/root/bitcoin/src/test/fuzz/crypto_chacha20.cpp
Line | Count | Source |
1 | | // Copyright (c) 2020-present The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <crypto/chacha20.h> |
6 | | #include <random.h> |
7 | | #include <test/fuzz/FuzzedDataProvider.h> |
8 | | #include <test/fuzz/fuzz.h> |
9 | | #include <test/fuzz/util.h> |
10 | | |
11 | | #include <array> |
12 | | #include <cstddef> |
13 | | #include <cstdint> |
14 | | #include <vector> |
15 | | |
16 | | FUZZ_TARGET(crypto_chacha20) |
17 | 0 | { |
18 | 0 | FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; |
19 | |
|
20 | 0 | const auto key = ConsumeFixedLengthByteVector<std::byte>(fuzzed_data_provider, ChaCha20::KEYLEN); |
21 | 0 | ChaCha20 chacha20{key}; |
22 | |
|
23 | 0 | LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) { |
24 | 0 | CallOneOf( |
25 | 0 | fuzzed_data_provider, |
26 | 0 | [&] { |
27 | 0 | auto key = ConsumeFixedLengthByteVector<std::byte>(fuzzed_data_provider, ChaCha20::KEYLEN); |
28 | 0 | chacha20.SetKey(key); |
29 | 0 | }, |
30 | 0 | [&] { |
31 | 0 | ChaCha20::Nonce96 nonce{ |
32 | 0 | fuzzed_data_provider.ConsumeIntegral<uint32_t>(), |
33 | 0 | fuzzed_data_provider.ConsumeIntegral<uint64_t>()}; |
34 | 0 | chacha20.Seek(nonce, fuzzed_data_provider.ConsumeIntegral<uint32_t>()); |
35 | 0 | }, |
36 | 0 | [&] { |
37 | 0 | std::vector<uint8_t> output(fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)); |
38 | 0 | chacha20.Keystream(MakeWritableByteSpan(output)); |
39 | 0 | }, |
40 | 0 | [&] { |
41 | 0 | std::vector<std::byte> output(fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)); |
42 | 0 | const auto input = ConsumeFixedLengthByteVector<std::byte>(fuzzed_data_provider, output.size()); |
43 | 0 | chacha20.Crypt(input, output); |
44 | 0 | }); |
45 | 0 | } |
46 | 0 | } |
47 | | |
48 | | namespace |
49 | | { |
50 | | |
51 | | /** Fuzzer that invokes ChaCha20::Crypt() or ChaCha20::Keystream multiple times: |
52 | | once for a large block at once, and then the same data in chunks, comparing |
53 | | the outcome. |
54 | | |
55 | | If UseCrypt, seeded InsecureRandomContext output is used as input to Crypt(). |
56 | | If not, Keystream() is used directly, or sequences of 0x00 are encrypted. |
57 | | */ |
58 | | template<bool UseCrypt> |
59 | | void ChaCha20SplitFuzz(FuzzedDataProvider& provider) |
60 | 0 | { |
61 | | // Determine key, iv, start position, length. |
62 | 0 | auto key_bytes = ConsumeFixedLengthByteVector<std::byte>(provider, ChaCha20::KEYLEN); |
63 | 0 | uint64_t iv = provider.ConsumeIntegral<uint64_t>(); |
64 | 0 | uint32_t iv_prefix = provider.ConsumeIntegral<uint32_t>(); |
65 | 0 | uint64_t total_bytes = provider.ConsumeIntegralInRange<uint64_t>(0, 1000000); |
66 | | /* ~x = 2^BITS - 1 - x, so ~(total_bytes >> 6) is the maximal seek position. */ |
67 | 0 | uint32_t seek = provider.ConsumeIntegralInRange<uint32_t>(0, ~(uint32_t)(total_bytes >> 6)); |
68 | | |
69 | | // Initialize two ChaCha20 ciphers, with the same key/iv/position. |
70 | 0 | ChaCha20 crypt1(key_bytes); |
71 | 0 | ChaCha20 crypt2(key_bytes); |
72 | 0 | crypt1.Seek({iv_prefix, iv}, seek); |
73 | 0 | crypt2.Seek({iv_prefix, iv}, seek); |
74 | | |
75 | | // Construct vectors with data. |
76 | 0 | std::vector<std::byte> data1, data2; |
77 | 0 | data1.resize(total_bytes); |
78 | 0 | data2.resize(total_bytes); |
79 | | |
