/root/bitcoin/src/secp256k1/src/group_impl.h
Line | Count | Source (jump to first uncovered line) |
1 | | /*********************************************************************** |
2 | | * Copyright (c) 2013, 2014 Pieter Wuille * |
3 | | * Distributed under the MIT software license, see the accompanying * |
4 | | * file COPYING or https://www.opensource.org/licenses/mit-license.php.* |
5 | | ***********************************************************************/ |
6 | | |
7 | | #ifndef SECP256K1_GROUP_IMPL_H |
8 | | #define SECP256K1_GROUP_IMPL_H |
9 | | |
10 | | #include <string.h> |
11 | | |
12 | | #include "field.h" |
13 | | #include "group.h" |
14 | | #include "util.h" |
15 | | |
16 | | /* Begin of section generated by sage/gen_exhaustive_groups.sage. */ |
17 | | #define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\ |
18 | | 0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\ |
19 | | 0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\ |
20 | | 0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\ |
21 | | 0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\ |
22 | | ) |
23 | | #define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\ |
24 | | 0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\ |
25 | | 0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\ |
26 | | 0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\ |
27 | | 0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\ |
28 | | ) |
29 | | #define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\ |
30 | | 0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\ |
31 | | 0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\ |
32 | | 0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\ |
33 | | 0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\ |
34 | | ) |
35 | | /** Generator for secp256k1, value 'g' defined in |
36 | | * "Standards for Efficient Cryptography" (SEC2) 2.7.1. |
37 | | */ |
38 | | #define SECP256K1_G SECP256K1_GE_CONST(\ |
39 | | 0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\ |
40 | | 0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\ |
41 | | 0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\ |
42 | | 0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\ |
43 | | ) |
44 | | /* These exhaustive group test orders and generators are chosen such that: |
45 | | * - The field size is equal to that of secp256k1, so field code is the same. |
46 | | * - The curve equation is of the form y^2=x^3+B for some small constant B. |
47 | | * - The subgroup has a generator 2*P, where P.x is as small as possible. |
48 | | * - The subgroup has size less than 1000 to permit exhaustive testing. |
49 | | * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y). |
50 | | */ |
51 | | #if defined(EXHAUSTIVE_TEST_ORDER) |
52 | | # if EXHAUSTIVE_TEST_ORDER == 7 |
53 | | |
54 | | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_7; |
55 | | #define SECP256K1_B 6 |
56 | | |
57 | | # elif EXHAUSTIVE_TEST_ORDER == 13 |
58 | | |
59 | | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_13; |
60 | | #define SECP256K1_B 2 |
61 | | |
62 | | # elif EXHAUSTIVE_TEST_ORDER == 199 |
63 | | |
64 | | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_199; |
65 | | #define SECP256K1_B 4 |
66 | | |
67 | | # else |
68 | | # error No known generator for the specified exhaustive test group order. |
69 | | # endif |
70 | | #else |
71 | | |
72 | | static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G; |
73 | 0 | #define SECP256K1_B 7 |
74 | | |
75 | | #endif |
76 | | /* End of section generated by sage/gen_exhaustive_groups.sage. */ |
77 | | |
78 | 0 | static void secp256k1_ge_verify(const secp256k1_ge *a) { |
79 | 0 | SECP256K1_FE_VERIFY(&a->x); |
80 | 0 | SECP256K1_FE_VERIFY(&a->y); |
81 | 0 | SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GE_X_MAGNITUDE_MAX); |
82 | 0 | SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GE_Y_MAGNITUDE_MAX); |
83 | 0 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); |
84 | 0 | (void)a; |
85 | 0 | } |
86 | | |
87 | 0 | static void secp256k1_gej_verify(const secp256k1_gej *a) { |
88 | 0 | SECP256K1_FE_VERIFY(&a->x); |
89 | 0 | SECP256K1_FE_VERIFY(&a->y); |
90 | 0 | SECP256K1_FE_VERIFY(&a->z); |
91 | 0 | SECP256K1_FE_VERIFY_MAGNITUDE(&a->x, SECP256K1_GEJ_X_MAGNITUDE_MAX); |
92 | 0 | SECP256K1_FE_VERIFY_MAGNITUDE(&a->y, SECP256K1_GEJ_Y_MAGNITUDE_MAX); |
93 | 0 | SECP256K1_FE_VERIFY_MAGNITUDE(&a->z, SECP256K1_GEJ_Z_MAGNITUDE_MAX); |
94 | 0 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); |
95 | 0 | (void)a; |
96 | 0 | } |
97 | | |
98 | | /* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */ |
99 | 0 | static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { |
100 | 0 | secp256k1_fe zi2; |
101 | 0 | secp256k1_fe zi3; |
102 | 0 | SECP256K1_GEJ_VERIFY(a); |
103 | 0 | SECP256K1_FE_VERIFY(zi); |
104 | 0 | VERIFY_CHECK(!a->infinity); |
105 | |
|
106 | 0 | secp256k1_fe_sqr(&zi2, zi); |
107 | 0 | secp256k1_fe_mul(&zi3, &zi2, zi); |
