/root/bitcoin/src/netgroup.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2021-2022 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <netgroup.h> |
6 | | |
7 | | #include <hash.h> |
8 | | #include <logging.h> |
9 | | #include <util/asmap.h> |
10 | | |
11 | | uint256 NetGroupManager::GetAsmapChecksum() const |
12 | 0 | { |
13 | 0 | if (!m_asmap.size()) return {}; |
14 | | |
15 | 0 | return (HashWriter{} << m_asmap).GetHash(); |
16 | 0 | } |
17 | | |
18 | | std::vector<unsigned char> NetGroupManager::GetGroup(const CNetAddr& address) const |
19 | 0 | { |
20 | 0 | std::vector<unsigned char> vchRet; |
21 | | // If non-empty asmap is supplied and the address is IPv4/IPv6, |
22 | | // return ASN to be used for bucketing. |
23 | 0 | uint32_t asn = GetMappedAS(address); |
24 | 0 | if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR). |
25 | 0 | vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket |
26 | 0 | for (int i = 0; i < 4; i++) { |
27 | 0 | vchRet.push_back((asn >> (8 * i)) & 0xFF); |
28 | 0 | } |
29 | 0 | return vchRet; |
30 | 0 | } |
31 | | |
32 | 0 | vchRet.push_back(address.GetNetClass()); |
33 | 0 | int nStartByte{0}; |
34 | 0 | int nBits{0}; |
35 | |
|
36 | 0 | if (address.IsLocal()) { |
37 | | // all local addresses belong to the same group |
38 | 0 | } else if (address.IsInternal()) { |
39 | | // All internal-usage addresses get their own group. |
40 | | // Skip over the INTERNAL_IN_IPV6_PREFIX returned by CAddress::GetAddrBytes(). |
41 | 0 | nStartByte = INTERNAL_IN_IPV6_PREFIX.size(); |
42 | 0 | nBits = ADDR_INTERNAL_SIZE * 8; |
43 | 0 | } else if (!address.IsRoutable()) { |
44 | | // all other unroutable addresses belong to the same group |
45 | 0 | } else if (address.HasLinkedIPv4()) { |
46 | | // IPv4 addresses (and mapped IPv4 addresses) use /16 groups |
47 | 0 | uint32_t ipv4 = address.GetLinkedIPv4(); |
48 | 0 | vchRet.push_back((ipv4 >> 24) & 0xFF); |
49 | 0 | vchRet.push_back((ipv4 >> 16) & 0xFF); |
50 | 0 | return vchRet; |
51 | 0 | } else if (address.IsTor() || address.IsI2P()) { |
52 | 0 | nBits = 4; |
53 | 0 | } else if (address.IsCJDNS()) { |
54 | | // Treat in the same way as Tor and I2P because the address in all of |
55 | | // them is "random" bytes (derived from a public key). However in CJDNS |
56 | | // the first byte is a constant (see CJDNS_PREFIX), so the random bytes |
57 | | // come after it. Thus skip the constant 8 bits at the start. |
58 | 0 | nBits = 12; |
59 | 0 | } else if (address.IsHeNet()) { |
60 | | // for he.net, use /36 groups |
61 | 0 | nBits = 36; |
62 | 0 | } else { |
63 | | // for the rest of the IPv6 network, use /32 groups |
64 | 0 | nBits = 32; |
65 | 0 | } |
66 | | |
67 | | // Push our address onto vchRet. |
68 | 0 | auto addr_bytes = address.GetAddrBytes(); |
69 | 0 | const size_t num_bytes = nBits / 8; |
70 | 0 | vchRet.insert(vchRet.end(), addr_bytes.begin() + nStartByte, addr_bytes.begin() + nStartByte + num_bytes); |
71 | 0 | nBits %= 8; |
72 | | // ...for the last byte, push nBits and for the rest of the byte push 1's |
73 | 0 | if (nBits > 0) { |
74 | 0 | assert(num_bytes < addr_bytes.size()); |
75 | 0 | vchRet.push_back(addr_bytes[num_bytes + nStartByte] | ((1 << (8 - nBits)) - 1)); |
76 | 0 | } |
77 | | |
78 | 0 | return vchRet; |
79 | 0 | } |
80 | | |
81 | | uint32_t NetGroupManager::GetMappedAS(const CNetAddr& address) const |
82 | 0 | { |
83 | 0 | uint32_t net_class = address.GetNetClass(); |
84 | 0 | if (m_asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) { |
85 | 0 | return 0; // Indicates not found, safe because AS0 is reserved per RFC7607. |
86 | 0 | } |
87 | 0 | std::vector<bool> ip_bits(128); |
88 | 0 | if (address.HasLinkedIPv4()) { |
89 | | // For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits) |
90 | 0 | for (int8_t byte_i = 0; byte_i < 12; ++byte_i) { |
91 | 0 | for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { |
92 | 0 | ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1; |
93 | 0 | } |
94 | 0 | } |
95 | 0 | uint32_t ipv4 = address.GetLinkedIPv4(); |
96 | 0 | for (int i = 0; i < 32; ++i) { |
97 | 0 | ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1; |
98 | 0 | } |
99 | 0 | } else { |
100 | | // Use all 128 bits of the IPv6 address otherwise |
101 | 0 | assert(address.IsIPv6()); |
102 | 0 | auto addr_bytes = address.GetAddrBytes(); |
103 | 0 | for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { |
104 | 0 | uint8_t cur_byte = addr_bytes[byte_i]; |
105 | 0 | for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { |
106 | 0 | ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; |
107 | 0 | } |
108 | 0 | } |
109 | 0 | } |
110 | 0 | uint32_t mapped_as = Interpret(m_asmap, ip_bits); |
111 | 0 | return mapped_as; |
112 | 0 | } |
113 | | |
114 | 0 | void NetGroupManager::ASMapHealthCheck(const std::vector<CNetAddr>& clearnet_addrs) const { |
115 | 0 | std::set<uint32_t> clearnet_asns{}; |
116 | 0 | int unmapped_count{0}; |
117 | |
|
118 | 0 | for (const auto& addr : clearnet_addrs) { |
119 | 0 | uint32_t asn = GetMappedAS(addr); |
120 | 0 | if (asn == 0) { |
121 | 0 | ++unmapped_count; |
122 | 0 | continue; |
123 | 0 | } |
124 | 0 | clearnet_asns.insert(asn); |
125 | 0 | } |
126 | |
|
127 | 0 | LogPrintf("ASMap Health Check: %i clearnet peers are mapped to %i ASNs with %i peers being unmapped\n", clearnet_addrs.size(), clearnet_asns.size(), unmapped_count); |
128 | 0 | } |
129 | | |
130 | 0 | bool NetGroupManager::UsingASMap() const { |
131 | 0 | return m_asmap.size() > 0; |
132 | 0 | } |