/root/bitcoin/src/test/fuzz/key.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2020-2022 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <chainparams.h> |
6 | | #include <key.h> |
7 | | #include <key_io.h> |
8 | | #include <outputtype.h> |
9 | | #include <policy/policy.h> |
10 | | #include <pubkey.h> |
11 | | #include <rpc/util.h> |
12 | | #include <script/keyorigin.h> |
13 | | #include <script/script.h> |
14 | | #include <script/sign.h> |
15 | | #include <script/signingprovider.h> |
16 | | #include <script/solver.h> |
17 | | #include <streams.h> |
18 | | #include <test/fuzz/FuzzedDataProvider.h> |
19 | | #include <test/fuzz/fuzz.h> |
20 | | #include <test/fuzz/util.h> |
21 | | #include <test/util/random.h> |
22 | | #include <util/chaintype.h> |
23 | | #include <util/strencodings.h> |
24 | | |
25 | | #include <array> |
26 | | #include <cassert> |
27 | | #include <cstddef> |
28 | | #include <cstdint> |
29 | | #include <numeric> |
30 | | #include <optional> |
31 | | #include <string> |
32 | | #include <vector> |
33 | | |
34 | | void initialize_key() |
35 | 0 | { |
36 | 0 | static ECC_Context ecc_context{}; |
37 | 0 | SelectParams(ChainType::REGTEST); |
38 | 0 | } |
39 | | |
40 | | FUZZ_TARGET(key, .init = initialize_key) |
41 | 0 | { |
42 | 0 | SeedRandomStateForTest(SeedRand::ZEROS); |
43 | 0 | const CKey key = [&] { |
44 | 0 | CKey k; |
45 | 0 | k.Set(buffer.begin(), buffer.end(), true); |
46 | 0 | return k; |
47 | 0 | }(); |
48 | 0 | if (!key.IsValid()) { |
49 | 0 | return; |
50 | 0 | } |
51 | | |
52 | 0 | { |
53 | 0 | assert(key.begin() + key.size() == key.end()); |
54 | 0 | assert(key.IsCompressed()); |
55 | 0 | assert(key.size() == 32); |
56 | 0 | assert(DecodeSecret(EncodeSecret(key)) == key); |
57 | 0 | } |
58 | | |
59 | 0 | { |
60 | 0 | CKey invalid_key; |
61 | 0 | assert(!(invalid_key == key)); |
62 | 0 | assert(!invalid_key.IsCompressed()); |
63 | 0 | assert(!invalid_key.IsValid()); |
64 | 0 | assert(invalid_key.size() == 0); |
65 | 0 | } |
66 | | |
67 | 0 | { |
68 | 0 | CKey uncompressed_key; |
69 | 0 | uncompressed_key.Set(buffer.begin(), buffer.end(), false); |
70 | 0 | assert(!(uncompressed_key == key)); |
71 | 0 | assert(!uncompressed_key.IsCompressed()); |
72 | 0 | assert(key.size() == 32); |
73 | 0 | assert(uncompressed_key.begin() + uncompressed_key.size() == uncompressed_key.end()); |
74 | 0 | assert(uncompressed_key.IsValid()); |
75 | 0 | } |
76 | | |
77 | 0 | { |
78 | 0 | CKey copied_key; |
79 | 0 | copied_key.Set(key.begin(), key.end(), key.IsCompressed()); |
80 | 0 | assert(copied_key == key); |
81 | 0 | } |
82 | | |
83 | 0 | const uint256 random_uint256 = Hash(buffer); |
84 | |
|
85 | 0 | { |
86 | 0 | CKey child_key; |
87 | 0 | ChainCode child_chaincode; |
88 | 0 | const bool ok = key.Derive(child_key, child_chaincode, 0, random_uint256); |
89 | 0 | assert(ok); |
90 | 0 | assert(child_key.IsValid()); |
91 | 0 | assert(!(child_key == key)); |
92 | 0 | assert(child_chaincode != random_uint256); |
93 | 0 | } |
94 | | |
95 | 0 | const CPubKey pubkey = key.GetPubKey(); |
96 | |
|
97 | 0 | { |
98 | 0 | assert(pubkey.size() == 33); |
