "musig(): Multipath derivation path with multipath participants is disallowed"; // This error is unreachable due to earlier check
1949
0
                return {};
1950
0
            }
1951
0
            for (size_t i = 0; i < derivation_multipaths.size(); ++i) {
1952
                // Final MuSigPubkeyProvider uses cloned participant pubkey providers, and the multipath derivation paths
1953
0
                emplace_final_provider(i, i);
1954
0
            }
1955
0
        } else {
1956
            // No multipath derivation, MuSigPubkeyProvider uses the first (and only) participant pubkey providers, and the first (and only) path
1957
0
            emplace_final_provider(0, 0);
1958
0
        }
1959
0
        return ret;
1960
0
    }
1961
1962
0
    auto origin_split = Split(sp, ']');
1963
0
    if (origin_split.size() > 2) {
1964
0
        error = "Multiple ']' characters found for a single pubkey";
1965
0
        return {};
1966
0
    }
1967
    // This is set if either the origin or path suffix contains a hardened derivation.
1968
0
    bool apostrophe = false;
1969
0
    if (origin_split.size() == 1) {
1970
0
        return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error);
1971
0
    }
1972
0
    if (origin_split[0].empty() || origin_split[0][0] != '[') {
1973
0
        error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
1974
0
                          origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]);
1975
0
        return {};
1976
0
    }
1977
0
    auto slash_split = Split(origin_split[0].subspan(1), '/');
1978
0
    if (slash_split[0].size() != 8) {
1979
0
        error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
1980
0
        return {};
1981
0
    }
1982
0
    std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
1983
0
    if (!IsHex(fpr_hex)) {
1984
0
        error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
1985
0
        return {};
1986
0
    }
1987
0
    auto fpr_bytes = ParseHex(fpr_hex);
1988
0
    KeyOriginInfo info;
1989
0
    static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
1990
0
    assert(fpr_bytes.size() == 4);
1991
0
    std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
1992
0
    std::vector<KeyPath> path;
1993
0
    if (!ParseKeyPath(slash_split, path, apostrophe, error, /*allow_multipath=*/false)) return {};
1994
0
    info.path = path.at(0);
1995
0
    auto providers = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error);
1996
0
    if (providers.empty()) return {};
1997
0
    ret.reserve(providers.size());
1998
0
    for (auto& prov : providers) {
1999
0
        ret.emplace_back(std::make_unique<OriginPubkeyProvider>(key_exp_index, info, std::move(prov), apostrophe));
2000
0
    }
2001
0
    return ret;
2002
0
}
2003
2004
std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext ctx, const SigningProvider& provider)
2005
0
{
2006
    // Key cannot be hybrid
2007
0
    if (!pubkey.IsValidNonHybrid()) {
2008
0
        return nullptr;
2009
0
    }
2010
    // Uncompressed is only allowed in TOP and P2SH contexts
2011
0
    if (ctx != ParseScriptContext::TOP && ctx != ParseScriptContext::P2SH && !pubkey.IsCompressed()) {
2012
0
        return nullptr;
2013
0
    }
2014
0
    std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false);
2015
0
    KeyOriginInfo info;
2016
0
    if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
2017
0
        return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
2018
0
    }
2019
0
    return key_provider;
2020
0
}
2021
2022
std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider)
2023
0
{
2024
0
    CPubKey pubkey{xkey.GetEvenCorrespondingCPubKey()};
2025
0
    std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true);
2026
0
    KeyOriginInfo info;
2027
0
    if (provider.GetKeyOriginByXOnly(xkey, info)) {
2028
0
        return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
2029
0
    }
2030
0
    return key_provider;
2031
0
}
2032
2033
/**
2034
 * The context for parsing a Miniscript descriptor (either from Script or from its textual representation).
2035
 */
2036
struct KeyParser {
2037
    //! The Key type is an index in DescriptorImpl::m_pubkey_args
2038
    using Key = uint32_t;
2039
    //! Must not be nullptr if parsing from string.
2040
    FlatSigningProvider* m_out;
2041
    //! Must not be nullptr if parsing from Script.
2042
    const SigningProvider* m_in;
2043
    //! List of multipath expanded keys contained in the Miniscript.
2044
    mutable std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> m_keys;
2045
    //! Used to detect key parsing errors within a Miniscript.
2046
    mutable std::string m_key_parsing_error;
2047
    //! The script context we're operating within (Tapscript or P2WSH).
2048
    const miniscript::MiniscriptContext m_script_ctx;
2049
    //! The number of keys that were parsed before starting to parse this Miniscript descriptor.