108 | 0 | secp256k1_fe_mul(&r->x, &a->x, &zi2); |
109 | 0 | secp256k1_fe_mul(&r->y, &a->y, &zi3); |
110 | 0 | r->infinity = a->infinity; |
111 | |
|
112 | 0 | SECP256K1_GE_VERIFY(r); |
113 | 0 | } |
114 | | |
115 | | /* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */ |
116 | 0 | static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) { |
117 | 0 | secp256k1_fe zi2; |
118 | 0 | secp256k1_fe zi3; |
119 | 0 | SECP256K1_GE_VERIFY(a); |
120 | 0 | SECP256K1_FE_VERIFY(zi); |
121 | 0 | VERIFY_CHECK(!a->infinity); |
122 | |
|
123 | 0 | secp256k1_fe_sqr(&zi2, zi); |
124 | 0 | secp256k1_fe_mul(&zi3, &zi2, zi); |
125 | 0 | secp256k1_fe_mul(&r->x, &a->x, &zi2); |
126 | 0 | secp256k1_fe_mul(&r->y, &a->y, &zi3); |
127 | 0 | r->infinity = a->infinity; |
128 | |
|
129 | 0 | SECP256K1_GE_VERIFY(r); |
130 | 0 | } |
131 | | |
132 | 0 | static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { |
133 | 0 | SECP256K1_FE_VERIFY(x); |
134 | 0 | SECP256K1_FE_VERIFY(y); |
135 | |
|
136 | 0 | r->infinity = 0; |
137 | 0 | r->x = *x; |
138 | 0 | r->y = *y; |
139 | |
|
140 | 0 | SECP256K1_GE_VERIFY(r); |
141 | 0 | } |
142 | | |
143 | 0 | static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { |
144 | 0 | SECP256K1_GE_VERIFY(a); |
145 | |
|
146 | 0 | return a->infinity; |
147 | 0 | } |
148 | | |
149 | 0 | static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { |
150 | 0 | SECP256K1_GE_VERIFY(a); |
151 | |
|
152 | 0 | *r = *a; |
153 | 0 | secp256k1_fe_normalize_weak(&r->y); |
154 | 0 | secp256k1_fe_negate(&r->y, &r->y, 1); |
155 | | |
156 | 0 | SECP256K1_GE_VERIFY(r); |
157 | 0 | } |
158 | | |
159 | 0 | static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { |
160 | 0 | secp256k1_fe z2, z3; |
161 | 0 | SECP256K1_GEJ_VERIFY(a); |
162 | |
|
163 | 0 | r->infinity = a->infinity; |
164 | 0 | secp256k1_fe_inv(&a->z, &a->z); |
165 | 0 | secp256k1_fe_sqr(&z2, &a->z); |
166 | 0 | secp256k1_fe_mul(&z3, &a->z, &z2); |
167 | 0 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
168 | 0 | secp256k1_fe_mul(&a->y, &a->y, &z3); |
169 | 0 | secp256k1_fe_set_int(&a->z, 1); |
170 | 0 | r->x = a->x; |
171 | 0 | r->y = a->y; |
172 | |
|
173 | 0 | SECP256K1_GEJ_VERIFY(a); |
174 | 0 | SECP256K1_GE_VERIFY(r); |
175 | 0 | } |
176 | | |
177 | 0 | static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { |
178 | 0 | secp256k1_fe z2, z3; |
179 | 0 | SECP256K1_GEJ_VERIFY(a); |
180 | |
|
181 | 0 | if (secp256k1_gej_is_infinity(a)) { |
182 | 0 | secp256k1_ge_set_infinity(r); |
183 | 0 | return; |
184 | 0 | } |
185 | 0 | r->infinity = 0; |
186 | 0 | secp256k1_fe_inv_var(&a->z, &a->z); |
187 | 0 | secp256k1_fe_sqr(&z2, &a->z); |
188 | 0 | secp256k1_fe_mul(&z3, &a->z, &z2); |
189 | 0 | secp256k1_fe_mul(&a->x, &a->x, &z2); |
190 | 0 | secp256k1_fe_mul(&a->y, &a->y, &z3); |
191 | 0 | secp256k1_fe_set_int(&a->z, 1); |
192 | 0 | secp256k1_ge_set_xy(r, &a->x, &a->y); |
193 | |
|
194 | 0 | SECP256K1_GEJ_VERIFY(a); |
195 | 0 | SECP256K1_GE_VERIFY(r); |
196 | 0 | } |
197 | | |
198 | 0 | static void secp256k1_ge_set_all_gej(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { |
199 | 0 | secp256k1_fe u; |
200 | 0 | size_t i; |
201 | 0 | #ifdef VERIFY |
202 | 0 | for (i = 0; i < len; i++) { |
203 | 0 | SECP256K1_GEJ_VERIFY(&a[i]); |
204 | 0 | VERIFY_CHECK(!secp256k1_gej_is_infinity(&a[i])); |
205 | 0 | } |
206 | 0 | #endif |
207 | 0 |
|
208 | 0 | if (len == 0) { |
209 | 0 | return; |
210 | 0 | } |
211 | 0 |
|
212 | 0 | /* Use destination's x coordinates as scratch space */ |
213 | 0 | r[0].x = a[0].z; |
214 | 0 | for (i = 1; i < len; i++) { |
215 | 0 | secp256k1_fe_mul(&r[i].x, &r[i - 1].x, &a[i].z); |
216 | 0 | } |
217 | 0 | secp256k1_fe_inv(&u, &r[len - 1].x); |
218 | 0 |
|
219 | 0 | for (i = len - 1; i > 0; i--) { |
220 | 0 | secp256k1_fe_mul(&r[i].x, &r[i - 1].x, &u); |
221 | 0 | secp256k1_fe_mul(&u, &u, &a[i].z); |
222 | 0 | } |
223 | 0 | r[0].x = u; |
224 | 0 |
|
225 | 0 | for (i = 0; i < len; i++) { |
226 | 0 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); |
227 | 0 | } |
228 | 0 |
|
229 | 0 | #ifdef VERIFY |
230 | 0 | for (i = 0; i < len; i++) { |
231 | 0 | SECP256K1_GE_VERIFY(&r[i]); |
232 | 0 | } |
233 | 0 | #endif |
234 | 0 | } |
235 | | |
236 | 0 | static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { |
237 | 0 | secp256k1_fe u; |
238 | 0 | size_t i; |
239 | 0 | size_t last_i = SIZE_MAX; |
240 | 0 | #ifdef VERIFY |
241 | 0 | for (i = 0; i < len; i++) { |
242 | 0 | SECP256K1_GEJ_VERIFY(&a[i]); |
243 | 0 | } |
244 | 0 | #endif |
245 | 0 |
|
246 | 0 | for (i = 0; i < len; i++) { |
247 | 0 | if (a[i].infinity) { |
248 | 0 | secp256k1_ge_set_infinity(&r[i]); |
249 | 0 | } else { |
250 | 0 | /* Use destination's x coordinates as scratch space */ |
251 | 0 | if (last_i == SIZE_MAX) { |
252 | 0 | r[i].x = a[i].z; |
253 | 0 | } else { |
254 | 0 | secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z); |
255 | 0 | } |
256 | 0 | last_i = i; |
257 | 0 | } |
258 | 0 | } |
259 | 0 | if (last_i == SIZE_MAX) { |
260 | 0 | return; |