99 | 0 | assert(key.VerifyPubKey(pubkey)); |
100 | 0 | assert(pubkey.GetHash() != random_uint256); |
101 | 0 | assert(pubkey.begin() + pubkey.size() == pubkey.end()); |
102 | 0 | assert(pubkey.data() == pubkey.begin()); |
103 | 0 | assert(pubkey.IsCompressed()); |
104 | 0 | assert(pubkey.IsValid()); |
105 | 0 | assert(pubkey.IsFullyValid()); |
106 | 0 | assert(HexToPubKey(HexStr(pubkey)) == pubkey); |
107 | 0 | assert(GetAllDestinationsForKey(pubkey).size() == 3); |
108 | 0 | } |
109 | | |
110 | 0 | { |
111 | 0 | DataStream data_stream{}; |
112 | 0 | pubkey.Serialize(data_stream); |
113 | |
|
114 | 0 | CPubKey pubkey_deserialized; |
115 | 0 | pubkey_deserialized.Unserialize(data_stream); |
116 | 0 | assert(pubkey_deserialized == pubkey); |
117 | 0 | } |
118 | | |
119 | 0 | { |
120 | 0 | const CScript tx_pubkey_script = GetScriptForRawPubKey(pubkey); |
121 | 0 | assert(!tx_pubkey_script.IsPayToScriptHash()); |
122 | 0 | assert(!tx_pubkey_script.IsPayToWitnessScriptHash()); |
123 | 0 | assert(!tx_pubkey_script.IsPushOnly()); |
124 | 0 | assert(!tx_pubkey_script.IsUnspendable()); |
125 | 0 | assert(tx_pubkey_script.HasValidOps()); |
126 | 0 | assert(tx_pubkey_script.size() == 35); |
127 | | |
128 | 0 | const CScript tx_multisig_script = GetScriptForMultisig(1, {pubkey}); |
129 | 0 | assert(!tx_multisig_script.IsPayToScriptHash()); |
130 | 0 | assert(!tx_multisig_script.IsPayToWitnessScriptHash()); |
131 | 0 | assert(!tx_multisig_script.IsPushOnly()); |
132 | 0 | assert(!tx_multisig_script.IsUnspendable()); |
133 | 0 | assert(tx_multisig_script.HasValidOps()); |
134 | 0 | assert(tx_multisig_script.size() == 37); |
135 | | |
136 | 0 | FillableSigningProvider fillable_signing_provider; |
137 | 0 | assert(!IsSegWitOutput(fillable_signing_provider, tx_pubkey_script)); |
138 | 0 | assert(!IsSegWitOutput(fillable_signing_provider, tx_multisig_script)); |
139 | 0 | assert(fillable_signing_provider.GetKeys().size() == 0); |
140 | 0 | assert(!fillable_signing_provider.HaveKey(pubkey.GetID())); |
141 | | |
142 | 0 | const bool ok_add_key = fillable_signing_provider.AddKey(key); |
143 | 0 | assert(ok_add_key); |
144 | 0 | assert(fillable_signing_provider.HaveKey(pubkey.GetID())); |
145 | | |
146 | 0 | FillableSigningProvider fillable_signing_provider_pub; |
147 | 0 | assert(!fillable_signing_provider_pub.HaveKey(pubkey.GetID())); |
148 | | |
149 | 0 | const bool ok_add_key_pubkey = fillable_signing_provider_pub.AddKeyPubKey(key, pubkey); |
150 | 0 | assert(ok_add_key_pubkey); |
151 | 0 | assert(fillable_signing_provider_pub.HaveKey(pubkey.GetID())); |
152 | | |
153 | 0 | TxoutType which_type_tx_pubkey; |
154 | 0 | const bool is_standard_tx_pubkey = IsStandard(tx_pubkey_script, std::nullopt, which_type_tx_pubkey); |
155 | 0 | assert(is_standard_tx_pubkey); |
156 | 0 | assert(which_type_tx_pubkey == TxoutType::PUBKEY); |
157 | | |
158 | 0 | TxoutType which_type_tx_multisig; |
159 | 0 | const bool is_standard_tx_multisig = IsStandard(tx_multisig_script, std::nullopt, which_type_tx_multisig); |
160 | 0 | assert(is_standard_tx_multisig); |
