Coverage Report

Created: 2025-09-19 18:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/root/bitcoin/src/net.cpp
Line
Count
Source
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8
#include <net.h>
9
10
#include <addrdb.h>
11
#include <addrman.h>
12
#include <banman.h>
13
#include <clientversion.h>
14
#include <common/args.h>
15
#include <common/netif.h>
16
#include <compat/compat.h>
17
#include <consensus/consensus.h>
18
#include <crypto/sha256.h>
19
#include <i2p.h>
20
#include <key.h>
21
#include <logging.h>
22
#include <memusage.h>
23
#include <net_permissions.h>
24
#include <netaddress.h>
25
#include <netbase.h>
26
#include <node/eviction.h>
27
#include <node/interface_ui.h>
28
#include <protocol.h>
29
#include <random.h>
30
#include <scheduler.h>
31
#include <util/fs.h>
32
#include <util/sock.h>
33
#include <util/strencodings.h>
34
#include <util/thread.h>
35
#include <util/threadinterrupt.h>
36
#include <util/trace.h>
37
#include <util/translation.h>
38
#include <util/vector.h>
39
40
#include <algorithm>
41
#include <array>
42
#include <cstring>
43
#include <cmath>
44
#include <cstdint>
45
#include <functional>
46
#include <optional>
47
#include <unordered_map>
48
49
TRACEPOINT_SEMAPHORE(net, closed_connection);
50
TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
51
TRACEPOINT_SEMAPHORE(net, inbound_connection);
52
TRACEPOINT_SEMAPHORE(net, outbound_connection);
53
TRACEPOINT_SEMAPHORE(net, outbound_message);
54
55
/** Maximum number of block-relay-only anchor connections */
56
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
58
/** Anchor IP address database file name */
59
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60
61
// How often to dump addresses to peers.dat
62
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63
64
/** Number of DNS seeds to query when the number of connections is low. */
65
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66
67
/** Minimum number of outbound connections under which we will keep fetching our address seeds. */
68
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69
70
/** How long to delay before querying DNS seeds
71
 *
72
 * If we have more than THRESHOLD entries in addrman, then it's likely
73
 * that we got those addresses from having previously connected to the P2P
74
 * network, and that we'll be able to successfully reconnect to the P2P
75
 * network via contacting one of them. So if that's the case, spend a
76
 * little longer trying to connect to known peers before querying the
77
 * DNS seeds.
78
 */
79
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82
83
/** The default timeframe for -maxuploadtarget. 1 day. */
84
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85
86
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87
static constexpr auto FEELER_SLEEP_WINDOW{1s};
88
89
/** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
90
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91
92
/** Used to pass flags to the Bind() function */
93
enum BindFlags {
94
    BF_NONE         = 0,
95
    BF_REPORT_ERROR = (1U << 0),
96
    /**
97
     * Do not call AddLocal() for our special addresses, e.g., for incoming
98
     * Tor connections, to prevent gossiping them over the network.
99
     */
100
    BF_DONT_ADVERTISE = (1U << 1),
101
};
102
103
// The set of sockets cannot be modified while waiting
104
// The sleep time needs to be small to avoid new sockets stalling
105
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106
107
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108
109
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112
//
113
// Global state variables
114
//
115
bool fDiscover = true;
116
bool fListen = true;
117
GlobalMutex g_maplocalhost_mutex;
118
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119
std::string strSubVersion;
120
121
size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
122
0
{
123
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
124
0
}
125
126
size_t CNetMessage::GetMemoryUsage() const noexcept
127
0
{
128
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
129
0
}
130
131
void CConnman::AddAddrFetch(const std::string& strDest)
132
0
{
133
0
    LOCK(m_addr_fetches_mutex);
134
0
    m_addr_fetches.push_back(strDest);
135
0
}
136
137
uint16_t GetListenPort()
138
0
{
139
    // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
140
0
    for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
141
0
        constexpr uint16_t dummy_port = 0;
142
143
0
        const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
144
0
        if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
145
0
    }
146
147
    // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
148
    // (-whitebind= is required to have ":port").
149
0
    for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
150
0
        NetWhitebindPermissions whitebind;
151
0
        bilingual_str error;
152
0
        if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
153
0
            if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
154
0
                return whitebind.m_service.GetPort();
155
0
            }
156
0
        }
157
0
    }
158
159
    // Otherwise, if -port= is provided, use that. Otherwise use the default port.
160
0
    return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
161
0
}
162
163
// Determine the "best" local address for a particular peer.
164
[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
165
0
{
166
0
    if (!fListen) return std::nullopt;
167
168
0
    std::optional<CService> addr;
169
0
    int nBestScore = -1;
170
0
    int nBestReachability = -1;
171
0
    {
172
0
        LOCK(g_maplocalhost_mutex);
173
0
        for (const auto& [local_addr, local_service_info] : mapLocalHost) {
174
            // For privacy reasons, don't advertise our privacy-network address
175
            // to other networks and don't advertise our other-network address
176
            // to privacy networks.
177
0
            if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
178
0
                && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
179
0
                continue;
180
0
            }
181
0
            const int nScore{local_service_info.nScore};
182
0
            const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
183
0
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
184
0
                addr.emplace(CService{local_addr, local_service_info.nPort});
185
0
                nBestReachability = nReachability;
186
0
                nBestScore = nScore;
187
0
            }
188
0
        }
189
0
    }
190
0
    return addr;
191
0
}
192
193
//! Convert the serialized seeds into usable address objects.
194
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
195
0
{
196
    // It'll only connect to one or two seed nodes because once it connects,
197
    // it'll get a pile of addresses with newer timestamps.
198
    // Seed nodes are given a random 'last seen time' of between one and two
199
    // weeks ago.
200
0
    const auto one_week{7 * 24h};
201
0
    std::vector<CAddress> vSeedsOut;
202
0
    FastRandomContext rng;
203
0
    ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
204
0
    while (!s.eof()) {
205
0
        CService endpoint;
206
0
        s >> endpoint;
207
0
        CAddress addr{endpoint, SeedsServiceFlags()};
208
0
        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
209
0
        LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
210
0
        vSeedsOut.push_back(addr);
211
0
    }
212
0
    return vSeedsOut;
213
0
}
214
215
// Determine the "best" local address for a particular peer.
216
// If none, return the unroutable 0.0.0.0 but filled in with
217
// the normal parameters, since the IP may be changed to a useful
218
// one by discovery.
219
CService GetLocalAddress(const CNode& peer)
220
0
{
221
0
    return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
222
0
}
223
224
static int GetnScore(const CService& addr)
225
0
{
226
0
    LOCK(g_maplocalhost_mutex);
227
0
    const auto it = mapLocalHost.find(addr);
228
0
    return (it != mapLocalHost.end()) ? it->second.nScore : 0;
229
0
}
230
231
// Is our peer's addrLocal potentially useful as an external IP source?
232
[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
233
0
{
234
0
    CService addrLocal = pnode->GetAddrLocal();
235
0
    return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
236
0
           g_reachable_nets.Contains(addrLocal);
237
0
}
238
239
std::optional<CService> GetLocalAddrForPeer(CNode& node)
240
0
{
241
0
    CService addrLocal{GetLocalAddress(node)};
242
    // If discovery is enabled, sometimes give our peer the address it
243
    // tells us that it sees us as in case it has a better idea of our
244
    // address than we do.
245
0
    FastRandomContext rng;
246
0
    if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
247
0
         rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
248
0
    {
249
0
        if (node.IsInboundConn()) {
250
            // For inbound connections, assume both the address and the port
251
            // as seen from the peer.
252
0
            addrLocal = CService{node.GetAddrLocal()};
253
0
        } else {
254
            // For outbound connections, assume just the address as seen from
255
            // the peer and leave the port in `addrLocal` as returned by
256
            // `GetLocalAddress()` above. The peer has no way to observe our
257
            // listening port when we have initiated the connection.
258
0
            addrLocal.SetIP(node.GetAddrLocal());
259
0
        }
260
0
    }
261
0
    if (addrLocal.IsRoutable()) {
262
0
        LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
263
0
        return addrLocal;
264
0
    }
265
    // Address is unroutable. Don't advertise.
266
0
    return std::nullopt;
267
0
}
268
269
void ClearLocal()
270
0
{
271
0
    LOCK(g_maplocalhost_mutex);
272
0
    return mapLocalHost.clear();
273
0
}
274
275
// learn a new local address
276
bool AddLocal(const CService& addr_, int nScore)
277
0
{
278
0
    CService addr{MaybeFlipIPv6toCJDNS(addr_)};
279
280
0
    if (!addr.IsRoutable())
281
0
        return false;
282
283
0
    if (!fDiscover && nScore < LOCAL_MANUAL)
284
0
        return false;
285
286
0
    if (!g_reachable_nets.Contains(addr))
287
0
        return false;
288
289
0
    LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
290
291
0
    {
292
0
        LOCK(g_maplocalhost_mutex);
293
0
        const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
294
0
        LocalServiceInfo &info = it->second;
295
0
        if (is_newly_added || nScore >= info.nScore) {
296
0
            info.nScore = nScore + (is_newly_added ? 0 : 1);
297
0
            info.nPort = addr.GetPort();
298
0
        }
299
0
    }
300
301
0
    return true;
302
0
}
303
304
bool AddLocal(const CNetAddr &addr, int nScore)
305
0
{
306
0
    return AddLocal(CService(addr, GetListenPort()), nScore);
307
0
}
308
309
void RemoveLocal(const CService& addr)
310
0
{
311
0
    LOCK(g_maplocalhost_mutex);
312
0
    LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
313
0
    mapLocalHost.erase(addr);
314
0
}
315
316
/** vote for a local address */
317
bool SeenLocal(const CService& addr)
318
0
{
319
0
    LOCK(g_maplocalhost_mutex);
320
0
    const auto it = mapLocalHost.find(addr);
321
0
    if (it == mapLocalHost.end()) return false;
322
0
    ++it->second.nScore;
323
0
    return true;
324
0
}
325
326
327
/** check whether a given address is potentially local */
328
bool IsLocal(const CService& addr)
329
0
{
330
0
    LOCK(g_maplocalhost_mutex);
331
0
    return mapLocalHost.count(addr) > 0;
332
0
}
333
334
CNode* CConnman::FindNode(const CNetAddr& ip)
335
0
{
336
0
    LOCK(m_nodes_mutex);
337
0
    for (CNode* pnode : m_nodes) {
338
0
      if (static_cast<CNetAddr>(pnode->addr) == ip) {
339
0
            return pnode;
340
0
        }
341
0
    }
342
0
    return nullptr;
343
0
}
344
345
CNode* CConnman::FindNode(const std::string& addrName)
346
0
{
347
0
    LOCK(m_nodes_mutex);
348
0
    for (CNode* pnode : m_nodes) {
349
0
        if (pnode->m_addr_name == addrName) {
350
0
            return pnode;
351
0
        }
352
0
    }
353
0
    return nullptr;
354
0
}
355
356
CNode* CConnman::FindNode(const CService& addr)
357
0
{
358
0
    LOCK(m_nodes_mutex);
359
0
    for (CNode* pnode : m_nodes) {
360
0
        if (static_cast<CService>(pnode->addr) == addr) {
361
0
            return pnode;
362
0
        }
363
0
    }
364
0
    return nullptr;
365
0
}
366
367
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
368
0
{
369
0
    return FindNode(static_cast<CNetAddr>(addr));
370
0
}
371
372
bool CConnman::CheckIncomingNonce(uint64_t nonce)
373
0
{
374
0
    LOCK(m_nodes_mutex);
375
0
    for (const CNode* pnode : m_nodes) {
376
0
        if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
377
0
            return false;
378
0
    }
379
0
    return true;
380
0
}
381
382
/** Get the bind address for a socket as CService. */
383
static CService GetBindAddress(const Sock& sock)
384
0
{
385
0
    CService addr_bind;
386
0
    struct sockaddr_storage sockaddr_bind;
387
0
    socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
388
0
    if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
389
0
        addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
390
0
    } else {
391
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
392
0
    }
393
0
    return addr_bind;
394
0
}
395
396
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
397
0
{
398
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
399
0
    assert(conn_type != ConnectionType::INBOUND);
400
401
0
    if (pszDest == nullptr) {
402
0
        if (IsLocal(addrConnect))
403
0
            return nullptr;
404
405
        // Look for an existing connection
406
0
        CNode* pnode = FindNode(static_cast<CService>(addrConnect));
407
0
        if (pnode)
408
0
        {
409
0
            LogPrintf("Failed to open new connection, already connected\n");
410
0
            return nullptr;
411
0
        }
412
0
    }
413
414
0
    LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
415
0
        use_v2transport ? "v2" : "v1",
416
0
        pszDest ? pszDest : addrConnect.ToStringAddrPort(),
417
0
        Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
418
419
    // Resolve
420
0
    const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
421
0
                                                     m_params.GetDefaultPort()};
422
423
    // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
424
0
    std::vector<CAddress> connect_to{};
425
0
    if (pszDest) {
426
0
        std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
427
0
        if (!resolved.empty()) {
428
0
            std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
429
            // If the connection is made by name, it can be the case that the name resolves to more than one address.
430
            // We don't want to connect any more of them if we are already connected to one
431
0
            for (const auto& r : resolved) {
432
0
                addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
433
0
                if (!addrConnect.IsValid()) {
434
0
                    LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
435
0
                    return nullptr;
436
0
                }
437
                // It is possible that we already have a connection to the IP/port pszDest resolved to.
438
                // In that case, drop the connection that was just created.
439
0
                LOCK(m_nodes_mutex);
440
0
                CNode* pnode = FindNode(static_cast<CService>(addrConnect));
441
0
                if (pnode) {
442
0
                    LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
443
0
                    return nullptr;
444
0
                }
445
                // Add the address to the resolved addresses vector so we can try to connect to it later on
446
0
                connect_to.push_back(addrConnect);
447
0
            }
448
0
        } else {
449
            // For resolution via proxy
450
0
            connect_to.push_back(addrConnect);
451
0
        }
452
0
    } else {
453
        // Connect via addrConnect directly
454
0
        connect_to.push_back(addrConnect);
455
0
    }
456
457
    // Connect
458
0
    std::unique_ptr<Sock> sock;
459
0
    Proxy proxy;
460
0
    CService addr_bind;
461
0
    assert(!addr_bind.IsValid());
462
0
    std::unique_ptr<i2p::sam::Session> i2p_transient_session;
463
464
0
    for (auto& target_addr: connect_to) {
465
0
        if (target_addr.IsValid()) {
466
0
            const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
467
0
            bool proxyConnectionFailed = false;
468
469
0
            if (target_addr.IsI2P() && use_proxy) {
470
0
                i2p::Connection conn;
471
0
                bool connected{false};
472
473
0
                if (m_i2p_sam_session) {
474
0
                    connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
475
0
                } else {
476
0
                    {
477
0
                        LOCK(m_unused_i2p_sessions_mutex);
478
0
                        if (m_unused_i2p_sessions.empty()) {
479
0
                            i2p_transient_session =
480
0
                                std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
481
0
                        } else {
482
0
                            i2p_transient_session.swap(m_unused_i2p_sessions.front());
483
0
                            m_unused_i2p_sessions.pop();
484
0
                        }
485
0
                    }
486
0
                    connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
487
0
                    if (!connected) {
488
0
                        LOCK(m_unused_i2p_sessions_mutex);
489
0
                        if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
490
0
                            m_unused_i2p_sessions.emplace(i2p_transient_session.release());
491
0
                        }
492
0
                    }
493
0
                }
494
495
0
                if (connected) {
496
0
                    sock = std::move(conn.sock);
497
0
                    addr_bind = conn.me;
498
0
                }
499
0
            } else if (use_proxy) {
500
0
                LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
501
0
                sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
502
0
            } else {
503
                // no proxy needed (none set for target network)
504
0
                sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
505
0
            }
506
0
            if (!proxyConnectionFailed) {
507
                // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
508
                // the proxy, mark this as an attempt.
