Coverage Report

Created: 2025-02-21 14:37

/root/bitcoin/src/secp256k1/src/ecmult_impl.h
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick  *
3
 * Distributed under the MIT software license, see the accompanying           *
4
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.       *
5
 ******************************************************************************/
6
7
#ifndef SECP256K1_ECMULT_IMPL_H
8
#define SECP256K1_ECMULT_IMPL_H
9
10
#include <string.h>
11
#include <stdint.h>
12
13
#include "util.h"
14
#include "group.h"
15
#include "scalar.h"
16
#include "ecmult.h"
17
#include "precomputed_ecmult.h"
18
19
#if defined(EXHAUSTIVE_TEST_ORDER)
20
/* We need to lower these values for exhaustive tests because
21
 * the tables cannot have infinities in them (this breaks the
22
 * affine-isomorphism stuff which tracks z-ratios) */
23
#  if EXHAUSTIVE_TEST_ORDER > 128
24
#    define WINDOW_A 5
25
#  elif EXHAUSTIVE_TEST_ORDER > 8
26
#    define WINDOW_A 4
27
#  else
28
#    define WINDOW_A 2
29
#  endif
30
#else
31
/* optimal for 128-bit and 256-bit exponents. */
32
0
#  define WINDOW_A 5
33
/** Larger values for ECMULT_WINDOW_SIZE result in possibly better
34
 *  performance at the cost of an exponentially larger precomputed
35
 *  table. The exact table size is
36
 *      (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage)  bytes,
37
 *  where sizeof(secp256k1_ge_storage) is typically 64 bytes but can
38
 *  be larger due to platform-specific padding and alignment.
39
 *  Two tables of this size are used (due to the endomorphism
40
 *  optimization).
41
 */
42
#endif
43
44
#define WNAF_BITS 128
45
#define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w)
46
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
47
48
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
49
#define PIPPENGER_SCRATCH_OBJECTS 6
50
#define STRAUSS_SCRATCH_OBJECTS 5
51
52
#define PIPPENGER_MAX_BUCKET_WINDOW 12
53
54
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
55
#define ECMULT_PIPPENGER_THRESHOLD 88
56
57
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
58
59
/** Fill a table 'pre_a' with precomputed odd multiples of a.
60
 *  pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements.
61
 *  zr needs space for n field elements.
62
 *
63
 *  Although pre_a is an array of _ge rather than _gej, it actually represents elements
64
 *  in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates
65
 *  can be recovered using z and zr. Using the notation z(b) to represent the omitted
66
 *  z coordinate of b:
67
 *  - z(pre_a[n-1]) = 'z'
68
 *  - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0
69
 *
70
 *  Lastly the zr[0] value, which isn't used above, is set so that:
71
 *  - a.z = z(pre_a[0]) / zr[0]
72
 */
73
0
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) {
74
0
    secp256k1_gej d, ai;
75
0
    secp256k1_ge d_ge;
76
0
    int i;
77
78
0
    VERIFY_CHECK(!a->infinity);
79
80
0
    secp256k1_gej_double_var(&d, a, NULL);
81
82
    /*
83
     * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
84
     * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
85
     * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
86
     *
87
     *     phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
88
     *   d_ge := phi(d) = (d.x, d.y, 1)
89
     *     ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
90
     *
91
     * The group addition functions work correctly on these isomorphic curves.
92
     * In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
93
     * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
94
     */
95
0
    secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
96
0
    secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
97
0
    secp256k1_gej_set_ge(&ai, &pre_a[0]);
98
0
    ai.z = a->z;
99
100
    /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
101
     * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
102
     */
103
0
    zr[0] = d.z;
104
105
0
    for (i = 1; i < n; i++) {
106
0
        secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
107
0
        secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
108
0
    }
109
110
    /* Multiply the last z-coordinate by C to undo the isomorphism.
111
     * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
112
     * undoing the isomorphism here undoes the isomorphism for all pre_a values.