2050
    uint32_t m_offset;
2051
2052
    KeyParser(FlatSigningProvider* out LIFETIMEBOUND, const SigningProvider* in LIFETIMEBOUND,
2053
              miniscript::MiniscriptContext ctx, uint32_t offset = 0)
2054
0
        : m_out(out), m_in(in), m_script_ctx(ctx), m_offset(offset) {}
2055
2056
0
    bool KeyCompare(const Key& a, const Key& b) const {
2057
0
        return *m_keys.at(a).at(0) < *m_keys.at(b).at(0);
2058
0
    }
2059
2060
0
    ParseScriptContext ParseContext() const {
2061
0
        switch (m_script_ctx) {
2062
0
            case miniscript::MiniscriptContext::P2WSH: return ParseScriptContext::P2WSH;
2063
0
            case miniscript::MiniscriptContext::TAPSCRIPT: return ParseScriptContext::P2TR;
2064
0
        }
2065
0
        assert(false);
2066
0
    }
2067
2068
    template<typename I> std::optional<Key> FromString(I begin, I end) const
2069
0
    {
2070
0
        assert(m_out);
2071
0
        Key key = m_keys.size();
2072
0
        uint32_t exp_index = m_offset + key;
2073
0
        auto pk = ParsePubkey(exp_index, {&*begin, &*end}, ParseContext(), *m_out, m_key_parsing_error);
2074
0
        if (pk.empty()) return {};
2075
0
        m_keys.emplace_back(std::move(pk));
2076
0
        return key;
2077
0
    }
2078
2079
    std::optional<std::string> ToString(const Key& key) const
2080
0
    {
2081
0
        return m_keys.at(key).at(0)->ToString();
2082
0
    }
2083
2084
    template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const
2085
0
    {
2086
0
        assert(m_in);
2087
0
        Key key = m_keys.size();
2088
0
        if (miniscript::IsTapscript(m_script_ctx) && end - begin == 32) {
2089
0
            XOnlyPubKey pubkey;
2090
0
            std::copy(begin, end, pubkey.begin());
2091
0
            if (auto pubkey_provider = InferXOnlyPubkey(pubkey, ParseContext(), *m_in)) {
2092
0
                m_keys.emplace_back();
2093
0
                m_keys.back().push_back(std::move(pubkey_provider));
2094
0
                return key;
2095
0
            }
2096
0
        } else if (!miniscript::IsTapscript(m_script_ctx)) {
2097
0
            CPubKey pubkey(begin, end);
2098
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
2099
0
                m_keys.emplace_back();
2100
0
                m_keys.back().push_back(std::move(pubkey_provider));
2101
0
                return key;
2102
0
            }
2103
0
        }
2104
0
        return {};
2105
0
    }
2106
2107
    template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const
2108
0
    {
2109
0
        assert(end - begin == 20);
2110
0
        assert(m_in);
2111
0
        uint160 hash;
2112
0
        std::copy(begin, end, hash.begin());
2113
0
        CKeyID keyid(hash);
2114
0
        CPubKey pubkey;
2115
0
        if (m_in->GetPubKey(keyid, pubkey)) {
2116
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
2117
0
                Key key = m_keys.size();
2118
0
                m_keys.emplace_back();
2119
0
                m_keys.back().push_back(std::move(pubkey_provider));
2120
0
                return key;
2121
0
            }
2122
0
        }
2123
0
        return {};
2124
0
    }
2125
2126
0
    miniscript::MiniscriptContext MsContext() const {
2127
0
        return m_script_ctx;
2128
0
    }
2129
};
2130
2131
/** Parse a script in a particular context. */
2132
// NOLINTNEXTLINE(misc-no-recursion)
2133
std::vector<std::unique_ptr<DescriptorImpl>> ParseScript(uint32_t& key_exp_index, std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
2134
0
{
2135
0
    using namespace script;
2136
0
    Assume(ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR);
2137
0
    std::vector<std::unique_ptr<DescriptorImpl>> ret;
2138
0
    auto expr = Expr(sp);
2139
0
    if (Func("pk", expr)) {
2140
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
2141
0
        if (pubkeys.empty()) {
2142
0
            error = strprintf("pk(): %s", error);
2143
0
            return {};
2144
0
        }
2145
0
        ++key_exp_index;
2146
0
        for (auto& pubkey : pubkeys) {
2147
0
            ret.emplace_back(std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR));
2148
0
        }
2149
0
        return ret;
2150
0
    }
2151
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) {
2152
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
2153
0
        if (pubkeys.empty()) {
2154
0
            error = strprintf("pkh(): %s", error);
2155
0
            return {};
2156
0
        }
2157
0
        ++key_exp_index;
2158
0
        for (auto& pubkey : pubkeys) {
2159
0
            ret.emplace_back(std::make_unique<PKHDescriptor>(std::move(pubkey)));
2160
0
        }
2161
0
        return ret;
2162
0
    }
2163
0
    if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
2164
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
2165
0
        if (pubkeys.empty()) {
2166
0
            error = strprintf("combo(): %s", error);
2167
0
            return {};
2168
0
        }
2169
0
        ++key_exp_index;
2170
0
        for (auto& pubkey : pubkeys) {
2171
0
            ret.emplace_back(std::make_unique<ComboDescriptor>(std::move(pubkey)));
2172
0
        }
2173
0
        return ret;
2174
0
    } else if (Func("combo", expr)) {
2175
0
        error = "Can only have combo() at top level";
2176
0
        return {};