509
0
                addrman.Attempt(target_addr, fCountFailure);
510
0
            }
511
0
        } else if (pszDest && GetNameProxy(proxy)) {
512
0
            std::string host;
513
0
            uint16_t port{default_port};
514
0
            SplitHostPort(std::string(pszDest), port, host);
515
0
            bool proxyConnectionFailed;
516
0
            sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
517
0
        }
518
        // Check any other resolved address (if any) if we fail to connect
519
0
        if (!sock) {
520
0
            continue;
521
0
        }
522
523
0
        NetPermissionFlags permission_flags = NetPermissionFlags::None;
524
0
        std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
525
0
        AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
526
527
        // Add node
528
0
        NodeId id = GetNewNodeId();
529
0
        uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
530
0
        if (!addr_bind.IsValid()) {
531
0
            addr_bind = GetBindAddress(*sock);
532
0
        }
533
0
        CNode* pnode = new CNode(id,
534
0
                                std::move(sock),
535
0
                                target_addr,
536
0
                                CalculateKeyedNetGroup(target_addr),
537
0
                                nonce,
538
0
                                addr_bind,
539
0
                                pszDest ? pszDest : "",
540
0
                                conn_type,
541
0
                                /*inbound_onion=*/false,
542
0
                                CNodeOptions{
543
0
                                    .permission_flags = permission_flags,
544
0
                                    .i2p_sam_session = std::move(i2p_transient_session),
545
0
                                    .recv_flood_size = nReceiveFloodSize,
546
0
                                    .use_v2transport = use_v2transport,
547
0
                                });
548
0
        pnode->AddRef();
549
550
        // We're making a new connection, harvest entropy from the time (and our peer count)
551
0
        RandAddEvent((uint32_t)id);
552
553
0
        return pnode;
554
0
    }
555
556
0
    return nullptr;
557
0
}
558
559
void CNode::CloseSocketDisconnect()
560
0
{
561
0
    fDisconnect = true;
562
0
    LOCK(m_sock_mutex);
563
0
    if (m_sock) {
564
0
        LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
565
0
        m_sock.reset();
566
567
0
        TRACEPOINT(net, closed_connection,
568
0
            GetId(),
569
0
            m_addr_name.c_str(),
570
0
            ConnectionTypeAsString().c_str(),
571
0
            ConnectedThroughNetwork(),
572
0
            Ticks<std::chrono::seconds>(m_connected));
573
0
    }
574
0
    m_i2p_sam_session.reset();
575
0
}
576
577
0
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, std::optional<CNetAddr> addr, const std::vector<NetWhitelistPermissions>& ranges) const {
578
0
    for (const auto& subnet : ranges) {
579
0
        if (addr.has_value() && subnet.m_subnet.Match(addr.value())) {
580
0
            NetPermissions::AddFlag(flags, subnet.m_flags);
581
0
        }
582
0
    }
583
0
    if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
584
0
        NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
585
0
        if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
586
0
        if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
587
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
588
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
589
0
    }
590
0
}
591
592
CService CNode::GetAddrLocal() const
593
0
{
594
0
    AssertLockNotHeld(m_addr_local_mutex);
595
0
    LOCK(m_addr_local_mutex);
596
0
    return m_addr_local;
597
0
}
598
599
0
void CNode::SetAddrLocal(const CService& addrLocalIn) {
600
0
    AssertLockNotHeld(m_addr_local_mutex);
601
0
    LOCK(m_addr_local_mutex);
602
0
    if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
603
0
        m_addr_local = addrLocalIn;
604
0
    }
605
0
}
606
607
Network CNode::ConnectedThroughNetwork() const
608
0
{
609
0
    return m_inbound_onion ? NET_ONION : addr.GetNetClass();
610
0
}
611
612
bool CNode::IsConnectedThroughPrivacyNet() const
613
0
{
614
0
    return m_inbound_onion || addr.IsPrivacyNet();
615
0
}
616
617
#undef X
618
0
#define X(name) stats.name = name
619
void CNode::CopyStats(CNodeStats& stats)
620
0
{
621
0
    stats.nodeid = this->GetId();
622
0
    X(addr);
623
0
    X(addrBind);
624
0
    stats.m_network = ConnectedThroughNetwork();
625
0
    X(m_last_send);
626
0
    X(m_last_recv);
627
0
    X(m_last_tx_time);
628
0
    X(m_last_block_time);
629
0
    X(m_connected);
630
0
    X(m_addr_name);
631
0
    X(nVersion);
632
0
    {
633
0
        LOCK(m_subver_mutex);
634
0
        X(cleanSubVer);
635
0
    }
636
0
    stats.fInbound = IsInboundConn();
637
0
    X(m_bip152_highbandwidth_to);
638
0
    X(m_bip152_highbandwidth_from);
639
0
    {
640
0
        LOCK(cs_vSend);
641
0
        X(mapSendBytesPerMsgType);
642
0
        X(nSendBytes);
643
0
    }
644
0
    {
645
0
        LOCK(cs_vRecv);
646
0
        X(mapRecvBytesPerMsgType);
647
0
        X(nRecvBytes);
648
0
        Transport::Info info = m_transport->GetInfo();
649
0
        stats.m_transport_type = info.transport_type;
650
0
        if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
651
0
    }
652
0
    X(m_permission_flags);
653
654
0
    X(m_last_ping_time);
655
0
    X(m_min_ping_time);
656
657
    // Leave string empty if addrLocal invalid (not filled in yet)
658
0
    CService addrLocalUnlocked = GetAddrLocal();
659
0
    stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
660
661
0
    X(m_conn_type);
662
0
}
663
#undef X
664
665
bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
666
0
{
667
0
    complete = false;
668
0
    const auto time = GetTime<std::chrono::microseconds>();
669
0
    LOCK(cs_vRecv);
670
0
    m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
671
0
    nRecvBytes += msg_bytes.size();
672
0
    while (msg_bytes.size() > 0) {
673
        // absorb network data
674
0
        if (!m_transport->ReceivedBytes(msg_bytes)) {
675
            // Serious transport problem, disconnect from the peer.
676
0
            return false;
677
0
        }
678
679
0
        if (m_transport->ReceivedMessageComplete()) {
680
            // decompose a transport agnostic CNetMessage from the deserializer
681
0
            bool reject_message{false};
682
0
            CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
683
0
            if (reject_message) {
684
                // Message deserialization failed. Drop the message but don't disconnect the peer.
685
                // store the size of the corrupt message
686
0
                mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
687
0
                continue;
688
0
            }
689
690
            // Store received bytes per message type.
691
            // To prevent a memory DOS, only allow known message types.
692
0
            auto i = mapRecvBytesPerMsgType.find(msg.m_type);
693
0
            if (i == mapRecvBytesPerMsgType.end()) {
694
0
                i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
695
0
            }
696
0
            assert(i != mapRecvBytesPerMsgType.end());
697
0
            i->second += msg.m_raw_message_size;
698
699
            // push the message to the process queue,
700
0
            vRecvMsg.push_back(std::move(msg));
701
702
0
            complete = true;
703
0
        }
704
0
    }
705
706
0
    return true;
707
0
}
708
709
std::string CNode::LogIP(bool log_ip) const
710
0
{
711
0
    return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
712
0
}
713
714
std::string CNode::DisconnectMsg(bool log_ip) const
715
0
{
716
0
    return strprintf("disconnecting peer=%d%s",
717
0
                     GetId(),
718
0
                     LogIP(log_ip));
719
0
}
720
721
V1Transport::V1Transport(const NodeId node_id) noexcept
722
0
    : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
723
0
{
724
0
    LOCK(m_recv_mutex);
725
0
    Reset();
726
0
}
727
728
Transport::Info V1Transport::GetInfo() const noexcept
729
0
{
730
0
    return {.transport_type = TransportProtocolType::V1, .session_id = {}};
731
0
}
732
733
int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
734
0
{
735
0
    AssertLockHeld(m_recv_mutex);
736
    // copy data to temporary parsing buffer
737
0
    unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
738
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
739
740
0
    memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
741
0
    nHdrPos += nCopy;
742
743
    // if header incomplete, exit
744
0
    if (nHdrPos < CMessageHeader::HEADER_SIZE)
745
0
        return nCopy;
746
747
    // deserialize to CMessageHeader
748
0
    try {
749
0
        hdrbuf >> hdr;
750
0
    }
751
0
    catch (const std::exception&) {
752
0
        LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
753
0
        return -1;
754
0
    }
755
756
    // Check start string, network magic
757
0
    if (hdr.pchMessageStart != m_magic_bytes) {
758
0
        LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
759
0
        return -1;
760
0
    }
761
762
    // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
763
    // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
764
    // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
765
0
    if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
766
0
        LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
767
0
        return -1;
768
0
    }
769
770
    // switch state to reading message data
771
0
    in_data = true;
772
773
0
    return nCopy;
774
0
}
775
776
int V1Transport::readData(std::span<const uint8_t> msg_bytes)
777
0
{
778
0
    AssertLockHeld(m_recv_mutex);
779
0
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
780
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
781
782
0
    if (vRecv.size() < nDataPos + nCopy) {
783
        // Allocate up to 256 KiB ahead, but never more than the total message size.
784
0
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
785
0
    }
786
787
0
    hasher.Write(msg_bytes.first(nCopy));
788
0
    memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
789
0
    nDataPos += nCopy;
790
791
0
    return nCopy;
792
0
}
793
794
const uint256& V1Transport::GetMessageHash() const
795
0
{
796
0
    AssertLockHeld(m_recv_mutex);
797
0
    assert(CompleteInternal());
798
0
    if (data_hash.IsNull())
799
0
        hasher.Finalize(data_hash);
800
0
    return data_hash;
801
0
}
802
803
CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
804
0
{
805
0
    AssertLockNotHeld(m_recv_mutex);
806
    // Initialize out parameter
807
0
    reject_message = false;
808
    // decompose a single CNetMessage from the TransportDeserializer
809
0
    LOCK(m_recv_mutex);
810
0
    CNetMessage msg(std::move(vRecv));
811
812
    // store message type string, time, and sizes
813
0
    msg.m_type = hdr.GetMessageType();
814
0
    msg.m_time = time;
815
0
    msg.m_message_size = hdr.nMessageSize;
816
0
    msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
817
818
0
    uint256 hash = GetMessageHash();
819
820
    // We just received a message off the wire, harvest entropy from the time (and the message checksum)
821
0
    RandAddEvent(ReadLE32(hash.begin()));
822
823
    // Check checksum and header message type string
824
0
    if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
825
0
        LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
826
0
                 SanitizeString(msg.m_type), msg.m_message_size,
827
0
                 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
828
0
                 HexStr(hdr.pchChecksum),
829
0
                 m_node_id);
830
0
        reject_message = true;
831
0
    } else if (!hdr.IsMessageTypeValid()) {
832
0
        LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
833
0
                 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
834
0
        reject_message = true;
835
0
    }
836
837
    // Always reset the network deserializer (prepare for the next message)
838
0
    Reset();
839
0
    return msg;
840
0
}
841
842
bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
843
0
{
844
0
    AssertLockNotHeld(m_send_mutex);
845
    // Determine whether a new message can be set.
846
0
    LOCK(m_send_mutex);
847
0
    if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
848
849
    // create dbl-sha256 checksum
850
0
    uint256 hash = Hash(msg.data);
851
852
    // create header
853
0
    CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
854
0
    memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
855
856
    // serialize header
857
0
    m_header_to_send.clear();
858
0
    VectorWriter{m_header_to_send, 0, hdr};
859
860
    // update state
861
0
    m_message_to_send = std::move(msg);
862
0
    m_sending_header = true;
863
0
    m_bytes_sent = 0;
864
0
    return true;
865
0
}
866
867
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
868
0
{
869
0
    AssertLockNotHeld(m_send_mutex);
870
0
    LOCK(m_send_mutex);
871
0
    if (m_sending_header) {
872
0
        return {std::span{m_header_to_send}.subspan(m_bytes_sent),
873
                // We have more to send after the header if the message has payload, or if there
874
                // is a next message after that.
875
0
                have_next_message || !m_message_to_send.data.empty(),
876
0
                m_message_to_send.m_type
877
0
               };
878
0
    } else {
879
0
        return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
880
                // We only have more to send after this message's payload if there is another
881
                // message.
882
0
                have_next_message,
883
0
                m_message_to_send.m_type
884
0
               };
885
0
    }
886
0
}
887
888
void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
889
0
{
890
0
    AssertLockNotHeld(m_send_mutex);
891
0
    LOCK(m_send_mutex);
892
0
    m_bytes_sent += bytes_sent;
893
0
    if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
894
        // We're done sending a message's header. Switch to sending its data bytes.
895
0
        m_sending_header = false;
896
0
        m_bytes_sent = 0;
897
0
    } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
898
        // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
899
0
        ClearShrink(m_message_to_send.data);
900
0
        m_bytes_sent = 0;
901
0
    }
902
0
}
903
904
size_t V1Transport::GetSendMemoryUsage() const noexcept
905
0
{
906
0
    AssertLockNotHeld(m_send_mutex);
907
0
    LOCK(m_send_mutex);
908
    // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
909
0
    return m_message_to_send.GetMemoryUsage();
910
0
}
911
912
namespace {
913
914
/** List of short messages as defined in BIP324, in order.
915
 *
916
 * Only message types that are actually implemented in this codebase need to be listed, as other
917
 * messages get ignored anyway - whether we know how to decode them or not.
918
 */
919
const std::array<std::string, 33> V2_MESSAGE_IDS = {
920
    "", // 12 bytes follow encoding the message type like in V1
921
    NetMsgType::ADDR,
922
    NetMsgType::BLOCK,
923
    NetMsgType::BLOCKTXN,
924
    NetMsgType::CMPCTBLOCK,
925
    NetMsgType::FEEFILTER,
926
    NetMsgType::FILTERADD,
927
    NetMsgType::FILTERCLEAR,
928
    NetMsgType::FILTERLOAD,
929
    NetMsgType::GETBLOCKS,
930
    NetMsgType::GETBLOCKTXN,
931
    NetMsgType::GETDATA,
932
    NetMsgType::GETHEADERS,
933
    NetMsgType::HEADERS,
934
    NetMsgType::INV,
935
    NetMsgType::MEMPOOL,
936
    NetMsgType::MERKLEBLOCK,
937
    NetMsgType::NOTFOUND,
938
    NetMsgType::PING,
939
    NetMsgType::PONG,
940
    NetMsgType::SENDCMPCT,
941
    NetMsgType::TX,
942
    NetMsgType::GETCFILTERS,
943
    NetMsgType::CFILTER,
944
    NetMsgType::GETCFHEADERS,
945
    NetMsgType::CFHEADERS,
946
    NetMsgType::GETCFCHECKPT,
947
    NetMsgType::CFCHECKPT,
948
    NetMsgType::ADDRV2,
949
    // Unimplemented message types that are assigned in BIP324:
950
    "",
951
    "",
952
    "",
953
    ""
954
};
955
956
class V2MessageMap
957
{
958
    std::unordered_map<std::string, uint8_t> m_map;
959
960
public:
961
    V2MessageMap() noexcept
962
0
    {
963
0
        for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
964
0
            m_map.emplace(V2_MESSAGE_IDS[i], i);
965
0
        }
966
0
    }
967
968
    std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
969
0
    {
970
0
        auto it = m_map.find(message_name);
971
0
        if (it == m_map.end()) return std::nullopt;
972
0
        return it->second;
973
0
    }
974
};
975
976
const V2MessageMap V2_MESSAGE_MAP;
977
978
std::vector<uint8_t> GenerateRandomGarbage() noexcept
979
0
{
980
0
    std::vector<uint8_t> ret;
981
0
    FastRandomContext rng;
982
0
    ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
983
0
    rng.fillrand(MakeWritableByteSpan(ret));
984
0
    return ret;
985
0
}
986
987
} // namespace
988
989
void V2Transport::StartSendingHandshake() noexcept
990
0
{
991
0
    AssertLockHeld(m_send_mutex);
992
0
    Assume(m_send_state == SendState::AWAITING_KEY);
993
0
    Assume(m_send_buffer.empty());
994
    // Initialize the send buffer with ellswift pubkey + provided garbage.
995
0
    m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
996
0
    std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
997
0
    std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
998
    // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
999
0
}
1000
1001
V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1002
0
    : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1003
0
      m_v1_fallback{nodeid},
1004
0
      m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1005
0
      m_send_garbage{std::move(garbage)},
1006
0
      m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1007
0
{
1008
0
    Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1009
    // Start sending immediately if we're the initiator of the connection.
1010
0
    if (initiating) {
1011
0
        LOCK(m_send_mutex);
1012
0
        StartSendingHandshake();
1013
0
    }
1014
0
}
1015
1016
V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1017
0
    : V2Transport{nodeid, initiating, GenerateRandomKey(),
1018
0
                  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1019
1020
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1021
0
{
1022
0
    AssertLockHeld(m_recv_mutex);
1023
    // Enforce allowed state transitions.
1024
0
    switch (m_recv_state) {
1025
0
    case RecvState::KEY_MAYBE_V1:
1026
0
        Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1027
0
        break;
1028
0
    case RecvState::KEY:
1029
0
        Assume(recv_state == RecvState::GARB_GARBTERM);
1030
0
        break;
1031
0
    case RecvState::GARB_GARBTERM:
1032
0
        Assume(recv_state == RecvState::VERSION);
1033
0
        break;
1034
0
    case RecvState::VERSION:
1035
0
        Assume(recv_state == RecvState::APP);
1036
0
        break;
1037
0
    case RecvState::APP:
1038
0
        Assume(recv_state == RecvState::APP_READY);
1039
0
        break;
1040
0
    case RecvState::APP_READY:
1041
0
        Assume(recv_state == RecvState::APP);
1042
0
        break;
1043
0
    case RecvState::V1:
1044
0
        Assume(false); // V1 state cannot be left
1045
0
        break;
1046
0
    }
1047
    // Change state.