113
     */
114
0
    secp256k1_fe_mul(z, &ai.z, &d.z);
115
0
}
116
117
0
SECP256K1_INLINE static void secp256k1_ecmult_table_verify(int n, int w) {
118
0
    (void)n;
119
0
    (void)w;
120
0
    VERIFY_CHECK(((n) & 1) == 1);
121
0
    VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
122
0
    VERIFY_CHECK((n) <=  ((1 << ((w)-1)) - 1));
123
0
}
124
125
0
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) {
126
0
    secp256k1_ecmult_table_verify(n,w);
127
0
    if (n > 0) {
128
0
        *r = pre[(n-1)/2];
129
0
    } else {
130
0
        *r = pre[(-n-1)/2];
131
0
        secp256k1_fe_negate(&(r->y), &(r->y), 1);
132
0
    }
133
0
}
134
135
0
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) {
136
0
    secp256k1_ecmult_table_verify(n,w);
137
0
    if (n > 0) {
138
0
        secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
139
0
    } else {
140
0
        secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
141
0
        secp256k1_fe_negate(&(r->y), &(r->y), 1);
142
0
    }
143
0
}
144
145
0
SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) {
146
0
    secp256k1_ecmult_table_verify(n,w);
147
0
    if (n > 0) {
148
0
        secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
149
0
    } else {
150
0
        secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
151
0
        secp256k1_fe_negate(&(r->y), &(r->y), 1);
152
0
    }
153
0
}
154
155
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
156
 *  with the following guarantees:
157
 *  - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
158
 *  - two non-zero entries in wnaf are separated by at least w-1 zeroes.
159
 *  - the number of set values in wnaf is returned. This number is at most 256, and at most one more
160
 *    than the number of bits in the (absolute value) of the input.
161
 */
162
0
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
163
0
    secp256k1_scalar s;
164
0
    int last_set_bit = -1;
165
0
    int bit = 0;
166
0
    int sign = 1;
167
0
    int carry = 0;
168
169
0
    VERIFY_CHECK(wnaf != NULL);
170
0
    VERIFY_CHECK(0 <= len && len <= 256);
171
0
    VERIFY_CHECK(a != NULL);
172
0
    VERIFY_CHECK(2 <= w && w <= 31);
173
174
0
    for (bit = 0; bit < len; bit++) {
175
0
        wnaf[bit] = 0;
176
0
    }
177
178
0
    s = *a;
179
0
    if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) {
180
0
        secp256k1_scalar_negate(&s, &s);
181
0
        sign = -1;
182
0
    }
183
184
0
    bit = 0;
185
0
    while (bit < len) {
186
0
        int now;
187
0
        int word;
188
0
        if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) {
189
0
            bit++;
190
0
            continue;
191
0
        }
192
193
0
        now = w;
194
0
        if (now > len - bit) {
195
0
            now = len - bit;
196
0
        }
197
198
0
        word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
199
200
0
        carry = (word >> (w-1)) & 1;
201
0
        word -= carry << w;
202
203
0
        wnaf[bit] = sign * word;
204
0
        last_set_bit = bit;
205
206
0
        bit += now;
207
0
    }
208
#ifdef VERIFY
209
    {
210
        int verify_bit = bit;
211
212
        VERIFY_CHECK(carry == 0);
213
214
        while (verify_bit < 256) {
215
            VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0);
216
            verify_bit++;
217
        }
218
    }
219
#endif
220
0
    return last_set_bit + 1;
221
0
}
222
223
struct secp256k1_strauss_point_state {
224
    int wnaf_na_1[129];
225
    int wnaf_na_lam[129];
226
    int bits_na_1;
227
    int bits_na_lam;
228
};
229
230
struct secp256k1_strauss_state {
231
    /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
232
    secp256k1_fe* aux;
233
    secp256k1_ge* pre_a;
234
    struct secp256k1_strauss_point_state* ps;
235
};
236
237
0
static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
238
0
    secp256k1_ge tmpa;
239
0
    secp256k1_fe Z;
240
    /* Split G factors. */
241
0
    secp256k1_scalar ng_1, ng_128;
242
0
    int wnaf_ng_1[129];
243
0
    int bits_ng_1 = 0;
244
0
    int wnaf_ng_128[129];
245
0
    int bits_ng_128 = 0;
246
0
    int i;
247
0
    int bits = 0;
248
0
    size_t np;
249
0
    size_t no = 0;
250
251
0
    secp256k1_fe_set_int(&Z, 1);
252
0
    for (np = 0; np < num; ++np) {
253
0
        secp256k1_gej tmp;
254
0
        secp256k1_scalar na_1, na_lam;
255
0
        if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
256
0
            continue;
257
0
        }
258
        /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
259
0
        secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
260
261
        /* build wnaf representation for na_1 and na_lam. */
262
0
        state->ps[no].bits_na_1   = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1,   129, &na_1,   WINDOW_A);
263
0
        state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
264
0
        VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
265
0
        VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
266
0
        if (state->ps[no].bits_na_1 > bits) {
267
0
            bits = state->ps[no].bits_na_1;
268
0
        }
269
0
        if (state->ps[no].bits_na_lam > bits) {
270
0
            bits = state->ps[no].bits_na_lam;
271
0
        }
272
273
        /* Calculate odd multiples of a.