161 | 0 | assert(which_type_tx_multisig == TxoutType::MULTISIG); |
162 | | |
163 | 0 | std::vector<std::vector<unsigned char>> v_solutions_ret_tx_pubkey; |
164 | 0 | const TxoutType outtype_tx_pubkey = Solver(tx_pubkey_script, v_solutions_ret_tx_pubkey); |
165 | 0 | assert(outtype_tx_pubkey == TxoutType::PUBKEY); |
166 | 0 | assert(v_solutions_ret_tx_pubkey.size() == 1); |
167 | 0 | assert(v_solutions_ret_tx_pubkey[0].size() == 33); |
168 | | |
169 | 0 | std::vector<std::vector<unsigned char>> v_solutions_ret_tx_multisig; |
170 | 0 | const TxoutType outtype_tx_multisig = Solver(tx_multisig_script, v_solutions_ret_tx_multisig); |
171 | 0 | assert(outtype_tx_multisig == TxoutType::MULTISIG); |
172 | 0 | assert(v_solutions_ret_tx_multisig.size() == 3); |
173 | 0 | assert(v_solutions_ret_tx_multisig[0].size() == 1); |
174 | 0 | assert(v_solutions_ret_tx_multisig[1].size() == 33); |
175 | 0 | assert(v_solutions_ret_tx_multisig[2].size() == 1); |
176 | | |
177 | 0 | OutputType output_type{}; |
178 | 0 | const CTxDestination tx_destination = GetDestinationForKey(pubkey, output_type); |
179 | 0 | assert(output_type == OutputType::LEGACY); |
180 | 0 | assert(IsValidDestination(tx_destination)); |
181 | 0 | assert(PKHash{pubkey} == *std::get_if<PKHash>(&tx_destination)); |
182 | | |
183 | 0 | const CScript script_for_destination = GetScriptForDestination(tx_destination); |
184 | 0 | assert(script_for_destination.size() == 25); |
185 | | |
186 | 0 | const std::string destination_address = EncodeDestination(tx_destination); |
187 | 0 | assert(DecodeDestination(destination_address) == tx_destination); |
188 | | |
189 | 0 | const CPubKey pubkey_from_address_string = AddrToPubKey(fillable_signing_provider, destination_address); |
190 | 0 | assert(pubkey_from_address_string == pubkey); |
191 | | |
192 | 0 | CKeyID key_id = pubkey.GetID(); |
193 | 0 | assert(!key_id.IsNull()); |
194 | 0 | assert(key_id == CKeyID{key_id}); |
195 | 0 | assert(key_id == GetKeyForDestination(fillable_signing_provider, tx_destination)); |
196 | | |
197 | 0 | CPubKey pubkey_out; |
198 | 0 | const bool ok_get_pubkey = fillable_signing_provider.GetPubKey(key_id, pubkey_out); |
199 | 0 | assert(ok_get_pubkey); |
200 | | |
201 | 0 | CKey key_out; |
202 | 0 | const bool ok_get_key = fillable_signing_provider.GetKey(key_id, key_out); |
203 | 0 | assert(ok_get_key); |
204 | 0 | assert(fillable_signing_provider.GetKeys().size() == 1); |
205 | 0 | assert(fillable_signing_provider.HaveKey(key_id)); |
206 | | |
207 | 0 | KeyOriginInfo key_origin_info; |
208 | 0 | const bool ok_get_key_origin = fillable_signing_provider.GetKeyOrigin(key_id, key_origin_info); |
209 | 0 | assert(!ok_get_key_origin); |
210 | 0 | } |
211 | | |
212 | 0 | { |
213 | 0 | const std::vector<unsigned char> vch_pubkey{pubkey.begin(), pubkey.end()}; |
214 | 0 | assert(CPubKey::ValidSize(vch_pubkey)); |
215 | 0 | assert(!CPubKey::ValidSize({pubkey.begin(), pubkey.begin() + pubkey.size() - 1})); |
216 | | |
217 | 0 | const CPubKey pubkey_ctor_1{vch_pubkey}; |
218 | 0 | assert(pubkey == pubkey_ctor_1); |
219 | | |
220 | 0 | const CPubKey pubkey_ctor_2{vch_pubkey.begin(), vch_pubkey.end()}; |