1048
0
    m_recv_state = recv_state;
1049
0
}
1050
1051
void V2Transport::SetSendState(SendState send_state) noexcept
1052
0
{
1053
0
    AssertLockHeld(m_send_mutex);
1054
    // Enforce allowed state transitions.
1055
0
    switch (m_send_state) {
1056
0
    case SendState::MAYBE_V1:
1057
0
        Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1058
0
        break;
1059
0
    case SendState::AWAITING_KEY:
1060
0
        Assume(send_state == SendState::READY);
1061
0
        break;
1062
0
    case SendState::READY:
1063
0
    case SendState::V1:
1064
0
        Assume(false); // Final states
1065
0
        break;
1066
0
    }
1067
    // Change state.
1068
0
    m_send_state = send_state;
1069
0
}
1070
1071
bool V2Transport::ReceivedMessageComplete() const noexcept
1072
0
{
1073
0
    AssertLockNotHeld(m_recv_mutex);
1074
0
    LOCK(m_recv_mutex);
1075
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1076
1077
0
    return m_recv_state == RecvState::APP_READY;
1078
0
}
1079
1080
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1081
0
{
1082
0
    AssertLockHeld(m_recv_mutex);
1083
0
    AssertLockNotHeld(m_send_mutex);
1084
0
    Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1085
    // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1086
    // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1087
    // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1088
    // sending of the key.
1089
0
    std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1090
0
    std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1091
0
    Assume(m_recv_buffer.size() <= v1_prefix.size());
1092
0
    if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1093
        // Mismatch with v1 prefix, so we can assume a v2 connection.
1094
0
        SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1095
        // Transition the sender to AWAITING_KEY state and start sending.
1096
0
        LOCK(m_send_mutex);
1097
0
        SetSendState(SendState::AWAITING_KEY);
1098
0
        StartSendingHandshake();
1099
0
    } else if (m_recv_buffer.size() == v1_prefix.size()) {
1100
        // Full match with the v1 prefix, so fall back to v1 behavior.
1101
0
        LOCK(m_send_mutex);
1102
0
        std::span<const uint8_t> feedback{m_recv_buffer};
1103
        // Feed already received bytes to v1 transport. It should always accept these, because it's
1104
        // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1105
0
        bool ret = m_v1_fallback.ReceivedBytes(feedback);
1106
0
        Assume(feedback.empty());
1107
0
        Assume(ret);
1108
0
        SetReceiveState(RecvState::V1);
1109
0
        SetSendState(SendState::V1);
1110
        // Reset v2 transport buffers to save memory.
1111
0
        ClearShrink(m_recv_buffer);
1112
0
        ClearShrink(m_send_buffer);
1113
0
    } else {
1114
        // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1115
0
    }
1116
0
}
1117
1118
bool V2Transport::ProcessReceivedKeyBytes() noexcept
1119
0
{
1120
0
    AssertLockHeld(m_recv_mutex);
1121
0
    AssertLockNotHeld(m_send_mutex);
1122
0
    Assume(m_recv_state == RecvState::KEY);
1123
0
    Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1124
1125
    // As a special exception, if bytes 4-16 of the key on a responder connection match the
1126
    // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1127
    // (if they did, we'd have switched to V1 state already), assume this is a peer from
1128
    // another network, and disconnect them. They will almost certainly disconnect us too when
1129
    // they receive our uniformly random key and garbage, but detecting this case specially
1130
    // means we can log it.
1131
0
    static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1132
0
    static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1133
0
    if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1134
0
        if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1135
0
            LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1136
0
                     HexStr(std::span(m_recv_buffer).first(OFFSET)));
1137
0
            return false;
1138
0
        }
1139
0
    }
1140
1141
0
    if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1142
        // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1143
        // our key to initialize the encryption ciphers.
1144
1145
        // Initialize the ciphers.
1146
0
        EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1147
0
        LOCK(m_send_mutex);
1148
0
        m_cipher.Initialize(ellswift, m_initiating);
1149
1150
        // Switch receiver state to GARB_GARBTERM.
1151
0
        SetReceiveState(RecvState::GARB_GARBTERM);
1152
0
        m_recv_buffer.clear();
1153
1154
        // Switch sender state to READY.
1155
0
        SetSendState(SendState::READY);
1156
1157
        // Append the garbage terminator to the send buffer.
1158
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1159
0
        std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1160
0
                  m_cipher.GetSendGarbageTerminator().end(),
1161
0
                  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1162
1163
        // Construct version packet in the send buffer, with the sent garbage data as AAD.
1164
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1165
0
        m_cipher.Encrypt(
1166
0
            /*contents=*/VERSION_CONTENTS,
1167
0
            /*aad=*/MakeByteSpan(m_send_garbage),
1168
0
            /*ignore=*/false,
1169
0
            /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1170
        // We no longer need the garbage.
1171
0
        ClearShrink(m_send_garbage);
1172
0
    } else {
1173
        // We still have to receive more key bytes.
1174
0
    }
1175
0
    return true;
1176
0
}
1177
1178
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1179
0
{
1180
0
    AssertLockHeld(m_recv_mutex);
1181
0
    Assume(m_recv_state == RecvState::GARB_GARBTERM);
1182
0
    Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1183
0
    if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1184
0
        if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1185
            // Garbage terminator received. Store garbage to authenticate it as AAD later.
1186
0
            m_recv_aad = std::move(m_recv_buffer);
1187
0
            m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1188
0
            m_recv_buffer.clear();
1189
0
            SetReceiveState(RecvState::VERSION);
1190
0
        } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1191
            // We've reached the maximum length for garbage + garbage terminator, and the
1192
            // terminator still does not match. Abort.
1193
0
            LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1194
0
            return false;
1195
0
        } else {
1196
            // We still need to receive more garbage and/or garbage terminator bytes.
1197
0
        }
1198
0
    } else {
1199
        // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1200
        // more first.
1201
0
    }
1202
0
    return true;
1203
0
}
1204
1205
bool V2Transport::ProcessReceivedPacketBytes() noexcept
1206
0
{
1207
0
    AssertLockHeld(m_recv_mutex);
1208
0
    Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1209
1210
    // The maximum permitted contents length for a packet, consisting of:
1211
    // - 0x00 byte: indicating long message type encoding
1212
    // - 12 bytes of message type
1213
    // - payload
1214
0
    static constexpr size_t MAX_CONTENTS_LEN =
1215
0
        1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1216
0
        std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1217
1218
0
    if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1219
        // Length descriptor received.
1220
0
        m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1221
0
        if (m_recv_len > MAX_CONTENTS_LEN) {
1222
0
            LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1223
0
            return false;
1224
0
        }
1225
0
    } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1226
        // Ciphertext received, decrypt it into m_recv_decode_buffer.
1227
        // Note that it is impossible to reach this branch without hitting the branch above first,
1228
        // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1229
0
        m_recv_decode_buffer.resize(m_recv_len);
1230
0
        bool ignore{false};
1231
0
        bool ret = m_cipher.Decrypt(
1232
0
            /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1233
0
            /*aad=*/MakeByteSpan(m_recv_aad),
1234
0
            /*ignore=*/ignore,
1235
0
            /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1236
0
        if (!ret) {
1237
0
            LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1238
0
            return false;
1239
0
        }
1240
        // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1241
0
        ClearShrink(m_recv_aad);
1242
        // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1243
0
        RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1244
1245
        // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1246
        // decoy, which we simply ignore, use the current state to decide what to do with it.
1247
0
        if (!ignore) {
1248
0
            switch (m_recv_state) {
1249
0
            case RecvState::VERSION:
1250
                // Version message received; transition to application phase. The contents is
1251
                // ignored, but can be used for future extensions.
1252
0
                SetReceiveState(RecvState::APP);
1253
0
                break;
1254
0
            case RecvState::APP:
1255
                // Application message decrypted correctly. It can be extracted using GetMessage().
1256
0
                SetReceiveState(RecvState::APP_READY);
1257
0
                break;
1258
0
            default:
1259
                // Any other state is invalid (this function should not have been called).
1260
0
                Assume(false);
1261
0
            }
1262
0
        }
1263
        // Wipe the receive buffer where the next packet will be received into.
1264
0
        ClearShrink(m_recv_buffer);
1265
        // In all but APP_READY state, we can wipe the decoded contents.
1266
0
        if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1267
0
    } else {
1268
        // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1269
        // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1270
0
    }
1271
0
    return true;
1272
0
}
1273
1274
size_t V2Transport::GetMaxBytesToProcess() noexcept
1275
0
{
1276
0
    AssertLockHeld(m_recv_mutex);
1277
0
    switch (m_recv_state) {
1278
0
    case RecvState::KEY_MAYBE_V1:
1279
        // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1280
        // receive buffer.
1281
0
        Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1282
        // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1283
        // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1284
        // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1285
        // back into the m_v1_fallback V1 transport.
1286
0
        return V1_PREFIX_LEN - m_recv_buffer.size();
1287
0
    case RecvState::KEY:
1288
        // During the KEY state, we only allow the 64-byte key into the receive buffer.
1289
0
        Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1290
        // As long as we have not received the other side's public key, don't receive more than
1291
        // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1292
        // key exchange first.
1293
0
        return EllSwiftPubKey::size() - m_recv_buffer.size();
1294
0
    case RecvState::GARB_GARBTERM:
1295
        // Process garbage bytes one by one (because terminator may appear anywhere).
1296
0
        return 1;
1297
0
    case RecvState::VERSION:
1298
0
    case RecvState::APP:
1299
        // These three states all involve decoding a packet. Process the length descriptor first,
1300
        // so that we know where the current packet ends (and we don't process bytes from the next
1301
        // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1302
0
        if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1303
0
            return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1304
0
        } else {
1305
            // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1306
            // and encoded packet size, which includes the 3 bytes due to the packet length.
1307
            // When transitioning from receiving the packet length to receiving its ciphertext,
1308
            // the encrypted packet length is left in the receive buffer.
1309
0
            return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1310
0
        }
1311
0
    case RecvState::APP_READY:
1312
        // No bytes can be processed until GetMessage() is called.
1313
0
        return 0;
1314
0
    case RecvState::V1:
1315
        // Not allowed (must be dealt with by the caller).
1316
0
        Assume(false);
1317
0
        return 0;
1318
0
    }
1319
0
    Assume(false); // unreachable
1320
0
    return 0;
1321
0
}
1322
1323
bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1324
0
{
1325
0
    AssertLockNotHeld(m_recv_mutex);
1326
    /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1327
0
    static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1328
1329
0
    LOCK(m_recv_mutex);
1330
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1331
1332
    // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1333
    // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1334
    // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1335
    // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1336
0
    while (!msg_bytes.empty()) {
1337
        // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1338
0
        size_t max_read = GetMaxBytesToProcess();
1339
1340
        // Reserve space in the buffer if there is not enough.
1341
0
        if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1342
0
            switch (m_recv_state) {
1343
0
            case RecvState::KEY_MAYBE_V1:
1344
0
            case RecvState::KEY:
1345
0
            case RecvState::GARB_GARBTERM:
1346
                // During the initial states (key/garbage), allocate once to fit the maximum (4111
1347
                // bytes).
1348
0
                m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1349
0
                break;
1350
0
            case RecvState::VERSION:
1351
0
            case RecvState::APP: {
1352
                // During states where a packet is being received, as much as is expected but never
1353
                // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1354
                // This means attackers that want to cause us to waste allocated memory are limited
1355
                // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1356
                // MAX_RESERVE_AHEAD more than they've actually sent us.
1357
0
                size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1358
0
                m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1359
0
                break;
1360
0
            }
1361
0
            case RecvState::APP_READY:
1362
                // The buffer is empty in this state.
1363
0
                Assume(m_recv_buffer.empty());
1364
0
                break;
1365
0
            case RecvState::V1:
1366
                // Should have bailed out above.
1367
0
                Assume(false);
1368
0
                break;
1369
0
            }
1370
0
        }
1371
1372
        // Can't read more than provided input.
1373
0
        max_read = std::min(msg_bytes.size(), max_read);
1374
        // Copy data to buffer.
1375
0
        m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1376
0
        msg_bytes = msg_bytes.subspan(max_read);
1377
1378
        // Process data in the buffer.
1379
0
        switch (m_recv_state) {
1380
0
        case RecvState::KEY_MAYBE_V1:
1381
0
            ProcessReceivedMaybeV1Bytes();
1382
0
            if (m_recv_state == RecvState::V1) return true;
1383
0
            break;
1384
1385
0
        case RecvState::KEY:
1386
0
            if (!ProcessReceivedKeyBytes()) return false;
1387
0
            break;
1388
1389
0
        case RecvState::GARB_GARBTERM:
1390
0
            if (!ProcessReceivedGarbageBytes()) return false;
1391
0
            break;
1392
1393
0
        case RecvState::VERSION:
1394
0
        case RecvState::APP:
1395
0
            if (!ProcessReceivedPacketBytes()) return false;
1396
0
            break;
1397
1398
0
        case RecvState::APP_READY:
1399
0
            return true;
1400
1401
0
        case RecvState::V1:
1402
            // We should have bailed out before.
1403
0
            Assume(false);
1404
0
            break;
1405
0
        }
1406
        // Make sure we have made progress before continuing.
1407
0
        Assume(max_read > 0);
1408
0
    }
1409
1410
0
    return true;
1411
0
}
1412
1413
std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1414
0
{
1415
0
    if (contents.size() == 0) return std::nullopt; // Empty contents
1416
0
    uint8_t first_byte = contents[0];
1417
0
    contents = contents.subspan(1); // Strip first byte.
1418
1419
0
    if (first_byte != 0) {
1420
        // Short (1 byte) encoding.
1421
0
        if (first_byte < std::size(V2_MESSAGE_IDS)) {
1422
            // Valid short message id.
1423
0
            return V2_MESSAGE_IDS[first_byte];
1424
0
        } else {
1425
            // Unknown short message id.
1426
0
            return std::nullopt;
1427
0
        }
1428
0
    }
1429
1430
0
    if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1431
0
        return std::nullopt; // Long encoding needs 12 message type bytes.
1432
0
    }
1433
1434
0
    size_t msg_type_len{0};
1435
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1436
        // Verify that message type bytes before the first 0x00 are in range.
1437
0
        if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1438
0
            return {};
1439
0
        }
1440
0
        ++msg_type_len;
1441
0
    }
1442
0
    std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1443
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1444
        // Verify that message type bytes after the first 0x00 are also 0x00.
1445
0
        if (contents[msg_type_len] != 0) return {};
1446
0
        ++msg_type_len;
1447
0
    }
1448
    // Strip message type bytes of contents.
1449
0
    contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1450
0
    return ret;
1451
0
}
1452
1453
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1454
0
{
1455
0
    AssertLockNotHeld(m_recv_mutex);
1456
0
    LOCK(m_recv_mutex);
1457
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1458
1459
0
    Assume(m_recv_state == RecvState::APP_READY);
1460
0
    std::span<const uint8_t> contents{m_recv_decode_buffer};
1461
0
    auto msg_type = GetMessageType(contents);
1462
0
    CNetMessage msg{DataStream{}};
1463
    // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1464
0
    msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1465
0
    if (msg_type) {
1466
0
        reject_message = false;
1467
0
        msg.m_type = std::move(*msg_type);
1468
0
        msg.m_time = time;
1469
0
        msg.m_message_size = contents.size();
1470
0
        msg.m_recv.resize(contents.size());
1471
0
        std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1472
0
    } else {
1473
0
        LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1474
0
        reject_message = true;
1475
0
    }
1476
0
    ClearShrink(m_recv_decode_buffer);
1477
0
    SetReceiveState(RecvState::APP);
1478
1479
0
    return msg;
1480
0
}
1481
1482
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1483
0
{
1484
0
    AssertLockNotHeld(m_send_mutex);
1485
0
    LOCK(m_send_mutex);
1486
0
    if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1487
    // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1488
    // is available) and the send buffer is empty. This limits the number of messages in the send
1489
    // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1490
0
    if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1491
    // Construct contents (encoding message type + payload).
1492
0
    std::vector<uint8_t> contents;
1493
0
    auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1494
0
    if (short_message_id) {
1495
0
        contents.resize(1 + msg.data.size());
1496
0
        contents[0] = *short_message_id;
1497
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1498
0
    } else {
1499
        // Initialize with zeroes, and then write the message type string starting at offset 1.
1500
        // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1501
0
        contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1502
0
        std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1503
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1504
0
    }
1505
    // Construct ciphertext in send buffer.