2177
0
    }
2178
0
    const bool multi = Func("multi", expr);
2179
0
    const bool sortedmulti = !multi && Func("sortedmulti", expr);
2180
0
    const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr);
2181
0
    const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr);
2182
0
    if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) ||
2183
0
        (ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) {
2184
0
        auto threshold = Expr(expr);
2185
0
        uint32_t thres;
2186
0
        std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers; // List of multipath expanded pubkeys
2187
0
        if (const auto maybe_thres{ToIntegral<uint32_t>(std::string_view{threshold.begin(), threshold.end()})}) {
2188
0
            thres = *maybe_thres;
2189
0
        } else {
2190
0
            error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
2191
0
            return {};
2192
0
        }
2193
0
        size_t script_size = 0;
2194
0
        size_t max_providers_len = 0;
2195
0
        while (expr.size()) {
2196
0
            if (!Const(",", expr)) {
2197
0
                error = strprintf("Multi: expected ',', got '%c'", expr[0]);
2198
0
                return {};
2199
0
            }
2200
0
            auto arg = Expr(expr);
2201
0
            auto pks = ParsePubkey(key_exp_index, arg, ctx, out, error);
2202
0
            if (pks.empty()) {
2203
0
                error = strprintf("Multi: %s", error);
2204
0
                return {};
2205
0
            }
2206
0
            script_size += pks.at(0)->GetSize() + 1;
2207
0
            max_providers_len = std::max(max_providers_len, pks.size());
2208
0
            providers.emplace_back(std::move(pks));
2209
0
            key_exp_index++;
2210
0
        }
2211
0
        if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) {
2212
0
            error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG);
2213
0
            return {};
2214
0
        } else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) {
2215
0
            error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A);
2216
0
            return {};
2217
0
        } else if (thres < 1) {
2218
0
            error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
2219
0
            return {};
2220
0
        } else if (thres > providers.size()) {
2221
0
            error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
2222
0
            return {};
2223
0
        }
2224
0
        if (ctx == ParseScriptContext::TOP) {
2225
0
            if (providers.size() > 3) {
2226
0
                error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
2227
0
                return {};
2228
0
            }
2229
0
        }
2230
0
        if (ctx == ParseScriptContext::P2SH) {
2231
            // This limits the maximum number of compressed pubkeys to 15.
2232
0
            if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
2233
0
                error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
2234
0
                return {};
2235
0
            }
2236
0
        }
2237
2238
        // Make sure all vecs are of the same length, or exactly length 1
2239
        // For length 1 vectors, clone key providers until vector is the same length
2240
0
        for (auto& vec : providers) {
2241
0
            if (vec.size() == 1) {
2242
0
                for (size_t i = 1; i < max_providers_len; ++i) {
2243
0
                    vec.emplace_back(vec.at(0)->Clone());
2244
0
                }
2245
0
            } else if (vec.size() != max_providers_len) {
2246
0
                error = strprintf("multi(): Multipath derivation paths have mismatched lengths");
2247
0
                return {};
2248
0
            }
2249
0
        }
2250
2251
        // Build the final descriptors vector
2252
0
        for (size_t i = 0; i < max_providers_len; ++i) {
2253
            // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
2254
0
            std::vector<std::unique_ptr<PubkeyProvider>> pubs;
2255
0
            pubs.reserve(providers.size());
2256
0
            for (auto& pub : providers) {
2257
0
                pubs.emplace_back(std::move(pub.at(i)));
2258
0
            }
2259
0
            if (multi || sortedmulti) {
2260
0
                ret.emplace_back(std::make_unique<MultisigDescriptor>(thres, std::move(pubs), sortedmulti));
2261
0
            } else {
2262
0
                ret.emplace_back(std::make_unique<MultiADescriptor>(thres, std::move(pubs), sortedmulti_a));
2263
0
            }
2264
0
        }
2265
0
        return ret;
2266
0
    } else if (multi || sortedmulti) {
2267
0
        error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()";
2268
0
        return {};
2269
0
    } else if (multi_a || sortedmulti_a) {
2270
0
        error = "Can only have multi_a/sortedmulti_a inside tr()";
2271
0
        return {};
2272
0
    }
2273
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) {
2274
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error);
2275
0
        if (pubkeys.empty()) {
2276
0
            error = strprintf("wpkh(): %s", error);
2277
0
            return {};
2278
0
        }
2279
0
        key_exp_index++;
2280
0
        for (auto& pubkey : pubkeys) {
2281
0