261 | 0 | } |
262 | 0 | secp256k1_fe_inv_var(&u, &r[last_i].x); |
263 | 0 |
|
264 | 0 | i = last_i; |
265 | 0 | while (i > 0) { |
266 | 0 | i--; |
267 | 0 | if (!a[i].infinity) { |
268 | 0 | secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u); |
269 | 0 | secp256k1_fe_mul(&u, &u, &a[last_i].z); |
270 | 0 | last_i = i; |
271 | 0 | } |
272 | 0 | } |
273 | 0 | VERIFY_CHECK(!a[last_i].infinity); |
274 | 0 | r[last_i].x = u; |
275 | 0 |
|
276 | 0 | for (i = 0; i < len; i++) { |
277 | 0 | if (!a[i].infinity) { |
278 | 0 | secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); |
279 | 0 | } |
280 | 0 | } |
281 | 0 |
|
282 | 0 | #ifdef VERIFY |
283 | 0 | for (i = 0; i < len; i++) { |
284 | 0 | SECP256K1_GE_VERIFY(&r[i]); |
285 | 0 | } |
286 | 0 | #endif |
287 | 0 | } |
288 | | |
289 | 0 | static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) { |
290 | 0 | size_t i; |
291 | 0 | secp256k1_fe zs; |
292 | | #ifdef VERIFY |
293 | | for (i = 0; i < len; i++) { |
294 | | SECP256K1_GE_VERIFY(&a[i]); |
295 | | SECP256K1_FE_VERIFY(&zr[i]); |
296 | | } |
297 | | #endif |
298 | |
|
299 | 0 | if (len > 0) { |
300 | 0 | i = len - 1; |
301 | | /* Ensure all y values are in weak normal form for fast negation of points */ |
302 | 0 | secp256k1_fe_normalize_weak(&a[i].y); |
303 | 0 | zs = zr[i]; |
304 | | |
305 | | /* Work our way backwards, using the z-ratios to scale the x/y values. */ |
306 | 0 | while (i > 0) { |
307 | 0 | if (i != len - 1) { |
308 | 0 | secp256k1_fe_mul(&zs, &zs, &zr[i]); |
309 | 0 | } |
310 | 0 | i--; |
311 | 0 | secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs); |
312 | 0 | } |
313 | 0 | } |
314 | |
|
315 | | #ifdef VERIFY |
316 | | for (i = 0; i < len; i++) { |
317 | | SECP256K1_GE_VERIFY(&a[i]); |
318 | | } |
319 | | #endif |
320 | 0 | } |
321 | | |
322 | 0 | static void secp256k1_gej_set_infinity(secp256k1_gej *r) { |
323 | 0 | r->infinity = 1; |
324 | 0 | secp256k1_fe_set_int(&r->x, 0); |
325 | 0 | secp256k1_fe_set_int(&r->y, 0); |
326 | 0 | secp256k1_fe_set_int(&r->z, 0); |
327 | |
|
328 | 0 | SECP256K1_GEJ_VERIFY(r); |
329 | 0 | } |
330 | | |
331 | 0 | static void secp256k1_ge_set_infinity(secp256k1_ge *r) { |
332 | 0 | r->infinity = 1; |
333 | 0 | secp256k1_fe_set_int(&r->x, 0); |
334 | 0 | secp256k1_fe_set_int(&r->y, 0); |
335 | |
|
336 | 0 | SECP256K1_GE_VERIFY(r); |
337 | 0 | } |
338 | | |
339 | 0 | static void secp256k1_gej_clear(secp256k1_gej *r) { |
340 | 0 | secp256k1_memclear(r, sizeof(secp256k1_gej)); |
341 | 0 | } |
342 | | |
343 | 0 | static void secp256k1_ge_clear(secp256k1_ge *r) { |
344 | 0 | secp256k1_memclear(r, sizeof(secp256k1_ge)); |
345 | 0 | } |
346 | | |
347 | 0 | static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { |
348 | 0 | secp256k1_fe x2, x3; |
349 | 0 | int ret; |
350 | 0 | SECP256K1_FE_VERIFY(x); |
351 | |
|
352 | 0 | r->x = *x; |
353 | 0 | secp256k1_fe_sqr(&x2, x); |
354 | 0 | secp256k1_fe_mul(&x3, x, &x2); |
355 | 0 | r->infinity = 0; |
356 | 0 | secp256k1_fe_add_int(&x3, SECP256K1_B); |
357 | 0 | ret = secp256k1_fe_sqrt(&r->y, &x3); |
358 | 0 | secp256k1_fe_normalize_var(&r->y); |
359 | 0 | if (secp256k1_fe_is_odd(&r->y) != odd) { |
360 | 0 | secp256k1_fe_negate(&r->y, &r->y, 1); |
361 | 0 | } |
362 | | |
363 | 0 | SECP256K1_GE_VERIFY(r); |
364 | 0 | return ret; |
365 | 0 | } |
366 | | |
367 | 0 | static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { |
368 | 0 | SECP256K1_GE_VERIFY(a); |
369 | |
|
370 | 0 | r->infinity = a->infinity; |
371 | 0 | r->x = a->x; |
372 | 0 | r->y = a->y; |
373 | 0 | secp256k1_fe_set_int(&r->z, 1); |
374 | |
|
375 | 0 | SECP256K1_GEJ_VERIFY(r); |
376 | 0 | } |
377 | | |
378 | 0 | static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) { |
379 | 0 | secp256k1_gej tmp; |
380 | 0 | SECP256K1_GEJ_VERIFY(b); |
381 | 0 | SECP256K1_GEJ_VERIFY(a); |
382 | 0 |
|
383 | 0 | secp256k1_gej_neg(&tmp, a); |
384 | 0 | secp256k1_gej_add_var(&tmp, &tmp, b, NULL); |
385 | 0 | return secp256k1_gej_is_infinity(&tmp); |
386 | 0 | } |
387 | | |
388 | 0 | static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b) { |
389 | 0 | secp256k1_gej tmp; |
390 | 0 | SECP256K1_GEJ_VERIFY(a); |
391 | 0 | SECP256K1_GE_VERIFY(b); |
392 | 0 |
|
393 | 0 | secp256k1_gej_neg(&tmp, a); |
394 | 0 | secp256k1_gej_add_ge_var(&tmp, &tmp, b, NULL); |
395 | 0 | return secp256k1_gej_is_infinity(&tmp); |
396 | 0 | } |
397 | | |
398 | 0 | static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b) { |
399 | 0 | secp256k1_fe tmp; |
400 | 0 | SECP256K1_GE_VERIFY(a); |
401 | 0 | SECP256K1_GE_VERIFY(b); |
402 | 0 |
|
403 | 0 | if (a->infinity != b->infinity) return 0; |
404 | 0 | if (a->infinity) return 1; |
405 | 0 |
|
406 | 0 | tmp = a->x; |
407 | 0 | secp256k1_fe_normalize_weak(&tmp); |
408 | 0 | if (!secp256k1_fe_equal(&tmp, &b->x)) return 0; |
409 | 0 |
|
410 | 0 | tmp = a->y; |
411 | 0 | secp256k1_fe_normalize_weak(&tmp); |
412 | 0 | if (!secp256k1_fe_equal(&tmp, &b->y)) return 0; |
413 | 0 |
|
414 | 0 | return 1; |
415 | 0 | } |