1506
0
    m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1507
0
    m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1508
0
    m_send_type = msg.m_type;
1509
    // Release memory
1510
0
    ClearShrink(msg.data);
1511
0
    return true;
1512
0
}
1513
1514
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1515
0
{
1516
0
    AssertLockNotHeld(m_send_mutex);
1517
0
    LOCK(m_send_mutex);
1518
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1519
1520
0
    if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1521
0
    Assume(m_send_pos <= m_send_buffer.size());
1522
0
    return {
1523
0
        std::span{m_send_buffer}.subspan(m_send_pos),
1524
        // We only have more to send after the current m_send_buffer if there is a (next)
1525
        // message to be sent, and we're capable of sending packets. */
1526
0
        have_next_message && m_send_state == SendState::READY,
1527
0
        m_send_type
1528
0
    };
1529
0
}
1530
1531
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1532
0
{
1533
0
    AssertLockNotHeld(m_send_mutex);
1534
0
    LOCK(m_send_mutex);
1535
0
    if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1536
1537
0
    if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1538
0
        LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1539
0
    }
1540
1541
0
    m_send_pos += bytes_sent;
1542
0
    Assume(m_send_pos <= m_send_buffer.size());
1543
0
    if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1544
0
        m_sent_v1_header_worth = true;
1545
0
    }
1546
    // Wipe the buffer when everything is sent.
1547
0
    if (m_send_pos == m_send_buffer.size()) {
1548
0
        m_send_pos = 0;
1549
0
        ClearShrink(m_send_buffer);
1550
0
    }
1551
0
}
1552
1553
bool V2Transport::ShouldReconnectV1() const noexcept
1554
0
{
1555
0
    AssertLockNotHeld(m_send_mutex);
1556
0
    AssertLockNotHeld(m_recv_mutex);
1557
    // Only outgoing connections need reconnection.
1558
0
    if (!m_initiating) return false;
1559
1560
0
    LOCK(m_recv_mutex);
1561
    // We only reconnect in the very first state and when the receive buffer is empty. Together
1562
    // these conditions imply nothing has been received so far.
1563
0
    if (m_recv_state != RecvState::KEY) return false;
1564
0
    if (!m_recv_buffer.empty()) return false;
1565
    // Check if we've sent enough for the other side to disconnect us (if it was V1).
1566
0
    LOCK(m_send_mutex);
1567
0
    return m_sent_v1_header_worth;
1568
0
}
1569
1570
size_t V2Transport::GetSendMemoryUsage() const noexcept
1571
0
{
1572
0
    AssertLockNotHeld(m_send_mutex);
1573
0
    LOCK(m_send_mutex);
1574
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1575
1576
0
    return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1577
0
}
1578
1579
Transport::Info V2Transport::GetInfo() const noexcept
1580
0
{
1581
0
    AssertLockNotHeld(m_recv_mutex);
1582
0
    LOCK(m_recv_mutex);
1583
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1584
1585
0
    Transport::Info info;
1586
1587
    // Do not report v2 and session ID until the version packet has been received
1588
    // and verified (confirming that the other side very likely has the same keys as us).
1589
0
    if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1590
0
        m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1591
0
        info.transport_type = TransportProtocolType::V2;
1592
0
        info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1593
0
    } else {
1594
0
        info.transport_type = TransportProtocolType::DETECTING;
1595
0
    }
1596
1597
0
    return info;
1598
0
}
1599
1600
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1601
0
{
1602
0
    auto it = node.vSendMsg.begin();
1603
0
    size_t nSentSize = 0;
1604
0
    bool data_left{false}; //!< second return value (whether unsent data remains)
1605
0
    std::optional<bool> expected_more;
1606
1607
0
    while (true) {
1608
0
        if (it != node.vSendMsg.end()) {
1609
            // If possible, move one message from the send queue to the transport. This fails when
1610
            // there is an existing message still being sent, or (for v2 transports) when the
1611
            // handshake has not yet completed.
1612
0
            size_t memusage = it->GetMemoryUsage();
1613
0
            if (node.m_transport->SetMessageToSend(*it)) {
1614
                // Update memory usage of send buffer (as *it will be deleted).
1615
0
                node.m_send_memusage -= memusage;
1616
0
                ++it;
1617
0
            }
1618
0
        }
1619
0
        const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1620
        // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1621
        // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1622
        // verify that the previously returned 'more' was correct.
1623
0
        if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1624
0
        expected_more = more;
1625
0
        data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1626
0
        int nBytes = 0;
1627
0
        if (!data.empty()) {
1628
0
            LOCK(node.m_sock_mutex);
1629
            // There is no socket in case we've already disconnected, or in test cases without
1630
            // real connections. In these cases, we bail out immediately and just leave things
1631
            // in the send queue and transport.
1632
0
            if (!node.m_sock) {
1633
0
                break;
1634
0
            }
1635
0
            int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1636
0
#ifdef MSG_MORE
1637
0
            if (more) {
1638
0
                flags |= MSG_MORE;
1639
0
            }
1640
0
#endif
1641
0
            nBytes = node.m_sock->Send(data.data(), data.size(), flags);
1642
0
        }
1643
0
        if (nBytes > 0) {
1644
0
            node.m_last_send = GetTime<std::chrono::seconds>();
1645
0
            node.nSendBytes += nBytes;
1646
            // Notify transport that bytes have been processed.
1647
0
            node.m_transport->MarkBytesSent(nBytes);
1648
            // Update statistics per message type.
1649
0
            if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1650
0
                node.AccountForSentBytes(msg_type, nBytes);
1651
0
            }
1652
0
            nSentSize += nBytes;
1653
0
            if ((size_t)nBytes != data.size()) {
1654
                // could not send full message; stop sending more
1655
0
                break;
1656
0
            }
1657
0
        } else {
1658
0
            if (nBytes < 0) {
1659
                // error
1660
0
                int nErr = WSAGetLastError();
1661
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1662
0
                    LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1663
0
                    node.CloseSocketDisconnect();
1664
0
                }
1665
0
            }
1666
0
            break;
1667
0
        }
1668
0
    }
1669
1670
0
    node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1671
1672
0
    if (it == node.vSendMsg.end()) {
1673
0
        assert(node.m_send_memusage == 0);
1674
0
    }
1675
0
    node.vSendMsg.erase(node.vSendMsg.begin(), it);
1676
0
    return {nSentSize, data_left};
1677
0
}
1678
1679
/** Try to find a connection to evict when the node is full.
1680
 *  Extreme care must be taken to avoid opening the node to attacker
1681
 *   triggered network partitioning.
1682
 *  The strategy used here is to protect a small number of peers
1683
 *   for each of several distinct characteristics which are difficult
1684
 *   to forge.  In order to partition a node the attacker must be
1685
 *   simultaneously better at all of them than honest peers.
1686
 */
1687
bool CConnman::AttemptToEvictConnection()
1688
0
{
1689
0
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
1690
0
    {
1691
1692
0
        LOCK(m_nodes_mutex);
1693
0
        for (const CNode* node : m_nodes) {
1694
0
            if (node->fDisconnect)
1695
0
                continue;
1696
0
            NodeEvictionCandidate candidate{
1697
0
                .id = node->GetId(),
1698
0
                .m_connected = node->m_connected,
1699
0
                .m_min_ping_time = node->m_min_ping_time,
1700
0
                .m_last_block_time = node->m_last_block_time,
1701
0
                .m_last_tx_time = node->m_last_tx_time,
1702
0
                .fRelevantServices = node->m_has_all_wanted_services,
1703
0
                .m_relay_txs = node->m_relays_txs.load(),
1704
0
                .fBloomFilter = node->m_bloom_filter_loaded.load(),
1705
0
                .nKeyedNetGroup = node->nKeyedNetGroup,
1706
0
                .prefer_evict = node->m_prefer_evict,
1707
0
                .m_is_local = node->addr.IsLocal(),
1708
0
                .m_network = node->ConnectedThroughNetwork(),
1709
0
                .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1710
0
                .m_conn_type = node->m_conn_type,
1711
0
            };
1712
0
            vEvictionCandidates.push_back(candidate);
1713
0
        }
1714
0
    }
1715
0
    const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1716
0
    if (!node_id_to_evict) {
1717
0
        return false;
1718
0
    }
1719
0
    LOCK(m_nodes_mutex);
1720
0
    for (CNode* pnode : m_nodes) {
1721
0
        if (pnode->GetId() == *node_id_to_evict) {
1722
0
            LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1723
0
            TRACEPOINT(net, evicted_inbound_connection,
1724
0
                pnode->GetId(),
1725
0
                pnode->m_addr_name.c_str(),
1726
0
                pnode->ConnectionTypeAsString().c_str(),
1727
0
                pnode->ConnectedThroughNetwork(),
1728
0
                Ticks<std::chrono::seconds>(pnode->m_connected));
1729
0
            pnode->fDisconnect = true;
1730
0
            return true;
1731
0
        }
1732
0
    }
1733
0
    return false;
1734
0
}
1735
1736
0
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1737
0
    struct sockaddr_storage sockaddr;
1738
0
    socklen_t len = sizeof(sockaddr);
1739
0
    auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1740
1741
0
    if (!sock) {
1742
0
        const int nErr = WSAGetLastError();
1743
0
        if (nErr != WSAEWOULDBLOCK) {
1744
0
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1745
0
        }
1746
0
        return;
1747
0
    }
1748
1749
0
    CService addr;
1750
0
    if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1751
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1752
0
    } else {
1753
0
        addr = MaybeFlipIPv6toCJDNS(addr);
1754
0
    }
1755
1756
0
    const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1757
1758
0
    NetPermissionFlags permission_flags = NetPermissionFlags::None;
1759
0
    hListenSocket.AddSocketPermissionFlags(permission_flags);
1760
1761
0
    CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1762
0
}
1763
1764
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1765
                                            NetPermissionFlags permission_flags,
1766
                                            const CService& addr_bind,
1767
                                            const CService& addr)
1768
0
{
1769
0
    int nInbound = 0;
1770
1771
0
    const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1772
1773
    // Tor inbound connections do not reveal the peer's actual network address.
1774
    // Therefore do not apply address-based whitelist permissions to them.
1775
0
    AddWhitelistPermissionFlags(permission_flags, inbound_onion ? std::optional<CNetAddr>{} : addr, vWhitelistedRangeIncoming);
1776
1777
0
    {
1778
0
        LOCK(m_nodes_mutex);
1779
0
        for (const CNode* pnode : m_nodes) {
1780
0
            if (pnode->IsInboundConn()) nInbound++;
1781
0
        }
1782
0
    }
1783
1784
0
    if (!fNetworkActive) {
1785
0
        LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1786
0
        return;
1787
0
    }
1788
1789
0
    if (!sock->IsSelectable()) {
1790
0
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1791
0
        return;
1792
0
    }
1793
1794
    // According to the internet TCP_NODELAY is not carried into accepted sockets
1795
    // on all platforms.  Set it again here just to be sure.
1796
0
    const int on{1};
1797
0
    if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1798
0
        LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1799
0
                 addr.ToStringAddrPort());
1800
0
    }
1801
1802
    // Don't accept connections from banned peers.
1803
0
    bool banned = m_banman && m_banman->IsBanned(addr);
1804
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1805
0
    {
1806
0
        LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1807
0
        return;
1808
0
    }
1809
1810
    // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1811
0
    bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1812
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1813
0
    {
1814
0
        LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1815
0
        return;
1816
0
    }
1817
1818
0
    if (nInbound >= m_max_inbound)
1819
0
    {
1820
0
        if (!AttemptToEvictConnection()) {
1821
            // No connection to evict, disconnect the new connection
1822
0
            LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1823
0
            return;
1824
0
        }
1825
0
    }
1826
1827
0
    NodeId id = GetNewNodeId();
1828
0
    uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1829
1830
    // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1831
    // detected, so use it whenever we signal NODE_P2P_V2.
1832
0
    ServiceFlags local_services = GetLocalServices();
1833
0
    const bool use_v2transport(local_services & NODE_P2P_V2);
1834
1835
0
    CNode* pnode = new CNode(id,
1836
0
                             std::move(sock),
1837
0
                             CAddress{addr, NODE_NONE},
1838
0
                             CalculateKeyedNetGroup(addr),
1839
0
                             nonce,
1840
0
                             addr_bind,
1841
0
                             /*addrNameIn=*/"",
1842
0
                             ConnectionType::INBOUND,
1843
0
                             inbound_onion,
1844
0
                             CNodeOptions{
1845
0
                                 .permission_flags = permission_flags,
1846
0
                                 .prefer_evict = discouraged,
1847
0
                                 .recv_flood_size = nReceiveFloodSize,
1848
0
                                 .use_v2transport = use_v2transport,
1849
0
                             });
1850
0
    pnode->AddRef();
1851
0
    m_msgproc->InitializeNode(*pnode, local_services);
1852
0
    {
1853
0
        LOCK(m_nodes_mutex);
1854
0
        m_nodes.push_back(pnode);
1855
0
    }
1856
0
    LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1857
0
    TRACEPOINT(net, inbound_connection,
1858
0
        pnode->GetId(),
1859
0
        pnode->m_addr_name.c_str(),
1860
0
        pnode->ConnectionTypeAsString().c_str(),
1861
0
        pnode->ConnectedThroughNetwork(),
1862
0
        GetNodeCount(ConnectionDirection::In));
1863
1864
    // We received a new connection, harvest entropy from the time (and our peer count)
1865
0
    RandAddEvent((uint32_t)id);
1866
0
}
1867
1868
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1869
0
{
1870
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1871
0
    std::optional<int> max_connections;
1872
0
    switch (conn_type) {
1873
0
    case ConnectionType::INBOUND:
1874
0
    case ConnectionType::MANUAL:
1875
0
        return false;
1876
0
    case ConnectionType::OUTBOUND_FULL_RELAY:
1877
0
        max_connections = m_max_outbound_full_relay;
1878
0
        break;
1879
0
    case ConnectionType::BLOCK_RELAY:
1880
0
        max_connections = m_max_outbound_block_relay;
1881
0
        break;
1882
    // no limit for ADDR_FETCH because -seednode has no limit either
1883
0
    case ConnectionType::ADDR_FETCH:
1884
0
        break;
1885
    // no limit for FEELER connections since they're short-lived
1886
0
    case ConnectionType::FEELER:
1887
0
        break;
1888
0
    } // no default case, so the compiler can warn about missing cases
1889
1890
    // Count existing connections
1891
0
    int existing_connections = WITH_LOCK(m_nodes_mutex,
1892
0
                                         return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1893
1894
    // Max connections of specified type already exist
1895
0
    if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1896
1897
    // Max total outbound connections already exist
1898
0
    CountingSemaphoreGrant<> grant(*semOutbound, true);
1899
0
    if (!grant) return false;
1900
1901
0
    OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1902
0
    return true;
1903
0
}
1904
1905
void CConnman::DisconnectNodes()
1906
0
{
1907
0
    AssertLockNotHeld(m_nodes_mutex);
1908
0
    AssertLockNotHeld(m_reconnections_mutex);
1909
1910
    // Use a temporary variable to accumulate desired reconnections, so we don't need
1911
    // m_reconnections_mutex while holding m_nodes_mutex.
1912
0
    decltype(m_reconnections) reconnections_to_add;
1913
1914
0
    {
1915
0
        LOCK(m_nodes_mutex);
1916
1917
0
        const bool network_active{fNetworkActive};
1918
0
        if (!network_active) {
1919
            // Disconnect any connected nodes
1920
0
            for (CNode* pnode : m_nodes) {
1921
0
                if (!pnode->fDisconnect) {
1922
0
                    LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1923
0
                    pnode->fDisconnect = true;
1924
0
                }
1925
0
            }
1926
0
        }
1927
1928
        // Disconnect unused nodes
1929
0
        std::vector<CNode*> nodes_copy = m_nodes;
1930
0
        for (CNode* pnode : nodes_copy)
1931
0
        {
1932
0
            if (pnode->fDisconnect)
1933
0
            {
1934
                // remove from m_nodes
1935
0
                m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1936
1937
                // Add to reconnection list if appropriate. We don't reconnect right here, because
1938
                // the creation of a connection is a blocking operation (up to several seconds),
1939
                // and we don't want to hold up the socket handler thread for that long.
1940
0
                if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1941
0
                    reconnections_to_add.push_back({
1942
0
                        .addr_connect = pnode->addr,
1943
0
                        .grant = std::move(pnode->grantOutbound),
1944
0
                        .destination = pnode->m_dest,
1945
0
                        .conn_type = pnode->m_conn_type,
1946
0
                        .use_v2transport = false});
1947
0
                    LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1948
0
                }
1949
1950
                // release outbound grant (if any)
1951
0
                pnode->grantOutbound.Release();
1952
1953
                // close socket and cleanup
1954
0
                pnode->CloseSocketDisconnect();
1955
1956
                // update connection count by network
1957
0
                if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1958
1959
                // hold in disconnected pool until all refs are released
1960
0
                pnode->Release();
1961
0
                m_nodes_disconnected.push_back(pnode);
1962
0
            }
1963
0
        }
1964
0
    }
1965
0
    {
1966
        // Delete disconnected nodes
1967
0
        std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1968
0
        for (CNode* pnode : nodes_disconnected_copy)
1969
0
        {
1970
            // Destroy the object only after other threads have stopped using it.
1971
0
            if (pnode->GetRefCount() <= 0) {
1972
0
                m_nodes_disconnected.remove(pnode);
1973
0
                DeleteNode(pnode);
1974
0
            }
1975
0
        }
1976
0
    }
1977
0
    {
1978
        // Move entries from reconnections_to_add to m_reconnections.