            ret.emplace_back(std::make_unique<WPKHDescriptor>(std::move(pubkey)));
2282
0
        }
2283
0
        return ret;
2284
0
    } else if (Func("wpkh", expr)) {
2285
0
        error = "Can only have wpkh() at top level or inside sh()";
2286
0
        return {};
2287
0
    }
2288
0
    if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
2289
0
        auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
2290
0
        if (descs.empty() || expr.size()) return {};
2291
0
        std::vector<std::unique_ptr<DescriptorImpl>> ret;
2292
0
        ret.reserve(descs.size());
2293
0
        for (auto& desc : descs) {
2294
0
            ret.push_back(std::make_unique<SHDescriptor>(std::move(desc)));
2295
0
        }
2296
0
        return ret;
2297
0
    } else if (Func("sh", expr)) {
2298
0
        error = "Can only have sh() at top level";
2299
0
        return {};
2300
0
    }
2301
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) {
2302
0
        auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
2303
0
        if (descs.empty() || expr.size()) return {};
2304
0
        for (auto& desc : descs) {
2305
0
            ret.emplace_back(std::make_unique<WSHDescriptor>(std::move(desc)));
2306
0
        }
2307
0
        return ret;
2308
0
    } else if (Func("wsh", expr)) {
2309
0
        error = "Can only have wsh() at top level or inside sh()";
2310
0
        return {};
2311
0
    }
2312
0
    if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
2313
0
        CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
2314
0
        if (!IsValidDestination(dest)) {
2315
0
            error = "Address is not valid";
2316
0
            return {};
2317
0
        }
2318
0
        ret.emplace_back(std::make_unique<AddressDescriptor>(std::move(dest)));
2319
0
        return ret;
2320
0
    } else if (Func("addr", expr)) {
2321
0
        error = "Can only have addr() at top level";
2322
0
        return {};
2323
0
    }
2324
0
    if (ctx == ParseScriptContext::TOP && Func("tr", expr)) {
2325
0
        auto arg = Expr(expr);
2326
0
        auto internal_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
2327
0
        if (internal_keys.empty()) {
2328
0
            error = strprintf("tr(): %s", error);
2329
0
            return {};
2330
0
        }
2331
0
        size_t max_providers_len = internal_keys.size();
2332
0
        ++key_exp_index;
2333
0
        std::vector<std::vector<std::unique_ptr<DescriptorImpl>>> subscripts; //!< list of multipath expanded script subexpressions
2334
0
        std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
2335
0
        if (expr.size()) {
2336
0
            if (!Const(",", expr)) {
2337
0
                error = strprintf("tr: expected ',', got '%c'", expr[0]);
2338
0
                return {};
2339
0
            }
2340
            /** The path from the top of the tree to what we're currently processing.
2341
             * branches[i] == false: left branch in the i'th step from the top; true: right branch.
2342
             */
2343
0
            std::vector<bool> branches;
2344
            // Loop over all provided scripts. In every iteration exactly one script will be processed.
2345
            // Use a do-loop because inside this if-branch we expect at least one script.
2346
0
            do {
2347
                // First process all open braces.
2348
0
                while (Const("{", expr)) {
2349
0
                    branches.push_back(false); // new left branch
2350
0
                    if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) {
2351
0
                        error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT);
2352
0
                        return {};
2353
0
                    }
2354
0
                }
2355
                // Process the actual script expression.
2356
0
                auto sarg = Expr(expr);
2357
0
                subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error));
2358
0
                if (subscripts.back().empty()) return {};
2359
0
                max_providers_len = std::max(max_providers_len, subscripts.back().size());
2360
0
                depths.push_back(branches.size());
2361
                // Process closing braces; one is expected for every right branch we were in.
2362
0
                while (branches.size() && branches.back()) {
2363
0
                    if (!Const("}", expr)) {
2364
0
                        error = strprintf("tr(): expected '}' after script expression");
2365
0
                        return {};
2366
0
                    }
2367
0
                    branches.pop_back(); // move up one level after encountering '}'
2368
0
                }
2369
                // If after that, we're at the end of a left branch, expect a comma.
2370
0
                if (branches.size() && !branches.back()) {
2371
0
                    if (!Const(",", expr)) {
2372
0
                        error = strprintf("tr(): expected ',' after script expression");
2373
0
                        return {};
2374
0
                    }
2375
0
                    branches.back() = true; // And now we're in a right branch.
2376
0
                }
2377
0
            } while (branches.size());
2378
            // After we've explored a whole tree, we must be at the end of the expression.