416 | | |
417 | 0 | static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { |
418 | 0 | secp256k1_fe r; |
419 | 0 | SECP256K1_FE_VERIFY(x); |
420 | 0 | SECP256K1_GEJ_VERIFY(a); |
421 | 0 | VERIFY_CHECK(!a->infinity); |
422 | |
|
423 | 0 | secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); |
424 | 0 | return secp256k1_fe_equal(&r, &a->x); |
425 | 0 | } |
426 | | |
427 | 0 | static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { |
428 | 0 | SECP256K1_GEJ_VERIFY(a); |
429 | 0 |
|
430 | 0 | r->infinity = a->infinity; |
431 | 0 | r->x = a->x; |
432 | 0 | r->y = a->y; |
433 | 0 | r->z = a->z; |
434 | 0 | secp256k1_fe_normalize_weak(&r->y); |
435 | 0 | secp256k1_fe_negate(&r->y, &r->y, 1); |
436 | 0 |
|
437 | 0 | SECP256K1_GEJ_VERIFY(r); |
438 | 0 | } |
439 | | |
440 | 0 | static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { |
441 | 0 | SECP256K1_GEJ_VERIFY(a); |
442 | |
|
443 | 0 | return a->infinity; |
444 | 0 | } |
445 | | |
446 | 0 | static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { |
447 | 0 | secp256k1_fe y2, x3; |
448 | 0 | SECP256K1_GE_VERIFY(a); |
449 | |
|
450 | 0 | if (a->infinity) { |
451 | 0 | return 0; |
452 | 0 | } |
453 | | /* y^2 = x^3 + 7 */ |
454 | 0 | secp256k1_fe_sqr(&y2, &a->y); |
455 | 0 | secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); |
456 | 0 | secp256k1_fe_add_int(&x3, SECP256K1_B); |
457 | 0 | return secp256k1_fe_equal(&y2, &x3); |
458 | 0 | } |
459 | | |
460 | 0 | static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) { |
461 | | /* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */ |
462 | 0 | secp256k1_fe l, s, t; |
463 | 0 | SECP256K1_GEJ_VERIFY(a); |
464 | |
|
465 | 0 | r->infinity = a->infinity; |
466 | | |
467 | | /* Formula used: |
468 | | * L = (3/2) * X1^2 |
469 | | * S = Y1^2 |
470 | | * T = -X1*S |
471 | | * X3 = L^2 + 2*T |
472 | | * Y3 = -(L*(X3 + T) + S^2) |
473 | | * Z3 = Y1*Z1 |
474 | | */ |
475 | |
|
476 | 0 | secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */ |
477 | 0 | secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */ |
478 | 0 | secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */ |
479 | 0 | secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */ |
480 | 0 | secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */ |
481 | 0 | secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */ |
482 | 0 | secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */ |
483 | 0 | secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */ |
484 | 0 | secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */ |
485 | 0 | secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */ |
486 | 0 | secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */ |
487 | 0 | secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */ |
488 | 0 | secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */ |
489 | 0 | secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */ |
490 | 0 | secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */ |
491 | | |
492 | 0 | SECP256K1_GEJ_VERIFY(r); |
493 | 0 | } |
494 | | |
495 | 0 | static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { |
496 | 0 | SECP256K1_GEJ_VERIFY(a); |
497 | | |
498 | | /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, |
499 | | * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have |
500 | | * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. |
501 | | * |
502 | | * Having said this, if this function receives a point on a sextic twist, e.g. by |
503 | | * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, |
504 | | * since -6 does have a cube root mod p. For this point, this function will not set |
505 | | * the infinity flag even though the point doubles to infinity, and the result |
506 | | * point will be gibberish (z = 0 but infinity = 0). |
507 | | */ |
508 | 0 | if (a->infinity) { |
509 | 0 | secp256k1_gej_set_infinity(r); |
510 | 0 | if (rzr != NULL) { |
511 | 0 | secp256k1_fe_set_int(rzr, 1); |
512 | 0 | } |
513 | 0 | return; |
514 | 0 | } |
515 | | |
516 | 0 | if (rzr != NULL) { |
517 | 0 | *rzr = a->y; |
518 | 0 | secp256k1_fe_normalize_weak(rzr); |
519 | 0 | } |
520 | |
|
521 | 0 | secp256k1_gej_double(r, a); |
522 | |
|
523 | 0 | SECP256K1_GEJ_VERIFY(r); |
524 | 0 | } |
525 | | |
526 | 0 | static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { |
527 | 0 | /* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ |
528 | 0 | secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t; |
529 | 0 | SECP256K1_GEJ_VERIFY(a); |
530 | 0 | SECP256K1_GEJ_VERIFY(b); |
531 | 0 |
|
532 | 0 | if (a->infinity) { |
533 | 0 | VERIFY_CHECK(rzr == NULL); |
534 | 0 | *r = *b; |
535 | 0 | return; |
536 | 0 | } |
537 | 0 | if (b->infinity) { |
538 | 0 | if (rzr != NULL) { |
539 | 0 | secp256k1_fe_set_int(rzr, 1); |
540 | 0 | } |
541 | 0 | *r = *a; |
542 | 0 | return; |
543 | 0 | } |
544 | 0 |
|
545 | 0 | secp256k1_fe_sqr(&z22, &b->z); |
546 | 0 | secp256k1_fe_sqr(&z12, &a->z); |
547 | 0 | secp256k1_fe_mul(&u1, &a->x, &z22); |