1979
0
        LOCK(m_reconnections_mutex);
1980
0
        m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1981
0
    }
1982
0
}
1983
1984
void CConnman::NotifyNumConnectionsChanged()
1985
0
{
1986
0
    size_t nodes_size;
1987
0
    {
1988
0
        LOCK(m_nodes_mutex);
1989
0
        nodes_size = m_nodes.size();
1990
0
    }
1991
0
    if(nodes_size != nPrevNodeCount) {
1992
0
        nPrevNodeCount = nodes_size;
1993
0
        if (m_client_interface) {
1994
0
            m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1995
0
        }
1996
0
    }
1997
0
}
1998
1999
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
2000
0
{
2001
0
    return node.m_connected + m_peer_connect_timeout < now;
2002
0
}
2003
2004
bool CConnman::InactivityCheck(const CNode& node) const
2005
0
{
2006
    // Tests that see disconnects after using mocktime can start nodes with a
2007
    // large timeout. For example, -peertimeout=999999999.
2008
0
    const auto now{GetTime<std::chrono::seconds>()};
2009
0
    const auto last_send{node.m_last_send.load()};
2010
0
    const auto last_recv{node.m_last_recv.load()};
2011
2012
0
    if (!ShouldRunInactivityChecks(node, now)) return false;
2013
2014
0
    bool has_received{last_recv.count() != 0};
2015
0
    bool has_sent{last_send.count() != 0};
2016
2017
0
    if (!has_received || !has_sent) {
2018
0
        std::string has_never;
2019
0
        if (!has_received) has_never += ", never received from peer";
2020
0
        if (!has_sent) has_never += ", never sent to peer";
2021
0
        LogDebug(BCLog::NET,
2022
0
            "socket no message in first %i seconds%s, %s\n",
2023
0
            count_seconds(m_peer_connect_timeout),
2024
0
            has_never,
2025
0
            node.DisconnectMsg(fLogIPs)
2026
0
        );
2027
0
        return true;
2028
0
    }
2029
2030
0
    if (now > last_send + TIMEOUT_INTERVAL) {
2031
0
        LogDebug(BCLog::NET,
2032
0
            "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2033
0
            node.DisconnectMsg(fLogIPs)
2034
0
        );
2035
0
        return true;
2036
0
    }
2037
2038
0
    if (now > last_recv + TIMEOUT_INTERVAL) {
2039
0
        LogDebug(BCLog::NET,
2040
0
            "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2041
0
            node.DisconnectMsg(fLogIPs)
2042
0
        );
2043
0
        return true;
2044
0
    }
2045
2046
0
    if (!node.fSuccessfullyConnected) {
2047
0
        if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2048
0
            LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2049
0
        } else {
2050
0
            LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2051
0
        }
2052
0
        return true;
2053
0
    }
2054
2055
0
    return false;
2056
0
}
2057
2058
Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2059
0
{
2060
0
    Sock::EventsPerSock events_per_sock;
2061
2062
0
    for (const ListenSocket& hListenSocket : vhListenSocket) {
2063
0
        events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2064
0
    }
2065
2066
0
    for (CNode* pnode : nodes) {
2067
0
        bool select_recv = !pnode->fPauseRecv;
2068
0
        bool select_send;
2069
0
        {
2070
0
            LOCK(pnode->cs_vSend);
2071
            // Sending is possible if either there are bytes to send right now, or if there will be
2072
            // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2073
            // determines both of these in a single call.
2074
0
            const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2075
0
            select_send = !to_send.empty() || more;
2076
0
        }
2077
0
        if (!select_recv && !select_send) continue;
2078
2079
0
        LOCK(pnode->m_sock_mutex);
2080
0
        if (pnode->m_sock) {
2081
0
            Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2082
0
            events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2083
0
        }
2084
0
    }
2085
2086
0
    return events_per_sock;
2087
0
}
2088
2089
void CConnman::SocketHandler()
2090
0
{
2091
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2092
2093
0
    Sock::EventsPerSock events_per_sock;
2094
2095
0
    {
2096
0
        const NodesSnapshot snap{*this, /*shuffle=*/false};
2097
2098
0
        const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2099
2100
        // Check for the readiness of the already connected sockets and the
2101
        // listening sockets in one call ("readiness" as in poll(2) or
2102
        // select(2)). If none are ready, wait for a short while and return
2103
        // empty sets.
2104
0
        events_per_sock = GenerateWaitSockets(snap.Nodes());
2105
0
        if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2106
0
            interruptNet.sleep_for(timeout);
2107
0
        }
2108
2109
        // Service (send/receive) each of the already connected nodes.
2110
0
        SocketHandlerConnected(snap.Nodes(), events_per_sock);
2111
0
    }
2112
2113
    // Accept new connections from listening sockets.
2114
0
    SocketHandlerListening(events_per_sock);
2115
0
}
2116
2117
void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2118
                                      const Sock::EventsPerSock& events_per_sock)
2119
0
{
2120
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2121
2122
0
    for (CNode* pnode : nodes) {
2123
0
        if (interruptNet)
2124
0
            return;
2125
2126
        //
2127
        // Receive
2128
        //
2129
0
        bool recvSet = false;
2130
0
        bool sendSet = false;
2131
0
        bool errorSet = false;
2132
0
        {
2133
0
            LOCK(pnode->m_sock_mutex);
2134
0
            if (!pnode->m_sock) {
2135
0
                continue;
2136
0
            }
2137
0
            const auto it = events_per_sock.find(pnode->m_sock);
2138
0
            if (it != events_per_sock.end()) {
2139
0
                recvSet = it->second.occurred & Sock::RECV;
2140
0
                sendSet = it->second.occurred & Sock::SEND;
2141
0
                errorSet = it->second.occurred & Sock::ERR;
2142
0
            }
2143
0
        }
2144
2145
0
        if (sendSet) {
2146
            // Send data
2147
0
            auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2148
0
            if (bytes_sent) {
2149
0
                RecordBytesSent(bytes_sent);
2150
2151
                // If both receiving and (non-optimistic) sending were possible, we first attempt
2152
                // sending. If that succeeds, but does not fully drain the send queue, do not
2153
                // attempt to receive. This avoids needlessly queueing data if the remote peer
2154
                // is slow at receiving data, by means of TCP flow control. We only do this when
2155
                // sending actually succeeded to make sure progress is always made; otherwise a
2156
                // deadlock would be possible when both sides have data to send, but neither is
2157
                // receiving.
2158
0
                if (data_left) recvSet = false;
2159
0
            }
2160
0
        }
2161
2162
0
        if (recvSet || errorSet)
2163
0
        {
2164
            // typical socket buffer is 8K-64K
2165
0
            uint8_t pchBuf[0x10000];
2166
0
            int nBytes = 0;
2167
0
            {
2168
0
                LOCK(pnode->m_sock_mutex);
2169
0
                if (!pnode->m_sock) {
2170
0
                    continue;
2171
0
                }
2172
0
                nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2173
0
            }
2174
0
            if (nBytes > 0)
2175
0
            {
2176
0
                bool notify = false;
2177
0
                if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2178
0
                    LogDebug(BCLog::NET,
2179
0
                        "receiving message bytes failed, %s\n",
2180
0
                        pnode->DisconnectMsg(fLogIPs)
2181
0
                    );
2182
0
                    pnode->CloseSocketDisconnect();
2183
0
                }
2184
0
                RecordBytesRecv(nBytes);
2185
0
                if (notify) {
2186
0
                    pnode->MarkReceivedMsgsForProcessing();
2187
0
                    WakeMessageHandler();
2188
0
                }
2189
0
            }
2190
0
            else if (nBytes == 0)
2191
0
            {
2192
                // socket closed gracefully
2193
0
                if (!pnode->fDisconnect) {
2194
0
                    LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2195
0
                }
2196
0
                pnode->CloseSocketDisconnect();
2197
0
            }
2198
0
            else if (nBytes < 0)
2199
0
            {
2200
                // error
2201
0
                int nErr = WSAGetLastError();
2202
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2203
0
                {
2204
0
                    if (!pnode->fDisconnect) {
2205
0
                        LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2206
0
                    }
2207
0
                    pnode->CloseSocketDisconnect();
2208
0
                }
2209
0
            }
2210
0
        }
2211
2212
0
        if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2213
0
    }
2214
0
}
2215
2216
void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2217
0
{
2218
0
    for (const ListenSocket& listen_socket : vhListenSocket) {
2219
0
        if (interruptNet) {
2220
0
            return;
2221
0
        }
2222
0
        const auto it = events_per_sock.find(listen_socket.sock);
2223
0
        if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2224
0
            AcceptConnection(listen_socket);
2225
0
        }
2226
0
    }
2227
0
}
2228
2229
void CConnman::ThreadSocketHandler()
2230
0
{
2231
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2232
2233
0
    while (!interruptNet)
2234
0
    {
2235
0
        DisconnectNodes();
2236
0
        NotifyNumConnectionsChanged();
2237
0
        SocketHandler();
2238
0
    }
2239
0
}
2240
2241
void CConnman::WakeMessageHandler()
2242
0
{
2243
0
    {
2244
0
        LOCK(mutexMsgProc);
2245
0
        fMsgProcWake = true;
2246
0
    }
2247
0
    condMsgProc.notify_one();
2248
0
}
2249
2250
void CConnman::ThreadDNSAddressSeed()
2251
0
{
2252
0
    int outbound_connection_count = 0;
2253
2254
0
    if (!gArgs.GetArgs("-seednode").empty()) {
2255
0
        auto start = NodeClock::now();
2256
0
        constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2257
0
        LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2258
0
        while (!interruptNet) {
2259
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2260
0
                return;
2261
2262
            // Abort if we have spent enough time without reaching our target.
2263
            // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2264
0
            if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2265
0
                LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2266
0
                break;
2267
0
            }
2268
2269
0
            outbound_connection_count = GetFullOutboundConnCount();
2270
0
            if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2271
0
                LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2272
0
                break;
2273
0
            }
2274
0
        }
2275
0
    }
2276
2277
0
    FastRandomContext rng;
2278
0
    std::vector<std::string> seeds = m_params.DNSSeeds();
2279
0
    std::shuffle(seeds.begin(), seeds.end(), rng);
2280
0
    int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2281
2282
0
    if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2283
        // When -forcednsseed is provided, query all.
2284
0
        seeds_right_now = seeds.size();
2285
0
    } else if (addrman.Size() == 0) {
2286
        // If we have no known peers, query all.
2287
        // This will occur on the first run, or if peers.dat has been
2288
        // deleted.
2289
0
        seeds_right_now = seeds.size();
2290
0
    }
2291
2292
    // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2293
0
    if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2294
        // goal: only query DNS seed if address need is acute
2295
        // * If we have a reasonable number of peers in addrman, spend
2296
        //   some time trying them first. This improves user privacy by
2297
        //   creating fewer identifying DNS requests, reduces trust by
2298
        //   giving seeds less influence on the network topology, and
2299
        //   reduces traffic to the seeds.
2300
        // * When querying DNS seeds query a few at once, this ensures
2301
        //   that we don't give DNS seeds the ability to eclipse nodes
2302
        //   that query them.
2303
        // * If we continue having problems, eventually query all the
2304
        //   DNS seeds, and if that fails too, also try the fixed seeds.
2305
        //   (done in ThreadOpenConnections)
2306
0
        int found = 0;
2307
0
        const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2308
2309
0
        for (const std::string& seed : seeds) {
2310
0
            if (seeds_right_now == 0) {
2311
0
                seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2312
2313
0
                if (addrman.Size() > 0) {
2314
0
                    LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2315
0
                    std::chrono::seconds to_wait = seeds_wait_time;
2316
0
                    while (to_wait.count() > 0) {
2317
                        // if sleeping for the MANY_PEERS interval, wake up
2318
                        // early to see if we have enough peers and can stop
2319
                        // this thread entirely freeing up its resources
2320
0
                        std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2321
0
                        if (!interruptNet.sleep_for(w)) return;
2322
0
                        to_wait -= w;
2323
2324
0
                        if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2325
0
                            if (found > 0) {
2326
0
                                LogPrintf("%d addresses found from DNS seeds\n", found);
2327
0
                                LogPrintf("P2P peers available. Finished DNS seeding.\n");
2328
0
                            } else {
2329
0
                                LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2330
0
                            }
2331
0
                            return;
2332
0
                        }
2333
0
                    }
2334
0
                }
2335
0
            }
2336
2337
0
            if (interruptNet) return;
2338
2339
            // hold off on querying seeds if P2P network deactivated
2340
0
            if (!fNetworkActive) {
2341
0
                LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2342
0
                do {
2343
0
                    if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2344
0
                } while (!fNetworkActive);
2345
0
            }
2346
2347
0
            LogPrintf("Loading addresses from DNS seed %s\n", seed);
2348
            // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2349
            // for the base dns seed domain in chainparams
2350
0
            if (HaveNameProxy()) {
2351
0
                AddAddrFetch(seed);
2352
0
            } else {
2353
0
                std::vector<CAddress> vAdd;
2354
0
                constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2355
0
                std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2356
0
                CNetAddr resolveSource;
2357
0
                if (!resolveSource.SetInternal(host)) {
2358
0
                    continue;
2359
0
                }
2360
                // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2361
                // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2362
                // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2363
                // returned.
2364
0
                unsigned int nMaxIPs = 32;
2365
0
                const auto addresses{LookupHost(host, nMaxIPs, true)};
2366
0
                if (!addresses.empty()) {
2367
0
                    for (const CNetAddr& ip : addresses) {
2368
0
                        CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2369
0
                        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2370
0
                        vAdd.push_back(addr);
2371
0
                        found++;
2372
0
                    }
2373
0
                    addrman.Add(vAdd, resolveSource);
2374
0
                } else {
2375
                    // If the seed does not support a subdomain with our desired service bits,
2376
                    // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2377
                    // base dns seed domain in chainparams
2378
0
                    AddAddrFetch(seed);
2379
0
                }
2380
0
            }
2381
0
            --seeds_right_now;
2382
0
        }
2383
0
        LogPrintf("%d addresses found from DNS seeds\n", found);
2384
0
    } else {
2385
0
        LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2386
0
    }
2387
0
}
2388
2389
void CConnman::DumpAddresses()
2390
0
{
2391
0
    const auto start{SteadyClock::now()};
2392
2393
0
    DumpPeerAddresses(::gArgs, addrman);
2394
2395
0
    LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
2396
0
             addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2397
0
}
2398
2399
void CConnman::ProcessAddrFetch()
2400
0
{
2401
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2402
0
    std::string strDest;
2403
0
    {
2404
0
        LOCK(m_addr_fetches_mutex);
2405
0
        if (m_addr_fetches.empty())
2406
0
            return;
2407
0
        strDest = m_addr_fetches.front();
2408
0
        m_addr_fetches.pop_front();
2409
0
    }
2410
    // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2411
    // peer doesn't support it or immediately disconnects us for another reason.
2412
0
    const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2413
0
    CAddress addr;
2414
0
    CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2415
0
    if (grant) {
2416
0
        OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2417
0
    }
2418
0
}
2419
2420
bool CConnman::GetTryNewOutboundPeer() const
2421
0
{
2422
0
    return m_try_another_outbound_peer;
2423
0
}
2424
2425
void CConnman::SetTryNewOutboundPeer(bool flag)
2426
0
{
2427
0
    m_try_another_outbound_peer = flag;
2428
0
    LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2429
0
}
2430
2431
void CConnman::StartExtraBlockRelayPeers()
2432
0
{
2433
0
    LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2434
0
    m_start_extra_block_relay_peers = true;
2435
0
}
2436
2437
// Return the number of outbound connections that are full relay (not blocks only)
2438
int CConnman::GetFullOutboundConnCount() const
2439
0
{
2440
0
    int nRelevant = 0;
2441
0
    {
2442
0
        LOCK(m_nodes_mutex);
2443
0
        for (const CNode* pnode : m_nodes) {
2444
0
            if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2445
0
        }
2446
0
    }
2447
0
    return nRelevant;
2448
0
}
2449
2450
// Return the number of peers we have over our outbound connection limit
2451
// Exclude peers that are marked for disconnect, or are going to be
2452
// disconnected soon (eg ADDR_FETCH and FEELER)
2453
// Also exclude peers that haven't finished initial connection handshake yet
2454
// (so that we don't decide we're over our desired connection limit, and then
2455
// evict some peer that has finished the handshake)
2456
int CConnman::GetExtraFullOutboundCount() const
2457
0
{
2458
0
    int full_outbound_peers = 0;
2459
0
    {
2460
0
        LOCK(m_nodes_mutex);
2461
0
        for (const CNode* pnode : m_nodes) {
2462
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2463
0
                ++full_outbound_peers;
2464
0
            }
2465
0
        }
2466
0
    }
2467
0
    return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2468
0
}
2469
2470
int CConnman::GetExtraBlockRelayCount() const
2471
0
{
2472
0
    int block_relay_peers = 0;
2473
0
    {
2474
0
        LOCK(m_nodes_mutex);
2475
0
        for (const CNode* pnode : m_nodes) {
2476
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2477
0
                ++block_relay_peers;
2478
0
            }
2479
0
        }
2480
0
    }
2481
0
    return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2482
0
}
2483
2484
std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2485
0
{
2486
0
    std::unordered_set<Network> networks{};
2487
0
    for (int n = 0; n < NET_MAX; n++) {
2488
0
        enum Network net = (enum Network)n;
2489
0
        if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2490
0
        if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2491
0
            networks.insert(net);
2492
0
        }
2493
0
    }
2494
0
    return networks;
2495
0
}
2496
2497
bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2498
0
{
2499
0
    AssertLockHeld(m_nodes_mutex);
2500
0
    return m_network_conn_counts[net] > 1;
2501
0
}
2502
2503
bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2504
0
{
2505
0
    std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2506
0
    std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2507
2508
0
    LOCK(m_nodes_mutex);
2509
0
    for (const auto net : nets) {
2510
0
        if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2511
0
            network = net;
2512
0
            return true;
2513
0
        }
2514
0
    }
2515
2516
0
    return false;
2517
0
}
2518
2519
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2520
0
{
2521
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2522
0
    AssertLockNotHeld(m_reconnections_mutex);
2523
0
    FastRandomContext rng;
2524
    // Connect to specific addresses
2525
0
    if (!connect.empty())
2526
0
    {
2527
        // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2528
        // peer doesn't support it or immediately disconnects us for another reason.
