/root/bitcoin/src/secp256k1/src/ecmult_impl.h
Line | Count | Source (jump to first uncovered line) |
1 | | /****************************************************************************** |
2 | | * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * |
3 | | * Distributed under the MIT software license, see the accompanying * |
4 | | * file COPYING or https://www.opensource.org/licenses/mit-license.php. * |
5 | | ******************************************************************************/ |
6 | | |
7 | | #ifndef SECP256K1_ECMULT_IMPL_H |
8 | | #define SECP256K1_ECMULT_IMPL_H |
9 | | |
10 | | #include <string.h> |
11 | | #include <stdint.h> |
12 | | |
13 | | #include "util.h" |
14 | | #include "group.h" |
15 | | #include "scalar.h" |
16 | | #include "ecmult.h" |
17 | | #include "precomputed_ecmult.h" |
18 | | |
19 | | #if defined(EXHAUSTIVE_TEST_ORDER) |
20 | | /* We need to lower these values for exhaustive tests because |
21 | | * the tables cannot have infinities in them (this breaks the |
22 | | * affine-isomorphism stuff which tracks z-ratios) */ |
23 | | # if EXHAUSTIVE_TEST_ORDER > 128 |
24 | | # define WINDOW_A 5 |
25 | | # elif EXHAUSTIVE_TEST_ORDER > 8 |
26 | | # define WINDOW_A 4 |
27 | | # else |
28 | | # define WINDOW_A 2 |
29 | | # endif |
30 | | #else |
31 | | /* optimal for 128-bit and 256-bit exponents. */ |
32 | 0 | # define WINDOW_A 5 |
33 | | /** Larger values for ECMULT_WINDOW_SIZE result in possibly better |
34 | | * performance at the cost of an exponentially larger precomputed |
35 | | * table. The exact table size is |
36 | | * (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage) bytes, |
37 | | * where sizeof(secp256k1_ge_storage) is typically 64 bytes but can |
38 | | * be larger due to platform-specific padding and alignment. |
39 | | * Two tables of this size are used (due to the endomorphism |
40 | | * optimization). |
41 | | */ |
42 | | #endif |
43 | | |
44 | | #define WNAF_BITS 128 |
45 | | #define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w) |
46 | | #define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w) |
47 | | |
48 | | /* The number of objects allocated on the scratch space for ecmult_multi algorithms */ |
49 | | #define PIPPENGER_SCRATCH_OBJECTS 6 |
50 | | #define STRAUSS_SCRATCH_OBJECTS 5 |
51 | | |
52 | | #define PIPPENGER_MAX_BUCKET_WINDOW 12 |
53 | | |
54 | | /* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */ |
55 | | #define ECMULT_PIPPENGER_THRESHOLD 88 |
56 | | |
57 | | #define ECMULT_MAX_POINTS_PER_BATCH 5000000 |
58 | | |
59 | | /** Fill a table 'pre_a' with precomputed odd multiples of a. |
60 | | * pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements. |
61 | | * zr needs space for n field elements. |
62 | | * |
63 | | * Although pre_a is an array of _ge rather than _gej, it actually represents elements |
64 | | * in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates |
65 | | * can be recovered using z and zr. Using the notation z(b) to represent the omitted |
66 | | * z coordinate of b: |
67 | | * - z(pre_a[n-1]) = 'z' |
68 | | * - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0 |
69 | | * |
70 | | * Lastly the zr[0] value, which isn't used above, is set so that: |
71 | | * - a.z = z(pre_a[0]) / zr[0] |
72 | | */ |
73 | 0 | static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) { |
74 | 0 | secp256k1_gej d, ai; |
75 | 0 | secp256k1_ge d_ge; |
76 | 0 | int i; |
77 | |
|
78 | 0 | VERIFY_CHECK(!a->infinity); |
79 | |
|
80 | 0 | secp256k1_gej_double_var(&d, a, NULL); |
81 | | |
82 | | /* |
83 | | * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z. |
84 | | * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve. |
85 | | * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C). |
86 | | * |