548 | 0 | secp256k1_fe_mul(&u2, &b->x, &z12); |
549 | 0 | secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); |
550 | 0 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); |
551 | 0 | secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); |
552 | 0 | secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); |
553 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
554 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { |
555 | 0 | secp256k1_gej_double_var(r, a, rzr); |
556 | 0 | } else { |
557 | 0 | if (rzr != NULL) { |
558 | 0 | secp256k1_fe_set_int(rzr, 0); |
559 | 0 | } |
560 | 0 | secp256k1_gej_set_infinity(r); |
561 | 0 | } |
562 | 0 | return; |
563 | 0 | } |
564 | 0 |
|
565 | 0 | r->infinity = 0; |
566 | 0 | secp256k1_fe_mul(&t, &h, &b->z); |
567 | 0 | if (rzr != NULL) { |
568 | 0 | *rzr = t; |
569 | 0 | } |
570 | 0 | secp256k1_fe_mul(&r->z, &a->z, &t); |
571 | 0 |
|
572 | 0 | secp256k1_fe_sqr(&h2, &h); |
573 | 0 | secp256k1_fe_negate(&h2, &h2, 1); |
574 | 0 | secp256k1_fe_mul(&h3, &h2, &h); |
575 | 0 | secp256k1_fe_mul(&t, &u1, &h2); |
576 | 0 |
|
577 | 0 | secp256k1_fe_sqr(&r->x, &i); |
578 | 0 | secp256k1_fe_add(&r->x, &h3); |
579 | 0 | secp256k1_fe_add(&r->x, &t); |
580 | 0 | secp256k1_fe_add(&r->x, &t); |
581 | 0 |
|
582 | 0 | secp256k1_fe_add(&t, &r->x); |
583 | 0 | secp256k1_fe_mul(&r->y, &t, &i); |
584 | 0 | secp256k1_fe_mul(&h3, &h3, &s1); |
585 | 0 | secp256k1_fe_add(&r->y, &h3); |
586 | 0 |
|
587 | 0 | SECP256K1_GEJ_VERIFY(r); |
588 | 0 | } |
589 | | |
590 | 0 | static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { |
591 | | /* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ |
592 | 0 | secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t; |
593 | 0 | SECP256K1_GEJ_VERIFY(a); |
594 | 0 | SECP256K1_GE_VERIFY(b); |
595 | |
|
596 | 0 | if (a->infinity) { |
597 | 0 | VERIFY_CHECK(rzr == NULL); |
598 | 0 | secp256k1_gej_set_ge(r, b); |
599 | 0 | return; |
600 | 0 | } |
601 | 0 | if (b->infinity) { |
602 | 0 | if (rzr != NULL) { |
603 | 0 | secp256k1_fe_set_int(rzr, 1); |
604 | 0 | } |
605 | 0 | *r = *a; |
606 | 0 | return; |
607 | 0 | } |
608 | | |
609 | 0 | secp256k1_fe_sqr(&z12, &a->z); |
610 | 0 | u1 = a->x; |
611 | 0 | secp256k1_fe_mul(&u2, &b->x, &z12); |
612 | 0 | s1 = a->y; |
613 | 0 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); |
614 | 0 | secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2); |
615 | 0 | secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); |
616 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
617 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { |
618 | 0 | secp256k1_gej_double_var(r, a, rzr); |
619 | 0 | } else { |
620 | 0 | if (rzr != NULL) { |
621 | 0 | secp256k1_fe_set_int(rzr, 0); |
622 | 0 | } |
623 | 0 | secp256k1_gej_set_infinity(r); |
624 | 0 | } |
625 | 0 | return; |
626 | 0 | } |
627 | | |
628 | 0 | r->infinity = 0; |
629 | 0 | if (rzr != NULL) { |
630 | 0 | *rzr = h; |
631 | 0 | } |
632 | 0 | secp256k1_fe_mul(&r->z, &a->z, &h); |
633 | |
|
634 | 0 | secp256k1_fe_sqr(&h2, &h); |
635 | 0 | secp256k1_fe_negate(&h2, &h2, 1); |
636 | 0 | secp256k1_fe_mul(&h3, &h2, &h); |
637 | 0 | secp256k1_fe_mul(&t, &u1, &h2); |
638 | |
|
639 | 0 | secp256k1_fe_sqr(&r->x, &i); |
640 | 0 | secp256k1_fe_add(&r->x, &h3); |
641 | 0 | secp256k1_fe_add(&r->x, &t); |
642 | 0 | secp256k1_fe_add(&r->x, &t); |
643 | |
|
644 | 0 | secp256k1_fe_add(&t, &r->x); |
645 | 0 | secp256k1_fe_mul(&r->y, &t, &i); |
646 | 0 | secp256k1_fe_mul(&h3, &h3, &s1); |
647 | 0 | secp256k1_fe_add(&r->y, &h3); |
648 | |
|
649 | 0 | SECP256K1_GEJ_VERIFY(r); |
650 | 0 | if (rzr != NULL) SECP256K1_FE_VERIFY(rzr); |
651 | 0 | } |
652 | | |
653 | 0 | static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { |
654 | | /* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ |
655 | 0 | secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t; |
656 | 0 | SECP256K1_GEJ_VERIFY(a); |
657 | 0 | SECP256K1_GE_VERIFY(b); |
658 | 0 | SECP256K1_FE_VERIFY(bzinv); |
659 | |
|
660 | 0 | if (a->infinity) { |
661 | 0 | secp256k1_fe bzinv2, bzinv3; |
662 | 0 | r->infinity = b->infinity; |
663 | 0 | secp256k1_fe_sqr(&bzinv2, bzinv); |
664 | 0 | secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); |
665 | 0 | secp256k1_fe_mul(&r->x, &b->x, &bzinv2); |
666 | 0 | secp256k1_fe_mul(&r->y, &b->y, &bzinv3); |
667 | 0 | secp256k1_fe_set_int(&r->z, 1); |
668 | 0 | SECP256K1_GEJ_VERIFY(r); |
669 | 0 | return; |
670 | 0 | } |
671 | 0 | if (b->infinity) { |
672 | 0 | *r = *a; |
673 | 0 | return; |
674 | 0 | } |
675 | | |
676 | | /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to |
677 | | * secp256k1's isomorphism we can multiply the Z coordinates on both sides |
678 | | * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). |
679 | | * This means that (rx,ry,rz) can be calculated as |
680 | | * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. |
681 | | * The variable az below holds the modified Z coordinate for a, which is used |