221 | 0 | assert(pubkey == pubkey_ctor_2); |
222 | | |
223 | 0 | CPubKey pubkey_set; |
224 | 0 | pubkey_set.Set(vch_pubkey.begin(), vch_pubkey.end()); |
225 | 0 | assert(pubkey == pubkey_set); |
226 | 0 | } |
227 | | |
228 | 0 | { |
229 | 0 | const CPubKey invalid_pubkey{}; |
230 | 0 | assert(!invalid_pubkey.IsValid()); |
231 | 0 | assert(!invalid_pubkey.IsFullyValid()); |
232 | 0 | assert(!(pubkey == invalid_pubkey)); |
233 | 0 | assert(pubkey != invalid_pubkey); |
234 | 0 | assert(pubkey < invalid_pubkey); |
235 | 0 | } |
236 | | |
237 | 0 | { |
238 | | // Cover CPubKey's operator[](unsigned int pos) |
239 | 0 | unsigned int sum = 0; |
240 | 0 | for (size_t i = 0; i < pubkey.size(); ++i) { |
241 | 0 | sum += pubkey[i]; |
242 | 0 | } |
243 | 0 | assert(std::accumulate(pubkey.begin(), pubkey.end(), 0U) == sum); |
244 | 0 | } |
245 | | |
246 | 0 | { |
247 | 0 | CPubKey decompressed_pubkey = pubkey; |
248 | 0 | assert(decompressed_pubkey.IsCompressed()); |
249 | | |
250 | 0 | const bool ok = decompressed_pubkey.Decompress(); |
251 | 0 | assert(ok); |
252 | 0 | assert(!decompressed_pubkey.IsCompressed()); |
253 | 0 | assert(decompressed_pubkey.size() == 65); |
254 | 0 | } |
255 | | |
256 | 0 | { |
257 | 0 | std::vector<unsigned char> vch_sig; |
258 | 0 | const bool ok = key.Sign(random_uint256, vch_sig, false); |
259 | 0 | assert(ok); |
260 | 0 | assert(pubkey.Verify(random_uint256, vch_sig)); |
261 | 0 | assert(CPubKey::CheckLowS(vch_sig)); |
262 | | |
263 | 0 | const std::vector<unsigned char> vch_invalid_sig{vch_sig.begin(), vch_sig.begin() + vch_sig.size() - 1}; |
264 | 0 | assert(!pubkey.Verify(random_uint256, vch_invalid_sig)); |
265 | 0 | assert(!CPubKey::CheckLowS(vch_invalid_sig)); |
266 | 0 | } |
267 | | |
268 | 0 | { |
269 | 0 | std::vector<unsigned char> vch_compact_sig; |
270 | 0 | const bool ok_sign_compact = key.SignCompact(random_uint256, vch_compact_sig); |
271 | 0 | assert(ok_sign_compact); |
272 | | |
273 | 0 | CPubKey recover_pubkey; |
274 | 0 | const bool ok_recover_compact = recover_pubkey.RecoverCompact(random_uint256, vch_compact_sig); |
275 | 0 | assert(ok_recover_compact); |
276 | 0 | assert(recover_pubkey == pubkey); |
277 | 0 | } |
278 | | |
279 | 0 | { |
280 | 0 | CPubKey child_pubkey; |
281 | 0 | ChainCode child_chaincode; |
282 | 0 | const bool ok = pubkey.Derive(child_pubkey, child_chaincode, 0, random_uint256); |
283 | 0 | assert(ok); |
284 | 0 | assert(child_pubkey != pubkey); |
285 | 0 | assert(child_pubkey.IsCompressed()); |
286 | 0 | assert(child_pubkey.IsFullyValid()); |
287 | 0 | assert(child_pubkey.IsValid()); |
288 | 0 | assert(child_pubkey.size() == 33); |
289 | 0 | assert(child_chaincode != random_uint256); |
290 | 0 | } |
291 | | |
292 | 0 | const CPrivKey priv_key = key.GetPrivKey(); |
293 | |
|
294 | 0 | { |
295 | 0 | for (const bool skip_check : {true, false}) { |
296 | 0 | CKey loaded_key; |
297 | 0 | const bool ok = loaded_key.Load(priv_key, pubkey, skip_check); |
298 | 0 | assert(ok); |
299 | 0 | assert(key == loaded_key); |
300 | 0 | } |
301 | 0 | } |
302 | 0 | } |
303 | | |