2529
0
        const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2530
0
        for (int64_t nLoop = 0;; nLoop++)
2531
0
        {
2532
0
            for (const std::string& strAddr : connect)
2533
0
            {
2534
0
                CAddress addr(CService(), NODE_NONE);
2535
0
                OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2536
0
                for (int i = 0; i < 10 && i < nLoop; i++)
2537
0
                {
2538
0
                    if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2539
0
                        return;
2540
0
                }
2541
0
            }
2542
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2543
0
                return;
2544
0
            PerformReconnections();
2545
0
        }
2546
0
    }
2547
2548
    // Initiate network connections
2549
0
    auto start = GetTime<std::chrono::microseconds>();
2550
2551
    // Minimum time before next feeler connection (in microseconds).
2552
0
    auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2553
0
    auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2554
0
    auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2555
0
    const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2556
0
    bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2557
0
    const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2558
2559
0
    auto seed_node_timer = NodeClock::now();
2560
0
    bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2561
0
    constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2562
2563
0
    if (!add_fixed_seeds) {
2564
0
        LogPrintf("Fixed seeds are disabled\n");
2565
0
    }
2566
2567
0
    while (!interruptNet)
2568
0
    {
2569
0
        if (add_addr_fetch) {
2570
0
            add_addr_fetch = false;
2571
0
            const auto& seed{SpanPopBack(seed_nodes)};
2572
0
            AddAddrFetch(seed);
2573
2574
0
            if (addrman.Size() == 0) {
2575
0
                LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2576
0
            } else {
2577
0
                LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2578
0
            }
2579
0
        }
2580
2581
0
        ProcessAddrFetch();
2582
2583
0
        if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2584
0
            return;
2585
2586
0
        PerformReconnections();
2587
2588
0
        CountingSemaphoreGrant<> grant(*semOutbound);
2589
0
        if (interruptNet)
2590
0
            return;
2591
2592
0
        const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2593
0
        if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2594
            // When the node starts with an empty peers.dat, there are a few other sources of peers before
2595
            // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2596
            // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2597
            // 60 seconds for any of those sources to populate addrman.
2598
0
            bool add_fixed_seeds_now = false;
2599
            // It is cheapest to check if enough time has passed first.
2600
0
            if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2601
0
                add_fixed_seeds_now = true;
2602
0
                LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2603
0
            }
2604
2605
            // Perform cheap checks before locking a mutex.
2606
0
            else if (!dnsseed && !use_seednodes) {
2607
0
                LOCK(m_added_nodes_mutex);
2608
0
                if (m_added_node_params.empty()) {
2609
0
                    add_fixed_seeds_now = true;
2610
0
                    LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2611
0
                }
2612
0
            }
2613
2614
0
            if (add_fixed_seeds_now) {
2615
0
                std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2616
                // We will not make outgoing connections to peers that are unreachable
2617
                // (e.g. because of -onlynet configuration).
2618
                // Therefore, we do not add them to addrman in the first place.
2619
                // In case previously unreachable networks become reachable
2620
                // (e.g. in case of -onlynet changes by the user), fixed seeds will
2621
                // be loaded only for networks for which we have no addresses.
2622
0
                seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2623
0
                                                [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2624
0
                                 seed_addrs.end());
2625
0
                CNetAddr local;
2626
0
                local.SetInternal("fixedseeds");
2627
0
                addrman.Add(seed_addrs, local);
2628
0
                add_fixed_seeds = false;
2629
0
                LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2630
0
            }
2631
0
        }
2632
2633
        //
2634
        // Choose an address to connect to based on most recently seen
2635
        //
2636
0
        CAddress addrConnect;
2637
2638
        // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2639
0
        int nOutboundFullRelay = 0;
2640
0
        int nOutboundBlockRelay = 0;
2641
0
        int outbound_privacy_network_peers = 0;
2642
0
        std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2643
2644
0
        {
2645
0
            LOCK(m_nodes_mutex);
2646
0
            for (const CNode* pnode : m_nodes) {
2647
0
                if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2648
0
                if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2649
2650
                // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2651
0
                switch (pnode->m_conn_type) {
2652
                    // We currently don't take inbound connections into account. Since they are
2653
                    // free to make, an attacker could make them to prevent us from connecting to
2654
                    // certain peers.
2655
0
                    case ConnectionType::INBOUND:
2656
                    // Short-lived outbound connections should not affect how we select outbound
2657
                    // peers from addrman.
2658
0
                    case ConnectionType::ADDR_FETCH:
2659
0
                    case ConnectionType::FEELER:
2660
0
                        break;
2661
0
                    case ConnectionType::MANUAL:
2662
0
                    case ConnectionType::OUTBOUND_FULL_RELAY:
2663
0
                    case ConnectionType::BLOCK_RELAY:
2664
0
                        const CAddress address{pnode->addr};
2665
0
                        if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2666
                            // Since our addrman-groups for these networks are
2667
                            // random, without relation to the route we
2668
                            // take to connect to these peers or to the
2669
                            // difficulty in obtaining addresses with diverse
2670
                            // groups, we don't worry about diversity with
2671
                            // respect to our addrman groups when connecting to
2672
                            // these networks.
2673
0
                            ++outbound_privacy_network_peers;
2674
0
                        } else {
2675
0
                            outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2676
0
                        }
2677
0
                } // no default case, so the compiler can warn about missing cases
2678
0
            }
2679
0
        }
2680
2681
0
        if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2682
0
            if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2683
0
                seed_node_timer = NodeClock::now();
2684
0
                add_addr_fetch = true;
2685
0
            }
2686
0
        }
2687
2688
0
        ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2689
0
        auto now = GetTime<std::chrono::microseconds>();
2690
0
        bool anchor = false;
2691
0
        bool fFeeler = false;
2692
0
        std::optional<Network> preferred_net;
2693
2694
        // Determine what type of connection to open. Opening
2695
        // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2696
        // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2697
        // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2698
        // until we hit our block-relay-only peer limit.
2699
        // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2700
        // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2701
        // these conditions are met, check to see if it's time to try an extra
2702
        // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2703
        // timer to decide if we should open a FEELER.
2704
2705
0
        if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2706
0
            conn_type = ConnectionType::BLOCK_RELAY;
2707
0
            anchor = true;
2708
0
        } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2709
            // OUTBOUND_FULL_RELAY
2710
0
        } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2711
0
            conn_type = ConnectionType::BLOCK_RELAY;
2712
0
        } else if (GetTryNewOutboundPeer()) {
2713
            // OUTBOUND_FULL_RELAY
2714
0
        } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2715
            // Periodically connect to a peer (using regular outbound selection
2716
            // methodology from addrman) and stay connected long enough to sync
2717
            // headers, but not much else.
2718
            //
2719
            // Then disconnect the peer, if we haven't learned anything new.
2720
            //
2721
            // The idea is to make eclipse attacks very difficult to pull off,
2722
            // because every few minutes we're finding a new peer to learn headers
2723
            // from.
2724
            //
2725
            // This is similar to the logic for trying extra outbound (full-relay)
2726
            // peers, except:
2727
            // - we do this all the time on an exponential timer, rather than just when
2728
            //   our tip is stale
2729
            // - we potentially disconnect our next-youngest block-relay-only peer, if our
2730
            //   newest block-relay-only peer delivers a block more recently.
2731
            //   See the eviction logic in net_processing.cpp.
2732
            //
2733
            // Because we can promote these connections to block-relay-only
2734
            // connections, they do not get their own ConnectionType enum
2735
            // (similar to how we deal with extra outbound peers).
2736
0
            next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2737
0
            conn_type = ConnectionType::BLOCK_RELAY;
2738
0
        } else if (now > next_feeler) {
2739
0
            next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2740
0
            conn_type = ConnectionType::FEELER;
2741
0
            fFeeler = true;
2742
0
        } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2743
0
                   m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2744
0
                   now > next_extra_network_peer &&
2745
0
                   MaybePickPreferredNetwork(preferred_net)) {
2746
            // Full outbound connection management: Attempt to get at least one
2747
            // outbound peer from each reachable network by making extra connections
2748
            // and then protecting "only" peers from a network during outbound eviction.
2749
            // This is not attempted if the user changed -maxconnections to a value
2750
            // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2751
            // to prevent interactions with otherwise protected outbound peers.
2752
0
            next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2753
0
        } else {
2754
            // skip to next iteration of while loop
2755
0
            continue;
2756
0
        }
2757
2758
0
        addrman.ResolveCollisions();
2759
2760
0
        const auto current_time{NodeClock::now()};
2761
0
        int nTries = 0;
2762
0
        const auto reachable_nets{g_reachable_nets.All()};
2763
2764
0
        while (!interruptNet)
2765
0
        {
2766
0
            if (anchor && !m_anchors.empty()) {
2767
0
                const CAddress addr = m_anchors.back();
2768
0
                m_anchors.pop_back();
2769
0
                if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2770
0
                    !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2771
0
                    outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2772
0
                addrConnect = addr;
2773
0
                LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2774
0
                break;
2775
0
            }
2776
2777
            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2778
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2779
            // already-connected network ranges, ...) before trying new addrman addresses.
2780
0
            nTries++;
2781
0
            if (nTries > 100)
2782
0
                break;
2783
2784
0
            CAddress addr;
2785
0
            NodeSeconds addr_last_try{0s};
2786
2787
0
            if (fFeeler) {
2788
                // First, try to get a tried table collision address. This returns
2789
                // an empty (invalid) address if there are no collisions to try.
2790
0
                std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2791
2792
0
                if (!addr.IsValid()) {
2793
                    // No tried table collisions. Select a new table address
2794
                    // for our feeler.
2795
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2796
0
                } else if (AlreadyConnectedToAddress(addr)) {
2797
                    // If test-before-evict logic would have us connect to a
2798
                    // peer that we're already connected to, just mark that
2799
                    // address as Good(). We won't be able to initiate the
2800
                    // connection anyway, so this avoids inadvertently evicting
2801
                    // a currently-connected peer.
2802
0
                    addrman.Good(addr);
2803
                    // Select a new table address for our feeler instead.
2804
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2805
0
                }
2806
0
            } else {
2807
                // Not a feeler
2808
                // If preferred_net has a value set, pick an extra outbound
2809
                // peer from that network. The eviction logic in net_processing
2810
                // ensures that a peer from another network will be evicted.
2811
0
                std::tie(addr, addr_last_try) = preferred_net.has_value()
2812
0
                    ? addrman.Select(false, {*preferred_net})
2813
0
                    : addrman.Select(false, reachable_nets);
2814
0
            }
2815
2816
            // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2817
0
            if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2818
0
                continue;
2819
0
            }
2820
2821
            // if we selected an invalid or local address, restart
2822
0
            if (!addr.IsValid() || IsLocal(addr)) {
2823
0
                break;
2824
0
            }
2825
2826
0
            if (!g_reachable_nets.Contains(addr)) {
2827
0
                continue;
2828
0
            }
2829
2830
            // only consider very recently tried nodes after 30 failed attempts
2831
0
            if (current_time - addr_last_try < 10min && nTries < 30) {
2832
0
                continue;
2833
0
            }
2834
2835
            // for non-feelers, require all the services we'll want,
2836
            // for feelers, only require they be a full node (only because most
2837
            // SPV clients don't have a good address DB available)
2838
0
            if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2839
0
                continue;
2840
0
            } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2841
0
                continue;
2842
0
            }
2843
2844
            // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2845
0
            if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2846
0
                continue;
2847
0
            }
2848
2849
            // Do not make automatic outbound connections to addnode peers, to
2850
            // not use our limited outbound slots for them and to ensure
2851
            // addnode connections benefit from their intended protections.
2852
0
            if (AddedNodesContain(addr)) {
2853
0
                LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2854
0
                              preferred_net.has_value() ? "network-specific " : "",
2855
0
                              ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2856
0
                              fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2857
0
                continue;
2858
0
            }
2859
2860
0
            addrConnect = addr;
2861
0
            break;
2862
0
        }
2863
2864
0
        if (addrConnect.IsValid()) {
2865
0
            if (fFeeler) {
2866
                // Add small amount of random noise before connection to avoid synchronization.
2867
0
                if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2868
0
                    return;
2869
0
                }
2870
0
                LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2871
0
            }
2872
2873
0
            if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2874
2875
            // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2876
            // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2877
            // Don't record addrman failure attempts when node is offline. This can be identified since all local
2878
            // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2879
0
            const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2880
            // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2881
0
            const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2882
0
            OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2883
0
        }
2884
0
    }
2885
0
}
2886
2887
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2888
0
{
2889
0
    std::vector<CAddress> ret;
2890
0
    LOCK(m_nodes_mutex);
2891
0
    for (const CNode* pnode : m_nodes) {
2892
0
        if (pnode->IsBlockOnlyConn()) {
2893
0
            ret.push_back(pnode->addr);
2894
0
        }
2895
0
    }
2896
2897
0
    return ret;
2898
0
}
2899
2900
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2901
0
{
2902
0
    std::vector<AddedNodeInfo> ret;
2903
2904
0
    std::list<AddedNodeParams> lAddresses(0);
2905
0
    {
2906
0
        LOCK(m_added_nodes_mutex);
2907
0
        ret.reserve(m_added_node_params.size());
2908
0
        std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2909
0
    }
2910
2911
2912
    // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2913
0
    std::map<CService, bool> mapConnected;
2914
0
    std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2915
0
    {
2916
0
        LOCK(m_nodes_mutex);
2917
0
        for (const CNode* pnode : m_nodes) {
2918
0
            if (pnode->addr.IsValid()) {
2919
0
                mapConnected[pnode->addr] = pnode->IsInboundConn();
2920
0
            }
2921
0
            std::string addrName{pnode->m_addr_name};
2922
0
            if (!addrName.empty()) {
2923
0
                mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2924
0
            }
2925
0
        }
2926
0
    }
2927
2928
0
    for (const auto& addr : lAddresses) {
2929
0
        CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2930
0
        AddedNodeInfo addedNode{addr, CService(), false, false};
2931
0
        if (service.IsValid()) {
2932
            // strAddNode is an IP:port
2933
0
            auto it = mapConnected.find(service);
2934
0
            if (it != mapConnected.end()) {
2935
0
                if (!include_connected) {
2936
0
                    continue;
2937
0
                }
2938
0
                addedNode.resolvedAddress = service;
2939
0
                addedNode.fConnected = true;
2940
0
                addedNode.fInbound = it->second;
2941
0
            }
2942
0
        } else {
2943
            // strAddNode is a name
2944
0
            auto it = mapConnectedByName.find(addr.m_added_node);
2945
0
            if (it != mapConnectedByName.end()) {
2946
0
                if (!include_connected) {
2947
0
                    continue;
2948
0
                }
2949
0
                addedNode.resolvedAddress = it->second.second;
2950
0
                addedNode.fConnected = true;
2951
0
                addedNode.fInbound = it->second.first;
2952
0
            }
2953
0
        }
2954
0
        ret.emplace_back(std::move(addedNode));
2955
0
    }
2956
2957
0
    return ret;
2958
0
}
2959
2960
void CConnman::ThreadOpenAddedConnections()
2961
0
{
2962
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2963
0
    AssertLockNotHeld(m_reconnections_mutex);
2964
0
    while (true)
2965
0
    {
2966
0
        CountingSemaphoreGrant<> grant(*semAddnode);
2967
0
        std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2968
0
        bool tried = false;
2969
0
        for (const AddedNodeInfo& info : vInfo) {
2970
0
            if (!grant) {
2971
                // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2972
                // the addednodeinfo state might change.