682 | | * for the computation of rx and ry, but not for rz. |
683 | | */ |
684 | 0 | secp256k1_fe_mul(&az, &a->z, bzinv); |
685 | |
|
686 | 0 | secp256k1_fe_sqr(&z12, &az); |
687 | 0 | u1 = a->x; |
688 | 0 | secp256k1_fe_mul(&u2, &b->x, &z12); |
689 | 0 | s1 = a->y; |
690 | 0 | secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); |
691 | 0 | secp256k1_fe_negate(&h, &u1, SECP256K1_GEJ_X_MAGNITUDE_MAX); secp256k1_fe_add(&h, &u2); |
692 | 0 | secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); |
693 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&h)) { |
694 | 0 | if (secp256k1_fe_normalizes_to_zero_var(&i)) { |
695 | 0 | secp256k1_gej_double_var(r, a, NULL); |
696 | 0 | } else { |
697 | 0 | secp256k1_gej_set_infinity(r); |
698 | 0 | } |
699 | 0 | return; |
700 | 0 | } |
701 | | |
702 | 0 | r->infinity = 0; |
703 | 0 | secp256k1_fe_mul(&r->z, &a->z, &h); |
704 | |
|
705 | 0 | secp256k1_fe_sqr(&h2, &h); |
706 | 0 | secp256k1_fe_negate(&h2, &h2, 1); |
707 | 0 | secp256k1_fe_mul(&h3, &h2, &h); |
708 | 0 | secp256k1_fe_mul(&t, &u1, &h2); |
709 | |
|
710 | 0 | secp256k1_fe_sqr(&r->x, &i); |
711 | 0 | secp256k1_fe_add(&r->x, &h3); |
712 | 0 | secp256k1_fe_add(&r->x, &t); |
713 | 0 | secp256k1_fe_add(&r->x, &t); |
714 | |
|
715 | 0 | secp256k1_fe_add(&t, &r->x); |
716 | 0 | secp256k1_fe_mul(&r->y, &t, &i); |
717 | 0 | secp256k1_fe_mul(&h3, &h3, &s1); |
718 | 0 | secp256k1_fe_add(&r->y, &h3); |
719 | |
|
720 | 0 | SECP256K1_GEJ_VERIFY(r); |
721 | 0 | } |
722 | | |
723 | | |
724 | 0 | static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { |
725 | | /* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */ |
726 | 0 | secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; |
727 | 0 | secp256k1_fe m_alt, rr_alt; |
728 | 0 | int degenerate; |
729 | 0 | SECP256K1_GEJ_VERIFY(a); |
730 | 0 | SECP256K1_GE_VERIFY(b); |
731 | 0 | VERIFY_CHECK(!b->infinity); |
732 | | |
733 | | /* In: |
734 | | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. |
735 | | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. |
736 | | * we find as solution for a unified addition/doubling formula: |
737 | | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. |
738 | | * x3 = lambda^2 - (x1 + x2) |
739 | | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). |
740 | | * |
741 | | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: |
742 | | * U1 = X1*Z2^2, U2 = X2*Z1^2 |
743 | | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 |
744 | | * Z = Z1*Z2 |
745 | | * T = U1+U2 |
746 | | * M = S1+S2 |
747 | | * Q = -T*M^2 |
748 | | * R = T^2-U1*U2 |
749 | | * X3 = R^2+Q |
750 | | * Y3 = -(R*(2*X3+Q)+M^4)/2 |
751 | | * Z3 = M*Z |
752 | | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) |
753 | | * |
754 | | * This formula has the benefit of being the same for both addition |
755 | | * of distinct points and doubling. However, it breaks down in the |
756 | | * case that either point is infinity, or that y1 = -y2. We handle |
757 | | * these cases in the following ways: |
758 | | * |
759 | | * - If b is infinity we simply bail by means of a VERIFY_CHECK. |
760 | | * |
761 | | * - If a is infinity, we detect this, and at the end of the |
762 | | * computation replace the result (which will be meaningless, |
763 | | * but we compute to be constant-time) with b.x : b.y : 1. |
764 | | * |
765 | | * - If a = -b, we have y1 = -y2, which is a degenerate case. |
766 | | * But here the answer is infinity, so we simply set the |
767 | | * infinity flag of the result, overriding the computed values |
768 | | * without even needing to cmov. |
769 | | * |
770 | | * - If y1 = -y2 but x1 != x2, which does occur thanks to certain |
771 | | * properties of our curve (specifically, 1 has nontrivial cube |
772 | | * roots in our field, and the curve equation has no x coefficient) |
773 | | * then the answer is not infinity but also not given by the above |
774 | | * equation. In this case, we cmov in place an alternate expression |
775 | | * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these |
776 | | * expressions for lambda are defined, they are equal, and can be |
777 | | * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) |
778 | | * then substitution of x^3 + 7 for y^2 (using the curve equation). |
779 | | * For all pairs of nonzero points (a, b) at least one is defined, |
780 | | * so this covers everything. |
781 | | */ |
782 | |
|
783 | 0 | secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ |
784 | 0 | u1 = a->x; /* u1 = U1 = X1*Z2^2 (GEJ_X_M) */ |
785 | 0 | secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ |
786 | 0 | s1 = a->y; /* s1 = S1 = Y1*Z2^3 (GEJ_Y_M) */ |
787 | 0 | secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ |
788 | 0 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ |
789 | 0 | t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (GEJ_X_M+1) */ |
790 | 0 | m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (GEJ_Y_M+1) */ |
791 | 0 | secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ |
792 | 0 | secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */ |
793 | 0 | secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */ |
794 | 0 | secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */ |
795 | | /* If lambda = R/M = R/0 we have a problem (except in the "trivial" |
796 | | * case that Z = z1z2 = 0, and this is special-cased later on). */ |
797 | 0 | degenerate = secp256k1_fe_normalizes_to_zero(&m); |
798 | | /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. |
799 | | * This means either x1 == beta*x2 or beta*x1 == x2, where beta is |
800 | | * a nontrivial cube root of one. In either case, an alternate |
801 | | * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), |
802 | | * so we set R/M equal to this. */ |
803 | 0 | rr_alt = s1; |
804 | 0 | secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (GEJ_Y_M*2) */ |
805 | 0 | secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (GEJ_X_M+2) */ |
806 | |
|
807 | 0 | secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (GEJ_Y_M*2) */ |
808 | 0 | secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (GEJ_X_M+2) */ |
809 | | /* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0. |
810 | | * From here on out Ralt and Malt represent the numerator |
811 | | * and denominator of lambda; R and M represent the explicit |
812 | | * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ |
813 | 0 | secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ |
814 | 0 | secp256k1_fe_negate(&q, &t, |
815 | 0 | SECP256K1_GEJ_X_MAGNITUDE_MAX + 1); /* q = -T (GEJ_X_M+2) */ |
816 | 0 | secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */ |
817 | | /* These two lines use the observation that either M == Malt or M == 0, |
818 | | * so M^3 * Malt is either Malt^4 (which is computed by squaring), or |
819 | | * zero (which is "computed" by cmov). So the cost is one squaring |
820 | | * versus two multiplications. */ |
821 | 0 | secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */ |
822 | 0 | secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (GEJ_Y_M+1) */ |
823 | 0 | secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ |
824 | 0 | secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */ |
825 | 0 | secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */ |
826 | 0 | r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */ |
827 | 0 | secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */ |
828 | 0 | secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */ |
829 | 0 | secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */ |
830 | 0 | secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (GEJ_Y_M+2) */ |
831 | 0 | secp256k1_fe_negate(&r->y, &t, |
832 | 0 | SECP256K1_GEJ_Y_MAGNITUDE_MAX + 2); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (GEJ_Y_M+3) */ |
833 | 0 | secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 ((GEJ_Y_M+3)/2 + 1) */ |
834 | | |
835 | | /* In case a->infinity == 1, replace r with (b->x, b->y, 1). */ |
836 | 0 | secp256k1_fe_cmov(&r->x, &b->x, a->infinity); |
837 | 0 | secp256k1_fe_cmov(&r->y, &b->y, a->infinity); |
838 | 0 | secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity); |
839 | | |
840 | | /* Set r->infinity if r->z is 0. |
841 | | * |
842 | | * If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false, |
843 | | * which is correct because the function assumes that b is not infinity. |
844 | | * |
845 | | * Now assume !a->infinity. This implies Z = Z1 != 0. |
846 | | * |
847 | | * Case y1 = -y2: |
848 | | * In this case we could have a = -b, namely if x1 = x2. |
849 | | * We have degenerate = true, r->z = (x1 - x2) * Z. |
850 | | * Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b). |
851 | | * |
852 | | * Case y1 != -y2: |
853 | | * In this case, we can't have a = -b. |
854 | | * We have degenerate = false, r->z = (y1 + y2) * Z. |
855 | | * Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */ |
856 | 0 | r->infinity = secp256k1_fe_normalizes_to_zero(&r->z); |
857 | |
|
858 | 0 | SECP256K1_GEJ_VERIFY(r); |
859 | 0 | } |
860 | | |
861 | 0 | static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { |
862 | | /* Operations: 4 mul, 1 sqr */ |
863 | 0 | secp256k1_fe zz; |
864 | 0 | SECP256K1_GEJ_VERIFY(r); |
865 | 0 | SECP256K1_FE_VERIFY(s); |
866 | 0 | VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s)); |
867 | |
|
868 | 0 | secp256k1_fe_sqr(&zz, s); |
869 | 0 | secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ |
870 | 0 | secp256k1_fe_mul(&r->y, &r->y, &zz); |
871 | 0 | secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ |
872 | 0 | secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ |
873 | |
|
874 | 0 | SECP256K1_GEJ_VERIFY(r); |
875 | 0 | } |
876 | | |
877 | 0 | static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { |
878 | 0 | secp256k1_fe x, y; |
879 | 0 | SECP256K1_GE_VERIFY(a); |
880 | 0 | VERIFY_CHECK(!a->infinity); |
881 | |
|
882 | 0 | x = a->x; |
883 | 0 | secp256k1_fe_normalize(&x); |