2379
0
            if (expr.size()) {
2380
0
                error = strprintf("tr(): expected ')' after script expression");
2381
0
                return {};
2382
0
            }
2383
0
        }
2384
0
        assert(TaprootBuilder::ValidDepths(depths));
2385
2386
        // Make sure all vecs are of the same length, or exactly length 1
2387
        // For length 1 vectors, clone subdescs until vector is the same length
2388
0
        for (auto& vec : subscripts) {
2389
0
            if (vec.size() == 1) {
2390
0
                for (size_t i = 1; i < max_providers_len; ++i) {
2391
0
                    vec.emplace_back(vec.at(0)->Clone());
2392
0
                }
2393
0
            } else if (vec.size() != max_providers_len) {
2394
0
                error = strprintf("tr(): Multipath subscripts have mismatched lengths");
2395
0
                return {};
2396
0
            }
2397
0
        }
2398
2399
0
        if (internal_keys.size() > 1 && internal_keys.size() != max_providers_len) {
2400
0
            error = strprintf("tr(): Multipath internal key mismatches multipath subscripts lengths");
2401
0
            return {};
2402
0
        }
2403
2404
0
        while (internal_keys.size() < max_providers_len) {
2405
0
            internal_keys.emplace_back(internal_keys.at(0)->Clone());
2406
0
        }
2407
2408
        // Build the final descriptors vector
2409
0
        for (size_t i = 0; i < max_providers_len; ++i) {
2410
            // Build final subscripts vectors by retrieving the i'th subscript for each vector in subscripts
2411
0
            std::vector<std::unique_ptr<DescriptorImpl>> this_subs;
2412
0
            this_subs.reserve(subscripts.size());
2413
0
            for (auto& subs : subscripts) {
2414
0
                this_subs.emplace_back(std::move(subs.at(i)));
2415
0
            }
2416
0
            ret.emplace_back(std::make_unique<TRDescriptor>(std::move(internal_keys.at(i)), std::move(this_subs), depths));
2417
0
        }
2418
0
        return ret;
2419
2420
2421
0
    } else if (Func("tr", expr)) {
2422
0
        error = "Can only have tr at top level";
2423
0
        return {};
2424
0
    }
2425
0
    if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) {
2426
0
        auto arg = Expr(expr);
2427
0
        if (expr.size()) {
2428
0
            error = strprintf("rawtr(): only one key expected.");
2429
0
            return {};
2430
0
        }
2431
0
        auto output_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
2432
0
        if (output_keys.empty()) {
2433
0
            error = strprintf("rawtr(): %s", error);
2434
0
            return {};
2435
0
        }
2436
0
        ++key_exp_index;
2437
0
        for (auto& pubkey : output_keys) {
2438
0
            ret.emplace_back(std::make_unique<RawTRDescriptor>(std::move(pubkey)));
2439
0
        }
2440
0
        return ret;
2441
0
    } else if (Func("rawtr", expr)) {
2442
0
        error = "Can only have rawtr at top level";
2443
0
        return {};
2444
0
    }
2445
0
    if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
2446
0
        std::string str(expr.begin(), expr.end());
2447
0
        if (!IsHex(str)) {
2448
0
            error = "Raw script is not hex";
2449
0
            return {};
2450
0
        }
2451
0
        auto bytes = ParseHex(str);
2452
0
        ret.emplace_back(std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end())));
2453
0
        return ret;
2454
0
    } else if (Func("raw", expr)) {
2455
0
        error = "Can only have raw() at top level";
2456
0
        return {};
2457
0
    }
2458
    // Process miniscript expressions.
2459
0
    {
2460
0
        const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2461
0
        KeyParser parser(/*out = */&out, /* in = */nullptr, /* ctx = */script_ctx, key_exp_index);
2462
0
        auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser);
2463
0
        if (parser.m_key_parsing_error != "") {
2464
0
            error = std::move(parser.m_key_parsing_error);
2465
0
            return {};
2466
0
        }
2467
0
        if (node) {
2468
0
            if (ctx != ParseScriptContext::P2WSH && ctx != ParseScriptContext::P2TR) {
2469
0
                error = "Miniscript expressions can only be used in wsh or tr.";
2470
0
                return {};
2471
0
            }
2472
0
            if (!node->IsSane() || node->IsNotSatisfiable()) {
2473
                // Try to find the first insane sub for better error reporting.
2474
0
                auto insane_node = node.get();
2475
0
                if (const auto sub = node->FindInsaneSub()) insane_node = sub;
2476
0
                if (const auto str = insane_node->ToString(parser)) error = *str;
2477
0
                if (!insane_node->IsValid()) {
2478
0
                    error += " is invalid";
2479
0
                } else if (!node->IsSane()) {
2480
0
                    error += " is not sane";
2481
0
                    if (!insane_node->IsNonMalleable()) {
2482
0
                        error += ": malleable witnesses exist";
2483
0
                    } else if (insane_node == node.get() && !insane_node->NeedsSignature()) {
2484
0
                        error += ": witnesses without signature exist";
2485
0
                    } else if (!insane_node->CheckTimeLocksMix()) {
2486
0
                        error += ": contains mixes of timelocks expressed in blocks and seconds";
2487
0
                    } else if (!insane_node->CheckDuplicateKey()) {
2488
0
                        error += ": contains duplicate public keys";
2489
0
                    } else if (!insane_node->ValidSatisfactions()) {
2490
0
                        error += ": needs witnesses that may exceed resource limits";
2491
0
                    }
2492
0
                } else {
2493
0
                    error += " is not satisfiable";
2494
0
                }
2495
0
                return {};
2496
0
            }
2497
            // A signature check is required for a miniscript to be sane. Therefore no sane miniscript
2498
            // may have an empty list of public keys.