274
         * All multiples are brought to the same Z 'denominator', which is stored
275
         * in Z. Due to secp256k1' isomorphism we can do all operations pretending
276
         * that the Z coordinate was 1, use affine addition formulae, and correct
277
         * the Z coordinate of the result once at the end.
278
         * The exception is the precomputed G table points, which are actually
279
         * affine. Compared to the base used for other points, they have a Z ratio
280
         * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
281
         * isomorphism to efficiently add with a known Z inverse.
282
         */
283
0
        tmp = a[np];
284
0
        if (no) {
285
0
            secp256k1_gej_rescale(&tmp, &Z);
286
0
        }
287
0
        secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
288
0
        if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
289
290
0
        ++no;
291
0
    }
292
293
    /* Bring them to the same Z denominator. */
294
0
    if (no) {
295
0
        secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux);
296
0
    }
297
298
0
    for (np = 0; np < no; ++np) {
299
0
        for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
300
0
            secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta);
301
0
        }
302
0
    }
303
304
0
    if (ng) {
305
        /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
306
0
        secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
307
308
        /* Build wnaf representation for ng_1 and ng_128 */
309
0
        bits_ng_1   = secp256k1_ecmult_wnaf(wnaf_ng_1,   129, &ng_1,   WINDOW_G);
310
0
        bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
311
0
        if (bits_ng_1 > bits) {
312
0
            bits = bits_ng_1;
313
0
        }
314
0
        if (bits_ng_128 > bits) {
315
0
            bits = bits_ng_128;
316
0
        }
317
0
    }
318
319
0
    secp256k1_gej_set_infinity(r);
320
321
0
    for (i = bits - 1; i >= 0; i--) {
322
0
        int n;
323
0
        secp256k1_gej_double_var(r, r, NULL);
324
0
        for (np = 0; np < no; ++np) {
325
0
            if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
326
0
                secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
327
0
                secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
328
0
            }
329
0
            if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
330
0
                secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
331
0
                secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
332
0
            }
333
0
        }
334
0
        if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
335
0
            secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G);
336
0
            secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
337
0
        }
338
0
        if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
339
0
            secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G);
340
0
            secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
341
0
        }
342
0
    }
343
344
0
    if (!r->infinity) {
345
0
        secp256k1_fe_mul(&r->z, &r->z, &Z);
346
0
    }
347
0
}
348
349
0
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
350
0
    secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)];
351
0
    secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
352
0
    struct secp256k1_strauss_point_state ps[1];
353
0
    struct secp256k1_strauss_state state;
354
355
0
    state.aux = aux;
356
0
    state.pre_a = pre_a;
357
0
    state.ps = ps;
358
0
    secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
359
0
}
360
361
0
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
362
0
    static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
363
0
    return n_points*point_size;
364
0
}
365
366
0
static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
367
0
    secp256k1_gej* points;