884 | 0 | y = a->y; |
885 | 0 | secp256k1_fe_normalize(&y); |
886 | 0 | secp256k1_fe_to_storage(&r->x, &x); |
887 | 0 | secp256k1_fe_to_storage(&r->y, &y); |
888 | 0 | } |
889 | | |
890 | 0 | static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { |
891 | 0 | secp256k1_fe_from_storage(&r->x, &a->x); |
892 | 0 | secp256k1_fe_from_storage(&r->y, &a->y); |
893 | 0 | r->infinity = 0; |
894 | |
|
895 | 0 | SECP256K1_GE_VERIFY(r); |
896 | 0 | } |
897 | | |
898 | 0 | static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) { |
899 | 0 | SECP256K1_GEJ_VERIFY(r); |
900 | 0 | SECP256K1_GEJ_VERIFY(a); |
901 | 0 |
|
902 | 0 | secp256k1_fe_cmov(&r->x, &a->x, flag); |
903 | 0 | secp256k1_fe_cmov(&r->y, &a->y, flag); |
904 | 0 | secp256k1_fe_cmov(&r->z, &a->z, flag); |
905 | 0 | r->infinity ^= (r->infinity ^ a->infinity) & flag; |
906 | 0 |
|
907 | 0 | SECP256K1_GEJ_VERIFY(r); |
908 | 0 | } |
909 | | |
910 | 0 | static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { |
911 | 0 | secp256k1_fe_storage_cmov(&r->x, &a->x, flag); |
912 | 0 | secp256k1_fe_storage_cmov(&r->y, &a->y, flag); |
913 | 0 | } |
914 | | |
915 | 0 | static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { |
916 | 0 | SECP256K1_GE_VERIFY(a); |
917 | |
|
918 | 0 | *r = *a; |
919 | 0 | secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta); |
920 | |
|
921 | 0 | SECP256K1_GE_VERIFY(r); |
922 | 0 | } |
923 | | |
924 | 0 | static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { |
925 | | #ifdef EXHAUSTIVE_TEST_ORDER |
926 | | secp256k1_gej out; |
927 | | int i; |
928 | | SECP256K1_GE_VERIFY(ge); |
929 | | |
930 | | /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */ |
931 | | secp256k1_gej_set_infinity(&out); |
932 | | for (i = 0; i < 32; ++i) { |
933 | | secp256k1_gej_double_var(&out, &out, NULL); |
934 | | if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) { |
935 | | secp256k1_gej_add_ge_var(&out, &out, ge, NULL); |
936 | | } |
937 | | } |
938 | | return secp256k1_gej_is_infinity(&out); |
939 | | #else |
940 | 0 | SECP256K1_GE_VERIFY(ge); |
941 | |
|
942 | 0 | (void)ge; |
943 | | /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */ |
944 | 0 | return 1; |
945 | 0 | #endif |
946 | 0 | } |
947 | | |
948 | 0 | static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) { |
949 | 0 | secp256k1_fe c; |
950 | 0 | secp256k1_fe_sqr(&c, x); |
951 | 0 | secp256k1_fe_mul(&c, &c, x); |
952 | 0 | secp256k1_fe_add_int(&c, SECP256K1_B); |
953 | 0 | return secp256k1_fe_is_square_var(&c); |
954 | 0 | } |
955 | | |
956 | 0 | static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) { |
957 | | /* We want to determine whether (xn/xd) is on the curve. |
958 | | * |
959 | | * (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square). |
960 | | */ |
961 | 0 | secp256k1_fe r, t; |
962 | 0 | VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd)); |
963 | |
|
964 | 0 | secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */ |
965 | 0 | secp256k1_fe_sqr(&t, xn); /* t = xn^2 */ |
966 | 0 | secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */ |
967 | 0 | secp256k1_fe_sqr(&t, xd); /* t = xd^2 */ |
968 | 0 | secp256k1_fe_sqr(&t, &t); /* t = xd^4 */ |
969 | 0 | VERIFY_CHECK(SECP256K1_B <= 31); |
970 | 0 | secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */ |
971 | 0 | secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */ |
972 | 0 | return secp256k1_fe_is_square_var(&r); |
973 | 0 | } |
974 | | |
975 | 0 | static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a) { |
976 | 0 | secp256k1_ge_storage s; |
977 | | |
978 | | /* We require that the secp256k1_ge_storage type is exactly 64 bytes. |
979 | | * This is formally not guaranteed by the C standard, but should hold on any |
980 | | * sane compiler in the real world. */ |
981 | 0 | STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64); |
982 | 0 | VERIFY_CHECK(!secp256k1_ge_is_infinity(a)); |
983 | 0 | secp256k1_ge_to_storage(&s, a); |
984 | 0 | memcpy(buf, &s, 64); |
985 | 0 | } |
986 | | |
987 | 0 | static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf) { |
988 | 0 | secp256k1_ge_storage s; |
989 | |
|
990 | 0 | STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64); |
991 | 0 | memcpy(&s, buf, 64); |
992 | 0 | secp256k1_ge_from_storage(r, &s); |
993 | 0 | } |
994 | | |
995 | 0 | static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge) { |
996 | 0 | if (secp256k1_ge_is_infinity(ge)) { |
997 | 0 | memset(data, 0, 64); |
998 | 0 | } else { |
999 | 0 | secp256k1_ge_to_bytes(data, ge); |
1000 | 0 | } |
1001 | 0 | } |
1002 | | |
1003 | 0 | static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data) { |
1004 | 0 | static const unsigned char zeros[64] = { 0 }; |
1005 | 0 | if (secp256k1_memcmp_var(data, zeros, sizeof(zeros)) == 0) { |
1006 | 0 | secp256k1_ge_set_infinity(ge); |
1007 | 0 | } else { |
1008 | 0 | secp256k1_ge_from_bytes(ge, data); |
1009 | 0 | } |
1010 | 0 | } |
1011 | | |
1012 | | #endif /* SECP256K1_GROUP_IMPL_H */ |