2499
0
            CHECK_NONFATAL(!parser.m_keys.empty());
2500
0
            key_exp_index += parser.m_keys.size();
2501
            // Make sure all vecs are of the same length, or exactly length 1
2502
            // For length 1 vectors, clone subdescs until vector is the same length
2503
0
            size_t num_multipath = std::max_element(parser.m_keys.begin(), parser.m_keys.end(),
2504
0
                    [](const std::vector<std::unique_ptr<PubkeyProvider>>& a, const std::vector<std::unique_ptr<PubkeyProvider>>& b) {
2505
0
                        return a.size() < b.size();
2506
0
                    })->size();
2507
2508
0
            for (auto& vec : parser.m_keys) {
2509
0
                if (vec.size() == 1) {
2510
0
                    for (size_t i = 1; i < num_multipath; ++i) {
2511
0
                        vec.emplace_back(vec.at(0)->Clone());
2512
0
                    }
2513
0
                } else if (vec.size() != num_multipath) {
2514
0
                    error = strprintf("Miniscript: Multipath derivation paths have mismatched lengths");
2515
0
                    return {};
2516
0
                }
2517
0
            }
2518
2519
            // Build the final descriptors vector
2520
0
            for (size_t i = 0; i < num_multipath; ++i) {
2521
                // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
2522
0
                std::vector<std::unique_ptr<PubkeyProvider>> pubs;
2523
0
                pubs.reserve(parser.m_keys.size());
2524
0
                for (auto& pub : parser.m_keys) {
2525
0
                    pubs.emplace_back(std::move(pub.at(i)));
2526
0
                }
2527
0
                ret.emplace_back(std::make_unique<MiniscriptDescriptor>(std::move(pubs), node->Clone()));
2528
0
            }
2529
0
            return ret;
2530
0
        }
2531
0
    }
2532
0
    if (ctx == ParseScriptContext::P2SH) {
2533
0
        error = "A function is needed within P2SH";
2534
0
        return {};
2535
0
    } else if (ctx == ParseScriptContext::P2WSH) {
2536
0
        error = "A function is needed within P2WSH";
2537
0
        return {};
2538
0
    }
2539
0
    error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end()));
2540
0
    return {};
2541
0
}
2542
2543
std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2544
0
{
2545
0
    auto match = MatchMultiA(script);
2546
0
    if (!match) return {};
2547
0
    std::vector<std::unique_ptr<PubkeyProvider>> keys;
2548
0
    keys.reserve(match->second.size());
2549
0
    for (const auto keyspan : match->second) {
2550
0
        if (keyspan.size() != 32) return {};
2551
0
        auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider);
2552
0
        if (!key) return {};
2553
0
        keys.push_back(std::move(key));
2554
0
    }
2555
0
    return std::make_unique<MultiADescriptor>(match->first, std::move(keys));
2556
0
}
2557
2558
// NOLINTNEXTLINE(misc-no-recursion)
2559
std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2560
0
{
2561
0
    if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) {
2562
0
        XOnlyPubKey key{std::span{script}.subspan(1, 32)};
2563
0
        return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true);
2564
0
    }
2565
2566
0
    if (ctx == ParseScriptContext::P2TR) {
2567
0
        auto ret = InferMultiA(script, ctx, provider);
2568
0
        if (ret) return ret;
2569
0
    }
2570
2571
0
    std::vector<std::vector<unsigned char>> data;
2572
0
    TxoutType txntype = Solver(script, data);
2573
2574
0
    if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2575
0
        CPubKey pubkey(data[0]);
2576
0
        if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2577
0
            return std::make_unique<PKDescriptor>(std::move(pubkey_provider));
2578
0
        }
2579
0
    }
2580
0
    if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2581
0
        uint160 hash(data[0]);
2582
0
        CKeyID keyid(hash);
2583
0
        CPubKey pubkey;
2584
0
        if (provider.GetPubKey(keyid, pubkey)) {
2585
0
            if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2586
0
                return std::make_unique<PKHDescriptor>(std::move(pubkey_provider));
2587
0
            }
2588
0
        }
2589
0
    }
2590
0
    if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2591
0
        uint160 hash(data[0]);
2592
0
        CKeyID keyid(hash);
2593
0
        CPubKey pubkey;
2594
0
        if (provider.GetPubKey(keyid, pubkey)) {
2595
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseScriptContext::P2WPKH, provider)) {
2596
0
                return std::make_unique<WPKHDescriptor>(std::move(pubkey_provider));
2597
0
            }
2598
0
        }
2599
0
    }
2600
0
    if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2601
0
        bool ok = true;
2602
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
2603
0
        for (size_t i = 1; i + 1 < data.size(); ++i) {
2604
0
            CPubKey pubkey(data[i]);
2605
0
            if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2606
0
                providers.push_back(std::move(pubkey_provider));
2607
0
            } else {
2608
0
                ok = false;
2609
0
                break;
2610
0
            }
2611
0
        }
2612
0
        if (ok) return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
2613
0
    }
2614
0
    if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
2615
0
        uint160 hash(data[0]);
2616
0
        CScriptID scriptid(hash);
2617
0
        CScript subscript;
2618
0
        if (provider.GetCScript(scriptid, subscript)) {
2619
0
            auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
2620
0
            if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
2621
0
        }
2622
0
    }
2623
0
    if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2624
0
        CScriptID scriptid{RIPEMD160(data[0])};
2625
0
        CScript subscript;
2626
0
        if (provider.GetCScript(scriptid, subscript)) {
2627
0
            auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
2628
0
            if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
2629
0
        }
2630
0
    }
2631
0
    if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) {
2632
        // Extract x-only pubkey from output.