368
0
    secp256k1_scalar* scalars;
369
0
    struct secp256k1_strauss_state state;
370
0
    size_t i;
371
0
    const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
372
0
373
0
    secp256k1_gej_set_infinity(r);
374
0
    if (inp_g_sc == NULL && n_points == 0) {
375
0
        return 1;
376
0
    }
377
0
378
0
    /* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
379
0
     * allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
380
0
     * constant and strauss_scratch_size accordingly. */
381
0
    points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
382
0
    scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
383
0
    state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
384
0
    state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
385
0
    state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
386
0
387
0
    if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
388
0
        secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
389
0
        return 0;
390
0
    }
391
0
392
0
    for (i = 0; i < n_points; i++) {
393
0
        secp256k1_ge point;
394
0
        if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
395
0
            secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
396
0
            return 0;
397
0
        }
398
0
        secp256k1_gej_set_ge(&points[i], &point);
399
0
    }
400
0
    secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
401
0
    secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
402
0
    return 1;
403
0
}
404
405
/* Wrapper for secp256k1_ecmult_multi_func interface */
406
0
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
407
0
    return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
408
0
}
409
410
0
static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
411
0
    return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
412
0
}
413
414
/** Convert a number to WNAF notation.
415
 *  The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
416
 *  It has the following guarantees:
417
 *  - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
418
 *  - the number of words set is always WNAF_SIZE(w)
419
 *  - the returned skew is 0 or 1
420
 */
421
0
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
422
0
    int skew = 0;
423
0
    int pos;
424
0
    int max_pos;
425
0
    int last_w;
426
0
    const secp256k1_scalar *work = s;
427
0
428
0
    if (secp256k1_scalar_is_zero(s)) {
429
0
        for (pos = 0; pos < WNAF_SIZE(w); pos++) {
430
0
            wnaf[pos] = 0;
431
0
        }
432
0
        return 0;
433
0
    }
434
0
435
0
    if (secp256k1_scalar_is_even(s)) {
436
0
        skew = 1;
437
0
    }
438
0
439
0
    wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
440
0
    /* Compute last window size. Relevant when window size doesn't divide the
441
0
     * number of bits in the scalar */
442
0
    last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
443
0
444
0
    /* Store the position of the first nonzero word in max_pos to allow
445
0
     * skipping leading zeros when calculating the wnaf. */
446
0
    for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
447
0
        int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
448
0
        if(val != 0) {
449
0
            break;
450
0
        }
451
0
        wnaf[pos] = 0;
452
0
    }
453
0
    max_pos = pos;
454
0
    pos = 1;
455
0
456
0
    while (pos <= max_pos) {
457
0
        int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
458
0
        if ((val & 1) == 0) {
459
0
            wnaf[pos - 1] -= (1 << w);
460
0
            wnaf[pos] = (val + 1);
461
0
        } else {
462
0
            wnaf[pos] = val;
463
0
        }
464
0
        /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
465
0
         * is strictly negative or strictly positive respectively. Only change
466
0
         * coefficients at previous positions because above code assumes that
467
0
         * wnaf[pos - 1] is odd.