2973
0
                break;
2974
0
            }
2975
0
            tried = true;
2976
0
            CAddress addr(CService(), NODE_NONE);
2977
0
            OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2978
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2979
0
            grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2980
0
        }
2981
        // See if any reconnections are desired.
2982
0
        PerformReconnections();
2983
        // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2984
0
        if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2985
0
            return;
2986
0
    }
2987
0
}
2988
2989
// if successful, this moves the passed grant to the constructed node
2990
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CountingSemaphoreGrant<>&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2991
0
{
2992
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2993
0
    assert(conn_type != ConnectionType::INBOUND);
2994
2995
    //
2996
    // Initiate outbound network connection
2997
    //
2998
0
    if (interruptNet) {
2999
0
        return;
3000
0
    }
3001
0
    if (!fNetworkActive) {
3002
0
        return;
3003
0
    }
3004
0
    if (!pszDest) {
3005
0
        bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3006
0
        if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3007
0
            return;
3008
0
        }
3009
0
    } else if (FindNode(std::string(pszDest)))
3010
0
        return;
3011
3012
0
    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3013
3014
0
    if (!pnode)
3015
0
        return;
3016
0
    pnode->grantOutbound = std::move(grant_outbound);
3017
3018
0
    m_msgproc->InitializeNode(*pnode, m_local_services);
3019
0
    {
3020
0
        LOCK(m_nodes_mutex);
3021
0
        m_nodes.push_back(pnode);
3022
3023
        // update connection count by network
3024
0
        if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3025
0
    }
3026
3027
0
    TRACEPOINT(net, outbound_connection,
3028
0
        pnode->GetId(),
3029
0
        pnode->m_addr_name.c_str(),
3030
0
        pnode->ConnectionTypeAsString().c_str(),
3031
0
        pnode->ConnectedThroughNetwork(),
3032
0
        GetNodeCount(ConnectionDirection::Out));
3033
0
}
3034
3035
Mutex NetEventsInterface::g_msgproc_mutex;
3036
3037
void CConnman::ThreadMessageHandler()
3038
0
{
3039
0
    LOCK(NetEventsInterface::g_msgproc_mutex);
3040
3041
0
    while (!flagInterruptMsgProc)
3042
0
    {
3043
0
        bool fMoreWork = false;
3044
3045
0
        {
3046
            // Randomize the order in which we process messages from/to our peers.
3047
            // This prevents attacks in which an attacker exploits having multiple
3048
            // consecutive connections in the m_nodes list.
3049
0
            const NodesSnapshot snap{*this, /*shuffle=*/true};
3050
3051
0
            for (CNode* pnode : snap.Nodes()) {
3052
0
                if (pnode->fDisconnect)
3053
0
                    continue;
3054
3055
                // Receive messages
3056
0
                bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3057
0
                fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3058
0
                if (flagInterruptMsgProc)
3059
0
                    return;
3060
                // Send messages
3061
0
                m_msgproc->SendMessages(pnode);
3062
3063
0
                if (flagInterruptMsgProc)
3064
0
                    return;
3065
0
            }
3066
0
        }
3067
3068
0
        WAIT_LOCK(mutexMsgProc, lock);
3069
0
        if (!fMoreWork) {
3070
0
            condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3071
0
        }
3072
0
        fMsgProcWake = false;
3073
0
    }
3074
0
}
3075
3076
void CConnman::ThreadI2PAcceptIncoming()
3077
0
{
3078
0
    static constexpr auto err_wait_begin = 1s;
3079
0
    static constexpr auto err_wait_cap = 5min;
3080
0
    auto err_wait = err_wait_begin;
3081
3082
0
    bool advertising_listen_addr = false;
3083
0
    i2p::Connection conn;
3084
3085
0
    auto SleepOnFailure = [&]() {
3086
0
        interruptNet.sleep_for(err_wait);
3087
0
        if (err_wait < err_wait_cap) {
3088
0
            err_wait += 1s;
3089
0
        }
3090
0
    };
3091
3092
0
    while (!interruptNet) {
3093
3094
0
        if (!m_i2p_sam_session->Listen(conn)) {
3095
0
            if (advertising_listen_addr && conn.me.IsValid()) {
3096
0
                RemoveLocal(conn.me);
3097
0
                advertising_listen_addr = false;
3098
0
            }
3099
0
            SleepOnFailure();
3100
0
            continue;
3101
0
        }
3102
3103
0
        if (!advertising_listen_addr) {
3104
0
            AddLocal(conn.me, LOCAL_MANUAL);
3105
0
            advertising_listen_addr = true;
3106
0
        }
3107
3108
0
        if (!m_i2p_sam_session->Accept(conn)) {
3109
0
            SleepOnFailure();
3110
0
            continue;
3111
0
        }
3112
3113
0
        CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3114
3115
0
        err_wait = err_wait_begin;
3116
0
    }
3117
0
}
3118
3119
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3120
0
{
3121
0
    int nOne = 1;
3122
3123
    // Create socket for listening for incoming connections
3124
0
    struct sockaddr_storage sockaddr;
3125
0
    socklen_t len = sizeof(sockaddr);
3126
0
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3127
0
    {
3128
0
        strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3129
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3130
0
        return false;
3131
0
    }
3132
3133
0
    std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3134
0
    if (!sock) {
3135
0
        strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3136
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3137
0
        return false;
3138
0
    }
3139
3140
    // Allow binding if the port is still in TIME_WAIT state after
3141
    // the program was closed and restarted.
3142
0
    if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &nOne, sizeof(int)) == SOCKET_ERROR) {
3143
0
        strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3144
0
        LogPrintf("%s\n", strError.original);
3145
0
    }
3146
3147
    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3148
    // and enable it by default or not. Try to enable it, if possible.
3149
0
    if (addrBind.IsIPv6()) {
3150
0
#ifdef IPV6_V6ONLY
3151
0
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, &nOne, sizeof(int)) == SOCKET_ERROR) {
3152
0
            strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3153
0
            LogPrintf("%s\n", strError.original);
3154
0
        }
3155
0
#endif
3156
#ifdef WIN32
3157
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3158
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, &nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3159
            strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3160
            LogPrintf("%s\n", strError.original);
3161
        }
3162
#endif
3163
0
    }
3164
3165
0
    if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3166
0
        int nErr = WSAGetLastError();
3167
0
        if (nErr == WSAEADDRINUSE)
3168
0
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3169
0
        else
3170
0
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3171
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3172
0
        return false;
3173
0
    }
3174
0
    LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3175
3176
    // Listen for incoming connections
3177
0
    if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3178
0
    {
3179
0
        strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3180
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3181
0
        return false;
3182
0
    }
3183
3184
0
    vhListenSocket.emplace_back(std::move(sock), permissions);
3185
0
    return true;
3186
0
}
3187
3188
void Discover()
3189
0
{
3190
0
    if (!fDiscover)
3191
0
        return;
3192
3193
0
    for (const CNetAddr &addr: GetLocalAddresses()) {
3194
0
        if (AddLocal(addr, LOCAL_IF))
3195
0
            LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3196
0
    }
3197
0
}
3198
3199
void CConnman::SetNetworkActive(bool active)
3200
0
{
3201
0
    LogPrintf("%s: %s\n", __func__, active);
3202
3203
0
    if (fNetworkActive == active) {
3204
0
        return;
3205
0
    }
3206
3207
0
    fNetworkActive = active;
3208
3209
0
    if (m_client_interface) {
3210
0
        m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3211
0
    }
3212
0
}
3213
3214
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3215
                   const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3216
0
    : addrman(addrman_in)
3217
0
    , m_netgroupman{netgroupman}
3218
0
    , nSeed0(nSeed0In)
3219
0
    , nSeed1(nSeed1In)
3220
0
    , m_params(params)
3221
0
{
3222
0
    SetTryNewOutboundPeer(false);
3223
3224
0
    Options connOptions;
3225
0
    Init(connOptions);
3226
0
    SetNetworkActive(network_active);
3227
0
}
3228
3229
NodeId CConnman::GetNewNodeId()
3230
0
{
3231
0
    return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3232
0
}
3233
3234
uint16_t CConnman::GetDefaultPort(Network net) const
3235
0
{
3236
0
    return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3237
0
}
3238
3239
uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3240
0
{
3241
0
    CNetAddr a;
3242
0
    return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
3243
0
}
3244
3245
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3246
0
{
3247
0
    const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3248
3249
0
    bilingual_str strError;
3250
0
    if (!BindListenPort(addr, strError, permissions)) {
3251
0
        if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3252
0
            m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3253
0
        }
3254
0
        return false;
3255
0
    }
3256
3257
0
    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3258
0
        AddLocal(addr, LOCAL_BIND);
3259
0
    }
3260
3261
0
    return true;
3262
0
}
3263
3264
bool CConnman::InitBinds(const Options& options)
3265
0
{
3266
0
    for (const auto& addrBind : options.vBinds) {
3267
0
        if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3268
0
            return false;
3269
0
        }
3270
0
    }
3271
0
    for (const auto& addrBind : options.vWhiteBinds) {
3272
0
        if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3273
0
            return false;
3274
0
        }
3275
0
    }
3276
0
    for (const auto& addr_bind : options.onion_binds) {
3277
0
        if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3278
0
            return false;
3279
0
        }
3280
0
    }
3281
0
    if (options.bind_on_any) {
3282
        // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3283
        // may not have IPv6 support and the user did not explicitly ask us to
3284
        // bind on that.
3285
0
        const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3286
0
        Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3287
3288
0
        struct in_addr inaddr_any;
3289
0
        inaddr_any.s_addr = htonl(INADDR_ANY);
3290
0
        const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3291
0
        if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3292
0
            return false;
3293
0
        }
3294
0
    }
3295
0
    return true;
3296
0
}
3297
3298
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3299
0
{
3300
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3301
0
    Init(connOptions);
3302
3303
0
    if (fListen && !InitBinds(connOptions)) {
3304
0
        if (m_client_interface) {
3305
0
            m_client_interface->ThreadSafeMessageBox(
3306
0
                _("Failed to listen on any port. Use -listen=0 if you want this."),
3307
0
                "", CClientUIInterface::MSG_ERROR);
3308
0
        }
3309
0
        return false;
3310
0
    }
3311
3312
0
    Proxy i2p_sam;
3313
0
    if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3314
0
        m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3315
0
                                                                i2p_sam, &interruptNet);
3316
0
    }
3317
3318
    // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3319
0
    std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3320
0
    if (!seed_nodes.empty()) {
3321
0
        std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3322
0
    }
3323
3324
0
    if (m_use_addrman_outgoing) {
3325
        // Load addresses from anchors.dat
3326
0
        m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
3327
0
        if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3328
0
            m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3329
0
        }
3330
0
        LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3331
0
    }
3332
3333
0
    if (m_client_interface) {
3334
0
        m_client_interface->InitMessage(_("Starting network threads…"));
3335
0
    }
3336
3337
0
    fAddressesInitialized = true;
3338
3339
0
    if (semOutbound == nullptr) {
3340
        // initialize semaphore
3341
0
        semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3342
0
    }
3343
0
    if (semAddnode == nullptr) {
3344
        // initialize semaphore
3345
0
        semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3346
0
    }
3347
3348
    //
3349
    // Start threads
3350
    //
3351
0
    assert(m_msgproc);
3352
0
    interruptNet.reset();
3353
0
    flagInterruptMsgProc = false;
3354
3355
0
    {
3356
0
        LOCK(mutexMsgProc);
3357
0
        fMsgProcWake = false;
3358
0
    }
3359
3360
    // Send and receive from sockets, accept connections
3361
0
    threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3362
3363
0
    if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3364
0
        LogPrintf("DNS seeding disabled\n");
3365
0
    else
3366
0
        threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3367
3368
    // Initiate manual connections
3369
0
    threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3370
3371
0
    if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3372
0
        if (m_client_interface) {
3373
0
            m_client_interface->ThreadSafeMessageBox(
3374
0
                _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3375
0
                "", CClientUIInterface::MSG_ERROR);
3376
0
        }
3377
0
        return false;
3378
0
    }
3379
0
    if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3380
0
        threadOpenConnections = std::thread(
3381
0
            &util::TraceThread, "opencon",
3382
0
            [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3383
0
    }
3384
3385
    // Process messages
3386
0
    threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3387
3388
0
    if (m_i2p_sam_session) {
3389
0
        threadI2PAcceptIncoming =
3390
0
            std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3391
0
    }
3392
3393
    // Dump network addresses
3394
0
    scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3395
3396
    // Run the ASMap Health check once and then schedule it to run every 24h.
3397
0
    if (m_netgroupman.UsingASMap()) {
3398
0
        ASMapHealthCheck();
3399
0
        scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3400
0
    }
3401
3402
0
    return true;
3403
0
}
3404
3405
class CNetCleanup
3406
{
3407
public:
3408
    CNetCleanup() = default;
3409
3410
    ~CNetCleanup()
3411
0
    {
3412
#ifdef WIN32
3413
        // Shutdown Windows Sockets
3414
        WSACleanup();
3415
#endif
3416
0
    }
3417
};
3418
static CNetCleanup instance_of_cnetcleanup;
3419
3420
void CConnman::Interrupt()
3421
1
{
3422
1
    {
3423
1
        LOCK(mutexMsgProc);
3424
1
        flagInterruptMsgProc = true;
3425
1
    }
3426
1
    condMsgProc.notify_all();
3427
3428
1
    interruptNet();
3429
1
    g_socks5_interrupt();
3430
3431
1
    if (semOutbound) {
3432
0
        for (int i=0; i<m_max_automatic_outbound; i++) {
3433
0
            semOutbound->release();
3434
0
        }
3435
0
    }
3436
3437
1
    if (semAddnode) {
3438
0
        for (int i=0; i<m_max_addnode; i++) {
3439
0
            semAddnode->release();
3440
0
        }
3441
0
    }
3442
1
}
3443
3444
void CConnman::StopThreads()
3445
1
{
3446
1
    if (threadI2PAcceptIncoming.joinable()) {
3447
0
        threadI2PAcceptIncoming.join();
3448
0
    }
3449
1
    if (threadMessageHandler.joinable())
3450
0
        threadMessageHandler.join();
3451
1
    if (threadOpenConnections.joinable())
3452
0
        threadOpenConnections.join();
3453
1
    if (threadOpenAddedConnections.joinable())
3454
0
        threadOpenAddedConnections.join();
3455
1
    if (threadDNSAddressSeed.joinable())
3456
0
        threadDNSAddressSeed.join();
3457
1
    if (threadSocketHandler.joinable())
3458
0
        threadSocketHandler.join();
3459
1
}
3460
3461
void CConnman::StopNodes()
3462
1
{
3463
1
    if (fAddressesInitialized) {
3464
0
        DumpAddresses();
3465
0
        fAddressesInitialized = false;
3466
3467
0
        if (m_use_addrman_outgoing) {
3468
            // Anchor connections are only dumped during clean shutdown.
3469
0
            std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3470
0
            if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3471
0
                anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3472
0
            }
3473
0
            DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
3474
0
        }
3475
0
    }
3476
3477
    // Delete peer connections.
3478
1
    std::vector<CNode*> nodes;
3479
1
    WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3480
1
    for (CNode* pnode : nodes) {
3481
0
        LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3482
0
        pnode->CloseSocketDisconnect();
3483
0
        DeleteNode(pnode);
3484
0
    }
3485
3486
1
    for (CNode* pnode : m_nodes_disconnected) {
3487
0
        DeleteNode(pnode);
3488
0
    }
3489
1
    m_nodes_disconnected.clear();
3490
1
    vhListenSocket.clear();
3491
1
    semOutbound.reset();
3492
1
    semAddnode.reset();
3493
1
}
3494
3495
void CConnman::DeleteNode(CNode* pnode)
3496
0
{
3497
0
    assert(pnode);
3498
0
    m_msgproc->FinalizeNode(*pnode);
3499
0
    delete pnode;
3500
0
}
3501
3502
CConnman::~CConnman()
3503
1
{
3504
1
    Interrupt();
3505
1
    Stop();
3506
1
}
3507
3508
std::vector<CAddress> CConnman::GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3509
0
{
3510
0
    std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3511
0
    if (m_banman) {
3512
0
        addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3513
0
                        [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3514
0
                        addresses.end());
3515
0
    }
3516
0
    return addresses;
3517
0
}
3518
3519
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3520
0
{
3521
0
    auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3522
0
    uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3523
0
        .Write(requestor.ConnectedThroughNetwork())
3524
0
        .Write(local_socket_bytes)
3525
        // For outbound connections, the port of the bound address is randomly
3526
        // assigned by the OS and would therefore not be useful for seeding.
3527
0
        .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3528
0
        .Finalize();
3529
0
    const auto current_time = GetTime<std::chrono::microseconds>();
3530
0
    auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3531
0
    CachedAddrResponse& cache_entry = r.first->second;
3532
0
    if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3533
0
        cache_entry.m_addrs_response_cache = GetAddressesUnsafe(max_addresses, max_pct, /*network=*/std::nullopt);
3534
        // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3535
        // and the usefulness of ADDR responses to honest users.