2633
0
        XOnlyPubKey pubkey;
2634
0
        std::copy(data[0].begin(), data[0].end(), pubkey.begin());
2635
        // Request spending data.
2636
0
        TaprootSpendData tap;
2637
0
        if (provider.GetTaprootSpendData(pubkey, tap)) {
2638
            // If found, convert it back to tree form.
2639
0
            auto tree = InferTaprootTree(tap, pubkey);
2640
0
            if (tree) {
2641
                // If that works, try to infer subdescriptors for all leaves.
2642
0
                bool ok = true;
2643
0
                std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
2644
0
                std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
2645
0
                for (const auto& [depth, script, leaf_ver] : *tree) {
2646
0
                    std::unique_ptr<DescriptorImpl> subdesc;
2647
0
                    if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) {
2648
0
                        subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider);
2649
0
                    }
2650
0
                    if (!subdesc) {
2651
0
                        ok = false;
2652
0
                        break;
2653
0
                    } else {
2654
0
                        subscripts.push_back(std::move(subdesc));
2655
0
                        depths.push_back(depth);
2656
0
                    }
2657
0
                }
2658
0
                if (ok) {
2659
0
                    auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider);
2660
0
                    return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths));
2661
0
                }
2662
0
            }
2663
0
        }
2664
        // If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey.
2665
0
        if (pubkey.IsFullyValid()) {
2666
0
            auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider);
2667
0
            if (key) {
2668
0
                return std::make_unique<RawTRDescriptor>(std::move(key));
2669
0
            }
2670
0
        }
2671
0
    }
2672
2673
0
    if (ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR) {
2674
0
        const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2675
0
        KeyParser parser(/* out = */nullptr, /* in = */&provider, /* ctx = */script_ctx);
2676
0
        auto node = miniscript::FromScript(script, parser);
2677
0
        if (node && node->IsSane()) {
2678
0
            std::vector<std::unique_ptr<PubkeyProvider>> keys;
2679
0
            keys.reserve(parser.m_keys.size());
2680
0
            for (auto& key : parser.m_keys) {
2681
0
                keys.emplace_back(std::move(key.at(0)));
2682
0
            }
2683
0
            return std::make_unique<MiniscriptDescriptor>(std::move(keys), std::move(node));
2684
0
        }
2685
0
    }
2686
2687
    // The following descriptors are all top-level only descriptors.
2688
    // So if we are not at the top level, return early.