468
0
         */
469
0
        if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
470
0
            if (wnaf[pos - 1] == 1) {
471
0
                wnaf[pos - 2] += 1 << w;
472
0
            } else {
473
0
                wnaf[pos - 2] -= 1 << w;
474
0
            }
475
0
            wnaf[pos - 1] = 0;
476
0
        }
477
0
        ++pos;
478
0
    }
479
0
480
0
    return skew;
481
0
}
482
483
struct secp256k1_pippenger_point_state {
484
    int skew_na;
485
    size_t input_pos;
486
};
487
488
struct secp256k1_pippenger_state {
489
    int *wnaf_na;
490
    struct secp256k1_pippenger_point_state* ps;
491
};
492
493
/*
494
 * pippenger_wnaf computes the result of a multi-point multiplication as
495
 * follows: The scalars are brought into wnaf with n_wnaf elements each. Then
496
 * for every i < n_wnaf, first each point is added to a "bucket" corresponding
497
 * to the point's wnaf[i]. Second, the buckets are added together such that
498
 * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
499
 */
500
0
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
501
0
    size_t n_wnaf = WNAF_SIZE(bucket_window+1);
502
0
    size_t np;
503
0
    size_t no = 0;
504
0
    int i;
505
0
    int j;
506
0
507
0
    for (np = 0; np < num; ++np) {
508
0
        if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
509
0
            continue;
510
0
        }
511
0
        state->ps[no].input_pos = np;
512
0
        state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
513
0
        no++;
514
0
    }
515
0
    secp256k1_gej_set_infinity(r);
516
0
517
0
    if (no == 0) {
518
0
        return 1;
519
0
    }
520
0
521
0
    for (i = n_wnaf - 1; i >= 0; i--) {
522
0
        secp256k1_gej running_sum;
523
0
524
0
        for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
525
0
            secp256k1_gej_set_infinity(&buckets[j]);
526
0
        }
527
0
528
0
        for (np = 0; np < no; ++np) {
529
0
            int n = state->wnaf_na[np*n_wnaf + i];
530
0
            struct secp256k1_pippenger_point_state point_state = state->ps[np];
531
0
            secp256k1_ge tmp;
532
0
            int idx;
533
0
534
0
            if (i == 0) {
535
0
                /* correct for wnaf skew */
536
0
                int skew = point_state.skew_na;
537
0
                if (skew) {
538
0
                    secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
539
0
                    secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
540
0
                }
541
0
            }
542
0
            if (n > 0) {
543
0
                idx = (n - 1)/2;
544
0
                secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
545
0
            } else if (n < 0) {
546
0
                idx = -(n + 1)/2;
547
0
                secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
548
0
                secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
549
0
            }
550
0
        }
551
0
552
0
        for(j = 0; j < bucket_window; j++) {
553
0
            secp256k1_gej_double_var(r, r, NULL);
554
0
        }
555
0
556
0
        secp256k1_gej_set_infinity(&running_sum);
557
0
        /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
558
0
         *                   = bucket[0] +   bucket[1] +   bucket[2] +   bucket[3] + ...
559
0
         *                   +         2 *  (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
560
0
         * using an intermediate running sum:
561
0
         * running_sum = bucket[0] +   bucket[1] +   bucket[2] + ...
562
0
         *
563
0
         * The doubling is done implicitly by deferring the final window doubling (of 'r').
564
0
         */
565
0
        for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
566
0
            secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
567
0
            secp256k1_gej_add_var(r, r, &running_sum, NULL);
568
0
        }
569
0
570
0
        secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
571
0
        secp256k1_gej_double_var(r, r, NULL);
572
0
        secp256k1_gej_add_var(r, r, &running_sum, NULL);
573
0
    }
574
0
    return 1;
575
0
}
576
577
/**
578
 * Returns optimal bucket_window (number of bits of a scalar represented by a
579
 * set of buckets) for a given number of points.
580
 */
581
0
static int secp256k1_pippenger_bucket_window(size_t n) {
582
0
    if (n <= 1) {
583
0
        return 1;
584
0
    } else if (n <= 4) {
585
0
        return 2;
586
0
    } else if (n <= 20) {
587
0
        return 3;
588
0
    } else if (n <= 57) {
589
0
        return 4;
590
0
    } else if (n <= 136) {
591
0
        return 5;
592
0
    } else if (n <= 235) {
593
0
        return 6;
594
0
    } else if (n <= 1260) {
595
0
        return 7;
596
0
    } else if (n <= 4420) {
597
0
        return 9;
598
0
    } else if (n <= 7880) {
599
0
        return 10;
600
0
    } else if (n <= 16050) {
601
0
        return 11;
602
0
    } else {
603
0
        return PIPPENGER_MAX_BUCKET_WINDOW;
604
0
    }
605
0
}
606
607
/**
608
 * Returns the maximum optimal number of points for a bucket_window.