3536
        //
3537
        // Longer cache lifetime makes it more difficult for an attacker to scrape
3538
        // enough AddrMan data to maliciously infer something useful.
3539
        // By the time an attacker scraped enough AddrMan records, most of
3540
        // the records should be old enough to not leak topology info by
3541
        // e.g. analyzing real-time changes in timestamps.
3542
        //
3543
        // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3544
        // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3545
        // most of it could be scraped (considering that timestamps are updated via
3546
        // ADDR self-announcements and when nodes communicate).
3547
        // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3548
        // (because even several timestamps of the same handful of nodes may leak privacy).
3549
        //
3550
        // On the other hand, longer cache lifetime makes ADDR responses
3551
        // outdated and less useful for an honest requestor, e.g. if most nodes
3552
        // in the ADDR response are no longer active.
3553
        //
3554
        // However, the churn in the network is known to be rather low. Since we consider
3555
        // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3556
        // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3557
        // in terms of the freshness of the response.
3558
0
        cache_entry.m_cache_entry_expiration = current_time +
3559
0
            21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3560
0
    }
3561
0
    return cache_entry.m_addrs_response_cache;
3562
0
}
3563
3564
bool CConnman::AddNode(const AddedNodeParams& add)
3565
0
{
3566
0
    const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3567
0
    const bool resolved_is_valid{resolved.IsValid()};
3568
3569
0
    LOCK(m_added_nodes_mutex);
3570
0
    for (const auto& it : m_added_node_params) {
3571
0
        if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3572
0
    }
3573
3574
0
    m_added_node_params.push_back(add);
3575
0
    return true;
3576
0
}
3577
3578
bool CConnman::RemoveAddedNode(const std::string& strNode)
3579
0
{
3580
0
    LOCK(m_added_nodes_mutex);
3581
0
    for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3582
0
        if (strNode == it->m_added_node) {
3583
0
            m_added_node_params.erase(it);
3584
0
            return true;
3585
0
        }
3586
0
    }
3587
0
    return false;
3588
0
}
3589
3590
bool CConnman::AddedNodesContain(const CAddress& addr) const
3591
0
{
3592
0
    AssertLockNotHeld(m_added_nodes_mutex);
3593
0
    const std::string addr_str{addr.ToStringAddr()};
3594
0
    const std::string addr_port_str{addr.ToStringAddrPort()};
3595
0
    LOCK(m_added_nodes_mutex);
3596
0
    return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3597
0
            && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3598
0
                           [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3599
0
}
3600
3601
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3602
0
{
3603
0
    LOCK(m_nodes_mutex);
3604
0
    if (flags == ConnectionDirection::Both) // Shortcut if we want total
3605
0
        return m_nodes.size();
3606
3607
0
    int nNum = 0;
3608
0
    for (const auto& pnode : m_nodes) {
3609
0
        if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3610
0
            nNum++;
3611
0
        }
3612
0
    }
3613
3614
0
    return nNum;
3615
0
}
3616
3617
3618
std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3619
0
{
3620
0
    LOCK(g_maplocalhost_mutex);
3621
0
    return mapLocalHost;
3622
0
}
3623
3624
uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3625
0
{
3626
0
    return m_netgroupman.GetMappedAS(addr);
3627
0
}
3628
3629
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3630
0
{
3631
0
    vstats.clear();
3632
0
    LOCK(m_nodes_mutex);
3633
0
    vstats.reserve(m_nodes.size());
3634
0
    for (CNode* pnode : m_nodes) {
3635
0
        vstats.emplace_back();
3636
0
        pnode->CopyStats(vstats.back());
3637
0
        vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3638
0
    }
3639
0
}
3640
3641
bool CConnman::DisconnectNode(const std::string& strNode)
3642
0
{
3643
0
    LOCK(m_nodes_mutex);
3644
0
    if (CNode* pnode = FindNode(strNode)) {
3645
0
        LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3646
0
        pnode->fDisconnect = true;
3647
0
        return true;
3648
0
    }
3649
0
    return false;
3650
0
}
3651
3652
bool CConnman::DisconnectNode(const CSubNet& subnet)
3653
0
{
3654
0
    bool disconnected = false;
3655
0
    LOCK(m_nodes_mutex);
3656
0
    for (CNode* pnode : m_nodes) {
3657
0
        if (subnet.Match(pnode->addr)) {
3658
0
            LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3659
0
            pnode->fDisconnect = true;
3660
0
            disconnected = true;
3661
0
        }
3662
0
    }
3663
0
    return disconnected;
3664
0
}
3665
3666
bool CConnman::DisconnectNode(const CNetAddr& addr)
3667
0
{
3668
0
    return DisconnectNode(CSubNet(addr));
3669
0
}
3670
3671
bool CConnman::DisconnectNode(NodeId id)
3672
0
{
3673
0
    LOCK(m_nodes_mutex);
3674
0
    for(CNode* pnode : m_nodes) {
3675
0
        if (id == pnode->GetId()) {
3676
0
            LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3677
0
            pnode->fDisconnect = true;
3678
0
            return true;
3679
0
        }
3680
0
    }
3681
0
    return false;
3682
0
}
3683
3684
void CConnman::RecordBytesRecv(uint64_t bytes)
3685
0
{
3686
0
    nTotalBytesRecv += bytes;
3687
0
}
3688
3689
void CConnman::RecordBytesSent(uint64_t bytes)
3690
0
{
3691
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3692
0
    LOCK(m_total_bytes_sent_mutex);
3693
3694
0
    nTotalBytesSent += bytes;
3695
3696
0
    const auto now = GetTime<std::chrono::seconds>();
3697
0
    if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3698
0
    {
3699
        // timeframe expired, reset cycle
3700
0
        nMaxOutboundCycleStartTime = now;
3701
0
        nMaxOutboundTotalBytesSentInCycle = 0;
3702
0
    }
3703
3704
0
    nMaxOutboundTotalBytesSentInCycle += bytes;
3705
0
}
3706
3707
uint64_t CConnman::GetMaxOutboundTarget() const
3708
0
{
3709
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3710
0
    LOCK(m_total_bytes_sent_mutex);
3711
0
    return nMaxOutboundLimit;
3712
0
}
3713
3714
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3715
0
{
3716
0
    return MAX_UPLOAD_TIMEFRAME;
3717
0
}
3718
3719
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3720
0
{
3721
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3722
0
    LOCK(m_total_bytes_sent_mutex);
3723
0
    return GetMaxOutboundTimeLeftInCycle_();
3724
0
}
3725
3726
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3727
0
{
3728
0
    AssertLockHeld(m_total_bytes_sent_mutex);
3729
3730
0
    if (nMaxOutboundLimit == 0)
3731
0
        return 0s;
3732
3733
0
    if (nMaxOutboundCycleStartTime.count() == 0)
3734
0
        return MAX_UPLOAD_TIMEFRAME;
3735
3736
0
    const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3737
0
    const auto now = GetTime<std::chrono::seconds>();
3738
0
    return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3739
0
}
3740
3741
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3742
0
{
3743
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3744
0
    LOCK(m_total_bytes_sent_mutex);
3745
0
    if (nMaxOutboundLimit == 0)
3746
0
        return false;
3747
3748
0
    if (historicalBlockServingLimit)
3749
0
    {
3750
        // keep a large enough buffer to at least relay each block once
3751
0
        const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3752
0
        const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3753
0
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3754
0
            return true;
3755
0
    }
3756
0
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3757
0
        return true;
3758
3759
0
    return false;
3760
0
}
3761
3762
uint64_t CConnman::GetOutboundTargetBytesLeft() const
3763
0
{
3764
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3765
0
    LOCK(m_total_bytes_sent_mutex);
3766
0
    if (nMaxOutboundLimit == 0)
3767
0
        return 0;
3768
3769
0
    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3770
0
}
3771
3772
uint64_t CConnman::GetTotalBytesRecv() const
3773
0
{
3774
0
    return nTotalBytesRecv;
3775
0
}
3776
3777
uint64_t CConnman::GetTotalBytesSent() const
3778
0
{
3779
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3780
0
    LOCK(m_total_bytes_sent_mutex);
3781
0
    return nTotalBytesSent;
3782
0
}
3783
3784
ServiceFlags CConnman::GetLocalServices() const
3785
0
{
3786
0
    return m_local_services;
3787
0
}
3788
3789
static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3790
0
{
3791
0
    if (use_v2transport) {
3792
0
        return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3793
0
    } else {
3794
0
        return std::make_unique<V1Transport>(id);
3795
0
    }
3796
0
}
3797
3798
CNode::CNode(NodeId idIn,
3799
             std::shared_ptr<Sock> sock,
3800
             const CAddress& addrIn,
3801
             uint64_t nKeyedNetGroupIn,
3802
             uint64_t nLocalHostNonceIn,
3803
             const CService& addrBindIn,
3804
             const std::string& addrNameIn,
3805
             ConnectionType conn_type_in,
3806
             bool inbound_onion,
3807
             CNodeOptions&& node_opts)
3808
0
    : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3809
0
      m_permission_flags{node_opts.permission_flags},
3810
0
      m_sock{sock},
3811
0
      m_connected{GetTime<std::chrono::seconds>()},
3812
0
      addr{addrIn},
3813
0
      addrBind{addrBindIn},
3814
0
      m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3815
0
      m_dest(addrNameIn),
3816
0
      m_inbound_onion{inbound_onion},
3817
0
      m_prefer_evict{node_opts.prefer_evict},
3818
0
      nKeyedNetGroup{nKeyedNetGroupIn},
3819
0
      m_conn_type{conn_type_in},
3820
0
      id{idIn},
3821
0
      nLocalHostNonce{nLocalHostNonceIn},
3822
0
      m_recv_flood_size{node_opts.recv_flood_size},
3823
0
      m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3824
0
{
3825
0
    if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3826
3827
0
    for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3828
0
        mapRecvBytesPerMsgType[msg] = 0;
3829
0
    }
3830
0
    mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3831
3832
0
    if (fLogIPs) {
3833
0
        LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3834
0
    } else {
3835
0
        LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3836
0
    }
3837
0
}
3838
3839
void CNode::MarkReceivedMsgsForProcessing()
3840
0
{
3841
0
    AssertLockNotHeld(m_msg_process_queue_mutex);
3842
3843
0
    size_t nSizeAdded = 0;
3844
0
    for (const auto& msg : vRecvMsg) {
3845
        // vRecvMsg contains only completed CNetMessage
3846
        // the single possible partially deserialized message are held by TransportDeserializer
3847
0
        nSizeAdded += msg.GetMemoryUsage();
3848
0
    }
3849
3850
0
    LOCK(m_msg_process_queue_mutex);
3851
0
    m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3852
0
    m_msg_process_queue_size += nSizeAdded;
3853
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3854
0
}
3855
3856
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3857
0
{
3858
0
    LOCK(m_msg_process_queue_mutex);
3859
0
    if (m_msg_process_queue.empty()) return std::nullopt;
3860
3861
0
    std::list<CNetMessage> msgs;
3862
    // Just take one message
3863
0
    msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3864
0
    m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3865
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3866
3867
0
    return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3868
0
}
3869
3870
bool CConnman::NodeFullyConnected(const CNode* pnode)
3871
0
{
3872
0
    return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3873
0
}
3874
3875
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3876
0
{
3877
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3878
0
    size_t nMessageSize = msg.data.size();
3879
0
    LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3880
0
    if (gArgs.GetBoolArg("-capturemessages", false)) {
3881
0
        CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3882
0
    }
3883
3884
0
    TRACEPOINT(net, outbound_message,
3885
0
        pnode->GetId(),
3886
0
        pnode->m_addr_name.c_str(),
3887
0
        pnode->ConnectionTypeAsString().c_str(),
3888
0
        msg.m_type.c_str(),
3889
0
        msg.data.size(),
3890
0
        msg.data.data()
3891
0
    );
3892
3893
0
    size_t nBytesSent = 0;
3894
0
    {
3895
0
        LOCK(pnode->cs_vSend);
3896
        // Check if the transport still has unsent bytes, and indicate to it that we're about to
3897
        // give it a message to send.
3898
0
        const auto& [to_send, more, _msg_type] =
3899
0
            pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3900
0
        const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3901
3902
        // Update memory usage of send buffer.
3903
0
        pnode->m_send_memusage += msg.GetMemoryUsage();
3904
0
        if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3905
        // Move message to vSendMsg queue.
3906
0
        pnode->vSendMsg.push_back(std::move(msg));
3907
3908
        // If there was nothing to send before, and there is now (predicted by the "more" value
3909
        // returned by the GetBytesToSend call above), attempt "optimistic write":
3910
        // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3911
        // doing a send, try sending from the calling thread if the queue was empty before.
3912
        // With a V1Transport, more will always be true here, because adding a message always
3913
        // results in sendable bytes there, but with V2Transport this is not the case (it may
3914
        // still be in the handshake).
3915
0
        if (queue_was_empty && more) {
3916
0
            std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3917
0
        }
3918
0
    }
3919
0
    if (nBytesSent) RecordBytesSent(nBytesSent);
3920
0
}
3921
3922
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3923
0
{
3924
0
    CNode* found = nullptr;
3925
0
    LOCK(m_nodes_mutex);
3926
0
    for (auto&& pnode : m_nodes) {
3927
0
        if(pnode->GetId() == id) {
3928
0
            found = pnode;
3929
0
            break;
3930
0
        }
3931
0
    }
3932
0
    return found != nullptr && NodeFullyConnected(found) && func(found);
3933
0
}
3934
3935
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3936
0
{
3937
0
    return CSipHasher(nSeed0, nSeed1).Write(id);
3938
0
}
3939
3940
uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3941
0
{
3942
0
    std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3943
3944
0
    return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
3945
0
}
3946
3947
void CConnman::PerformReconnections()
3948
0
{
3949
0
    AssertLockNotHeld(m_reconnections_mutex);
3950
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3951
0
    while (true) {
3952
        // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3953
0
        decltype(m_reconnections) todo;
3954
0
        {
3955
0
            LOCK(m_reconnections_mutex);
3956
0
            if (m_reconnections.empty()) break;
3957
0
            todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3958
0
        }
3959
3960
0
        auto& item = *todo.begin();
3961
0
        OpenNetworkConnection(item.addr_connect,
3962
                              // We only reconnect if the first attempt to connect succeeded at
3963
                              // connection time, but then failed after the CNode object was
3964
                              // created. Since we already know connecting is possible, do not
3965
                              // count failure to reconnect.
3966
0
                              /*fCountFailure=*/false,
3967
0
                              std::move(item.grant),
3968
0
                              item.destination.empty() ? nullptr : item.destination.c_str(),
3969
0
                              item.conn_type,
3970
0
                              item.use_v2transport);
3971
0
    }
3972
0
}
3973
3974
void CConnman::ASMapHealthCheck()
3975
0
{
3976
0
    const std::vector<CAddress> v4_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV4, /*filtered=*/false)};
3977
0
    const std::vector<CAddress> v6_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV6, /*filtered=*/false)};
3978
0
    std::vector<CNetAddr> clearnet_addrs;
3979
0
    clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3980
0
    std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3981
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3982
0
    std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3983
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3984
0
    m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3985
0
}
3986
3987
// Dump binary message to file, with timestamp.
3988
static void CaptureMessageToFile(const CAddress& addr,
3989
                                 const std::string& msg_type,
3990
                                 std::span<const unsigned char> data,
3991
                                 bool is_incoming)
3992
0
{
3993
    // Note: This function captures the message at the time of processing,
3994
    // not at socket receive/send time.
3995
    // This ensures that the messages are always in order from an application
3996
    // layer (processing) perspective.
3997
0
    auto now = GetTime<std::chrono::microseconds>();
3998
3999
    // Windows folder names cannot include a colon
4000
0
    std::string clean_addr = addr.ToStringAddrPort();
4001
0
    std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4002
4003
0
    fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
4004
0
    fs::create_directories(base_path);
4005
4006
0
    fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4007
0
    AutoFile f{fsbridge::fopen(path, "ab")};
4008
4009
0
    ser_writedata64(f, now.count());
4010
0
    f << std::span{msg_type};
4011
0
    for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4012
0
        f << uint8_t{'\0'};
4013
0
    }
4014
0
    uint32_t size = data.size();
4015
0
    ser_writedata32(f, size);
4016
0
    f << data;
4017
4018
0
    if (f.fclose() != 0) {
4019
0
        throw std::ios_base::failure(
4020
0
            strprintf("Error closing %s after write, file contents are likely incomplete", fs::PathToString(path)));
4021
0
    }
4022
0
}
4023
4024
std::function<void(const CAddress& addr,
4025
                   const std::string& msg_type,
4026
                   std::span<const unsigned char> data,
4027
                   bool is_incoming)>
4028
    CaptureMessage = CaptureMessageToFile;