80 | | // If using Crypt(), initialize data1 and data2 with the same InsecureRandomContext based |
81 | | // stream. |
82 | 0 | if constexpr (UseCrypt) { |
83 | 0 | InsecureRandomContext(provider.ConsumeIntegral<uint64_t>()).fillrand(data1); |
84 | 0 | std::copy(data1.begin(), data1.end(), data2.begin()); |
85 | 0 | } |
86 | | |
87 | | // Whether UseCrypt is used or not, the two byte arrays must match. |
88 | 0 | assert(data1 == data2); |
89 | | |
90 | | // Encrypt data1, the whole array at once. |
91 | 0 | if constexpr (UseCrypt) { |
92 | 0 | crypt1.Crypt(data1, data1); |
93 | 0 | } else { |
94 | 0 | crypt1.Keystream(data1); |
95 | 0 | } |
96 | | |
97 | | // Encrypt data2, in at most 256 chunks. |
98 | 0 | uint64_t bytes2 = 0; |
99 | 0 | int iter = 0; |
100 | 0 | while (true) { |
101 | 0 | bool is_last = (iter == 255) || (bytes2 == total_bytes) || provider.ConsumeBool(); |
102 | 0 | ++iter; |
103 | | // Determine how many bytes to encrypt in this chunk: a fuzzer-determined |
104 | | // amount for all but the last chunk (which processes all remaining bytes). |
105 | 0 | uint64_t now = is_last ? total_bytes - bytes2 : |
106 | 0 | provider.ConsumeIntegralInRange<uint64_t>(0, total_bytes - bytes2); |
107 | | // For each chunk, consider using Crypt() even when UseCrypt is false. |
108 | | // This tests that Keystream() has the same behavior as Crypt() applied |
109 | | // to 0x00 input bytes. |
110 | 0 | if (UseCrypt || provider.ConsumeBool()) { |
111 | 0 | crypt2.Crypt(std::span{data2}.subspan(bytes2, now), std::span{data2}.subspan(bytes2, now)); |
112 | 0 | } else { |
113 | 0 | crypt2.Keystream(std::span{data2}.subspan(bytes2, now)); |
114 | 0 | } |
115 | 0 | bytes2 += now; |
116 | 0 | if (is_last) break; |
117 | 0 | } |
118 | | // We should have processed everything now. |
119 | 0 | assert(bytes2 == total_bytes); |
120 | | // And the result should match. |
121 | 0 | assert(data1 == data2); |
122 | 0 | } Unexecuted instantiation: crypto_chacha20.cpp:_ZN12_GLOBAL__N_117ChaCha20SplitFuzzILb1EEEvR18FuzzedDataProvider Unexecuted instantiation: crypto_chacha20.cpp:_ZN12_GLOBAL__N_117ChaCha20SplitFuzzILb0EEEvR18FuzzedDataProvider |
123 | | |
124 | | } // namespace |
125 | | |
126 | | FUZZ_TARGET(chacha20_split_crypt) |
127 | 0 | { |
128 | 0 | FuzzedDataProvider provider{buffer.data(), buffer.size()}; |
129 | 0 | ChaCha20SplitFuzz<true>(provider); |
130 | 0 | } |
131 | | |
132 | | FUZZ_TARGET(chacha20_split_keystream) |
133 | 0 | { |
134 | 0 | FuzzedDataProvider provider{buffer.data(), buffer.size()}; |
135 | 0 | ChaCha20SplitFuzz<false>(provider); |
136 | 0 | } |
137 | | |
138 | | FUZZ_TARGET(crypto_fschacha20) |
139 | 0 | { |
140 | 0 | FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; |
141 | |
|
142 | 0 | auto key = fuzzed_data_provider.ConsumeBytes<std::byte>(FSChaCha20::KEYLEN); |
143 | 0 | key.resize(FSChaCha20::KEYLEN); |
144 | |
|
145 | 0 | auto fsc20 = FSChaCha20{key, fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, 1024)}; |
146 | |
|
147 | 0 | LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000) |
148 | 0 | { |
149 | 0 | auto input = fuzzed_data_provider.ConsumeBytes<std::byte>(fuzzed_data_provider.ConsumeIntegralInRange(0, 4096)); |
150 | 0 | std::vector<std::byte> output; |
151 | 0 | output.resize(input.size()); |
152 | 0 | fsc20.Crypt(input, output); |
153 | 0 | } |
154 | 0 | } |