609
 */
610
0
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
611
0
    switch(bucket_window) {
612
0
        case 1: return 1;
613
0
        case 2: return 4;
614
0
        case 3: return 20;
615
0
        case 4: return 57;
616
0
        case 5: return 136;
617
0
        case 6: return 235;
618
0
        case 7: return 1260;
619
0
        case 8: return 1260;
620
0
        case 9: return 4420;
621
0
        case 10: return 7880;
622
0
        case 11: return 16050;
623
0
        case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
624
0
    }
625
0
    return 0;
626
0
}
627
628
629
0
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
630
0
    secp256k1_scalar tmp = *s1;
631
0
    secp256k1_scalar_split_lambda(s1, s2, &tmp);
632
0
    secp256k1_ge_mul_lambda(p2, p1);
633
0
634
0
    if (secp256k1_scalar_is_high(s1)) {
635
0
        secp256k1_scalar_negate(s1, s1);
636
0
        secp256k1_ge_neg(p1, p1);
637
0
    }
638
0
    if (secp256k1_scalar_is_high(s2)) {
639
0
        secp256k1_scalar_negate(s2, s2);
640
0
        secp256k1_ge_neg(p2, p2);
641
0
    }
642
0
}
643
644
/**
645
 * Returns the scratch size required for a given number of points (excluding
646
 * base point G) without considering alignment.
647
 */
648
0
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
649
0
    size_t entries = 2*n_points + 2;
650
0
    size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
651
0
    return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
652
0
}
653
654
0
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
655
0
    const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
656
0
    /* Use 2(n+1) with the endomorphism, when calculating batch
657
0
     * sizes. The reason for +1 is that we add the G scalar to the list of
658
0
     * other scalars. */
659
0
    size_t entries = 2*n_points + 2;
660
0
    secp256k1_ge *points;
661
0
    secp256k1_scalar *scalars;
662
0
    secp256k1_gej *buckets;
663
0
    struct secp256k1_pippenger_state *state_space;
664
0
    size_t idx = 0;
665
0
    size_t point_idx = 0;
666
0
    int bucket_window;
667
0
668
0
    secp256k1_gej_set_infinity(r);
669
0
    if (inp_g_sc == NULL && n_points == 0) {
670
0
        return 1;
671
0
    }
672
0
    bucket_window = secp256k1_pippenger_bucket_window(n_points);
673
0
674
0
    /* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
675
0
     * these allocations change, make sure to update the
676
0
     * PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
677
0
     * accordingly. */
678
0
    points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
679
0
    scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
680
0
    state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
681
0
    if (points == NULL || scalars == NULL || state_space == NULL) {
682
0
        secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
683
0
        return 0;
684
0
    }
685
0
    state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
686
0
    state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
687
0
    buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
688
0
    if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
689
0
        secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
690
0
        return 0;
691
0
    }
692
0
693
0
    if (inp_g_sc != NULL) {
694
0
        scalars[0] = *inp_g_sc;
695
0
        points[0] = secp256k1_ge_const_g;
696
0
        idx++;
697
0
        secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
698
0
        idx++;
699
0
    }
700
0
701
0
    while (point_idx < n_points) {
702
0
        if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
703
0
            secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
704
0
            return 0;
705
0
        }
706
0
        idx++;
707
0
        secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
708
0
        idx++;
709
0
        point_idx++;
710
0
    }
711
0
712
0
    secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
713
0
    secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
714
0
    return 1;
715
0
}
716
717
/* Wrapper for secp256k1_ecmult_multi_func interface */
718
0
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
719
0
    return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
720
0
}
721
722
/**
723
 * Returns the maximum number of points in addition to G that can be used with
724
 * a given scratch space. The function ensures that fewer points may also be
725
 * used.