2689
0
    if (ctx != ParseScriptContext::TOP) return nullptr;
2690
2691
0
    CTxDestination dest;
2692
0
    if (ExtractDestination(script, dest)) {
2693
0
        if (GetScriptForDestination(dest) == script) {
2694
0
            return std::make_unique<AddressDescriptor>(std::move(dest));
2695
0
        }
2696
0
    }
2697
2698
0
    return std::make_unique<RawDescriptor>(script);
2699
0
}
2700
2701
2702
} // namespace
2703
2704
/** Check a descriptor checksum, and update desc to be the checksum-less part. */
2705
bool CheckChecksum(std::span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
2706
0
{
2707
0
    auto check_split = Split(sp, '#');
2708
0
    if (check_split.size() > 2) {
2709
0
        error = "Multiple '#' symbols";
2710
0
        return false;
2711
0
    }
2712
0
    if (check_split.size() == 1 && require_checksum){
2713
0
        error = "Missing checksum";
2714
0
        return false;
2715
0
    }
2716
0
    if (check_split.size() == 2) {
2717
0
        if (check_split[1].size() != 8) {
2718
0
            error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
2719
0
            return false;
2720
0
        }
2721
0
    }
2722
0
    auto checksum = DescriptorChecksum(check_split[0]);
2723
0
    if (checksum.empty()) {
2724
0
        error = "Invalid characters in payload";
2725
0
        return false;
2726
0
    }
2727
0
    if (check_split.size() == 2) {
2728
0
        if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
2729
0
            error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
2730
0
            return false;
2731
0
        }
2732
0
    }
2733
0
    if (out_checksum) *out_checksum = std::move(checksum);
2734
0
    sp = check_split[0];
2735
0
    return true;
2736
0
}
2737
2738
std::vector<std::unique_ptr<Descriptor>> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
2739
0
{
2740
0
    std::span<const char> sp{descriptor};
2741
0
    if (!CheckChecksum(sp, require_checksum, error)) return {};
2742
0
    uint32_t key_exp_index = 0;
2743
0
    auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error);
2744
0
    if (sp.size() == 0 && !ret.empty()) {
2745
0
        std::vector<std::unique_ptr<Descriptor>> descs;
2746
0
        descs.reserve(ret.size());
2747
0
        for (auto& r : ret) {
2748
0
            descs.emplace_back(std::unique_ptr<Descriptor>(std::move(r)));
2749
0
        }
2750
0
        return descs;
2751
0
    }
2752
0
    return {};
2753
0
}
2754
2755
std::string GetDescriptorChecksum(const std::string& descriptor)
2756
0
{
2757
0
    std::string ret;
2758
0
    std::string error;
2759
0
    std::span<const char> sp{descriptor};
2760
0
    if (!CheckChecksum(sp, false, error, &ret)) return "";
2761
0
    return ret;
2762
0
}
2763
2764
std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
2765
0
{
2766
0
    return InferScript(script, ParseScriptContext::TOP, provider);
2767
0
}
2768
2769
uint256 DescriptorID(const Descriptor& desc)
2770
0
{
2771
0
    std::string desc_str = desc.ToString(/*compat_format=*/true);
2772
0
    uint256 id;
2773
0
    CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
2774
0
    return id;
2775
0
}
2776
2777
void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2778
0
{
2779
0
    m_parent_xpubs[key_exp_pos] = xpub;
2780
0
}
2781
2782
void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
2783
0
{
2784
0
    auto& xpubs = m_derived_xpubs[key_exp_pos];
2785
0
    xpubs[der_index] = xpub;
2786
0
}
2787
2788
void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2789
0
{
2790
0
    m_last_hardened_xpubs[key_exp_pos] = xpub;
2791
0
}
2792
2793
bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2794
0
{
2795
0
    const auto& it = m_parent_xpubs.find(key_exp_pos);
2796
0
    if (it == m_parent_xpubs.end()) return false;
2797
0
    xpub = it->second;
2798
0
    return true;
2799
0
}
2800
2801
bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
2802
0
{
2803
0
    const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
2804
0
    if (key_exp_it == m_derived_xpubs.end()) return false;
2805
0
    const auto& der_it = key_exp_it->second.find(der_index);
2806
0
    if (der_it == key_exp_it->second.end()) return false;
2807
0
    xpub = der_it->second;
2808
0
    return true;
2809
0
}
2810
2811
bool DescriptorCache::GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2812
0
{
2813
0
    const auto& it = m_last_hardened_xpubs.find(key_exp_pos);
2814
0
    if (it == m_last_hardened_xpubs.end()) return false;
2815
0
    xpub = it->second;
2816
0
    return true;
2817
0
}
2818
2819
DescriptorCache DescriptorCache::MergeAndDiff(const DescriptorCache& other)
2820
0
{
2821
0
    DescriptorCache diff;
2822
0
    for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) {
2823
0
        CExtPubKey xpub;
2824
0
        if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
2825
0
            if (xpub != parent_xpub_pair.second) {
2826
0
                throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
2827
0
            }
2828
0
            continue;
2829
0
        }
2830
0
        CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2831
0
        diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2832
0
    }
2833
0
    for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) {
2834
0
        for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
2835
0
            CExtPubKey xpub;
2836
0
            if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
2837
0
                if (xpub != derived_xpub_pair.second) {
2838
0
                    throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
2839
0
                }
2840
0
                continue;
2841
0
            }
2842
0
            CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2843
0
            diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2844
0
        }
2845
0
    }
2846
0
    for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) {
2847
0
        CExtPubKey xpub;
2848
0
        if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) {
2849
0
            if (xpub != lh_xpub_pair.second) {
2850
0
                throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub");
2851
0
            }
2852
0
            continue;
2853
0
        }
2854
0
        CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2855
0
        diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2856
0
    }
2857
0
    return diff;
2858
0
}
2859
2860
ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const
2861
0
{
2862
0
    return m_parent_xpubs;
2863
0
}
2864
2865
std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
2866
0
{
2867
0
    return m_derived_xpubs;
2868
0
}
2869
2870
ExtPubKeyMap DescriptorCache::GetCachedLastHardenedExtPubKeys() const
2871
0
{
2872
0
    return m_last_hardened_xpubs;
2873
0
}