304 | | FUZZ_TARGET(ellswift_roundtrip, .init = initialize_key) |
305 | 0 | { |
306 | 0 | FuzzedDataProvider fdp{buffer.data(), buffer.size()}; |
307 | |
|
308 | 0 | CKey key = ConsumePrivateKey(fdp, /*compressed=*/true); |
309 | 0 | if (!key.IsValid()) return; |
310 | | |
311 | 0 | auto ent32 = fdp.ConsumeBytes<std::byte>(32); |
312 | 0 | ent32.resize(32); |
313 | |
|
314 | 0 | auto encoded_ellswift = key.EllSwiftCreate(ent32); |
315 | 0 | auto decoded_pubkey = encoded_ellswift.Decode(); |
316 | |
|
317 | 0 | uint256 hash{ConsumeUInt256(fdp)}; |
318 | 0 | std::vector<unsigned char> sig; |
319 | 0 | key.Sign(hash, sig); |
320 | 0 | assert(decoded_pubkey.Verify(hash, sig)); |
321 | 0 | } |
322 | | |
323 | | FUZZ_TARGET(bip324_ecdh, .init = initialize_key) |
324 | 0 | { |
325 | 0 | FuzzedDataProvider fdp{buffer.data(), buffer.size()}; |
326 | | |
327 | | // We generate private key, k1. |
328 | 0 | CKey k1 = ConsumePrivateKey(fdp, /*compressed=*/true); |
329 | 0 | if (!k1.IsValid()) return; |
330 | | |
331 | | // They generate private key, k2. |
332 | 0 | CKey k2 = ConsumePrivateKey(fdp, /*compressed=*/true); |
333 | 0 | if (!k2.IsValid()) return; |
334 | | |
335 | | // We construct an ellswift encoding for our key, k1_ellswift. |
336 | 0 | auto ent32_1 = fdp.ConsumeBytes<std::byte>(32); |
337 | 0 | ent32_1.resize(32); |
338 | 0 | auto k1_ellswift = k1.EllSwiftCreate(ent32_1); |
339 | | |
340 | | // They construct an ellswift encoding for their key, k2_ellswift. |
341 | 0 | auto ent32_2 = fdp.ConsumeBytes<std::byte>(32); |
342 | 0 | ent32_2.resize(32); |
343 | 0 | auto k2_ellswift = k2.EllSwiftCreate(ent32_2); |
344 | | |
345 | | // They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad. |
346 | 0 | auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32); |
347 | 0 | ent32_2_bad.resize(32); |
348 | 0 | auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad); |
349 | 0 | assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift)); |
350 | | |
351 | | // Determine who is who. |
352 | 0 | bool initiating = fdp.ConsumeBool(); |
353 | | |
354 | | // We compute our shared secret using our key and their public key. |
355 | 0 | auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating); |
356 | | // They compute their shared secret using their key and our public key. |
357 | 0 | auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating); |
358 | | // Those must match, as everyone is behaving correctly. |
359 | 0 | assert(ecdh_secret_1 == ecdh_secret_2); |
360 | | |
361 | 0 | if (k1_ellswift != k2_ellswift) { |
362 | | // Unless the two keys are exactly identical, acting as the wrong party breaks things. |
363 | 0 | auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating); |
364 | 0 | assert(ecdh_secret_bad != ecdh_secret_1); |
365 | 0 | } |
366 | | |
367 | 0 | if (k2_ellswift_bad != k2_ellswift) { |
368 | | // Unless both encodings created by them are identical, using the second one breaks things. |
369 | 0 | auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating); |
370 | 0 | assert(ecdh_secret_bad != ecdh_secret_1); |
371 | 0 | } |
372 | 0 | } |