726
 */
727
0
static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
728
0
    size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
729
0
    int bucket_window;
730
0
    size_t res = 0;
731
0
732
0
    for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
733
0
        size_t n_points;
734
0
        size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
735
0
        size_t space_for_points;
736
0
        size_t space_overhead;
737
0
        size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
738
0
739
0
        entry_size = 2*entry_size;
740
0
        space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
741
0
        if (space_overhead > max_alloc) {
742
0
            break;
743
0
        }
744
0
        space_for_points = max_alloc - space_overhead;
745
0
746
0
        n_points = space_for_points/entry_size;
747
0
        n_points = n_points > max_points ? max_points : n_points;
748
0
        if (n_points > res) {
749
0
            res = n_points;
750
0
        }
751
0
        if (n_points < max_points) {
752
0
            /* A larger bucket_window may support even more points. But if we
753
0
             * would choose that then the caller couldn't safely use any number
754
0
             * smaller than what this function returns */
755
0
            break;
756
0
        }
757
0
    }
758
0
    return res;
759
0
}
760
761
/* Computes ecmult_multi by simply multiplying and adding each point. Does not
762
 * require a scratch space */
763
0
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
764
0
    size_t point_idx;
765
0
    secp256k1_gej tmpj;
766
0
767
0
    secp256k1_gej_set_infinity(r);
768
0
    secp256k1_gej_set_infinity(&tmpj);
769
0
    /* r = inp_g_sc*G */
770
0
    secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
771
0
    for (point_idx = 0; point_idx < n_points; point_idx++) {
772
0
        secp256k1_ge point;
773
0
        secp256k1_gej pointj;
774
0
        secp256k1_scalar scalar;
775
0
        if (!cb(&scalar, &point, point_idx, cbdata)) {
776
0
            return 0;
777
0
        }
778
0
        /* r += scalar*point */
779
0
        secp256k1_gej_set_ge(&pointj, &point);
780
0
        secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
781
0
        secp256k1_gej_add_var(r, r, &tmpj, NULL);
782
0
    }
783
0
    return 1;
784
0
}
785
786
/* Compute the number of batches and the batch size given the maximum batch size and the
787
 * total number of points */
788
0
static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
789
0
    if (max_n_batch_points == 0) {
790
0
        return 0;
791
0
    }
792
0
    if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
793
0
        max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
794
0
    }
795
0
    if (n == 0) {
796
0
        *n_batches = 0;
797
0
        *n_batch_points = 0;
798
0
        return 1;
799
0
    }
800
0
    /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
801
0
    *n_batches = CEIL_DIV(n, max_n_batch_points);
802
0
    *n_batch_points = CEIL_DIV(n, *n_batches);
803
0
    return 1;
804
0
}
805
806
typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t);
807
0
static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
808
0
    size_t i;
809
0
810
0
    int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
811
0
    size_t n_batches;
812
0
    size_t n_batch_points;
813
0
814
0
    secp256k1_gej_set_infinity(r);
815
0
    if (inp_g_sc == NULL && n == 0) {
816
0
        return 1;
817
0
    } else if (n == 0) {
818
0
        secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
819
0
        return 1;
820
0
    }
821
0
    if (scratch == NULL) {
822
0
        return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
823
0
    }
824
0
825
0
    /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
826
0
     * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
827
0
     * As a first step check if there's enough space for Pippenger's algo (which requires less space
828
0
     * than Strauss' algo) and if not, use the simple algorithm. */
829
0
    if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
830
0
        return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
831
0
    }
832
0
    if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
833
0
        f = secp256k1_ecmult_pippenger_batch;
834
0
    } else {
835
0
        if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
836
0
            return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
837
0
        }
838
0
        f = secp256k1_ecmult_strauss_batch;
839
0
    }
840
0
    for(i = 0; i < n_batches; i++) {
841
0
        size_t nbp = n < n_batch_points ? n : n_batch_points;
842
0
        size_t offset = n_batch_points*i;
843
0
        secp256k1_gej tmp;
844
0
        if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
845
0
            return 0;
846
0
        }
847
0
        secp256k1_gej_add_var(r, r, &tmp, NULL);
848
0
        n -= nbp;
849
0
    }
850
0
    return 1;
851
0
}
852
853
#endif /* SECP256K1_ECMULT_IMPL_H */