87 | | * phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C) |
88 | | * d_ge := phi(d) = (d.x, d.y, 1) |
89 | | * ai := phi(a) = (a.x*C^2, a.y*C^3, a.z) |
90 | | * |
91 | | * The group addition functions work correctly on these isomorphic curves. |
92 | | * In particular phi(d) is easy to represent in affine coordinates under this isomorphism. |
93 | | * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise. |
94 | | */ |
95 | 0 | secp256k1_ge_set_xy(&d_ge, &d.x, &d.y); |
96 | 0 | secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z); |
97 | 0 | secp256k1_gej_set_ge(&ai, &pre_a[0]); |
98 | 0 | ai.z = a->z; |
99 | | |
100 | | /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a. |
101 | | * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z. |
102 | | */ |
103 | 0 | zr[0] = d.z; |
104 | |
|
105 | 0 | for (i = 1; i < n; i++) { |
106 | 0 | secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]); |
107 | 0 | secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y); |
108 | 0 | } |
109 | | |
110 | | /* Multiply the last z-coordinate by C to undo the isomorphism. |
111 | | * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios, |
112 | | * undoing the isomorphism here undoes the isomorphism for all pre_a values. |
113 | | */ |
114 | 0 | secp256k1_fe_mul(z, &ai.z, &d.z); |
115 | 0 | } |
116 | | |
117 | 0 | SECP256K1_INLINE static void secp256k1_ecmult_table_verify(int n, int w) { |
118 | 0 | (void)n; |
119 | 0 | (void)w; |
120 | 0 | VERIFY_CHECK(((n) & 1) == 1); |
121 | 0 | VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); |
122 | 0 | VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); |
123 | 0 | } |
124 | | |
125 | 0 | SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w) { |
126 | 0 | secp256k1_ecmult_table_verify(n,w); |
127 | 0 | if (n > 0) { |
128 | 0 | *r = pre[(n-1)/2]; |
129 | 0 | } else { |
130 | 0 | *r = pre[(-n-1)/2]; |
131 | 0 | secp256k1_fe_negate(&(r->y), &(r->y), 1); |
132 | 0 | } |
133 | 0 | } |
134 | | |
135 | 0 | SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w) { |
136 | 0 | secp256k1_ecmult_table_verify(n,w); |
137 | 0 | if (n > 0) { |
138 | 0 | secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y); |
139 | 0 | } else { |
140 | 0 | secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y); |
141 | 0 | secp256k1_fe_negate(&(r->y), &(r->y), 1); |
142 | 0 | } |
143 | 0 | } |
144 | | |
145 | 0 | SECP256K1_INLINE static void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w) { |
146 | 0 | secp256k1_ecmult_table_verify(n,w); |
147 | 0 | if (n > 0) { |
148 | 0 | secp256k1_ge_from_storage(r, &pre[(n-1)/2]); |
149 | 0 | } else { |
150 | 0 | secp256k1_ge_from_storage(r, &pre[(-n-1)/2]); |
151 | 0 | secp256k1_fe_negate(&(r->y), &(r->y), 1); |
152 | 0 | } |
153 | 0 | } |
154 | | |
155 | | /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), |
156 | | * with the following guarantees: |
157 | | * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) |
158 | | * - two non-zero entries in wnaf are separated by at least w-1 zeroes. |
159 | | * - the number of set values in wnaf is returned. This number is at most 256, and at most one more |
160 | | * than the number of bits in the (absolute value) of the input. |
161 | | */ |
162 | 0 | static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) { |
163 | 0 | secp256k1_scalar s; |
164 | 0 | int last_set_bit = -1; |
165 | 0 | int bit = 0; |
166 | 0 | int sign = 1; |
167 | 0 | int carry = 0; |
168 | |
|
169 | 0 | VERIFY_CHECK(wnaf != NULL); |
170 | 0 | VERIFY_CHECK(0 <= len && len <= 256); |
171 | 0 | VERIFY_CHECK(a != NULL); |
172 | 0 | VERIFY_CHECK(2 <= w && w <= 31); |
173 | |
|
174 | 0 | for (bit = 0; bit < len; bit++) { |
175 | 0 | wnaf[bit] = 0; |
176 | 0 | } |
177 | |
|
178 | 0 | s = *a; |
179 | 0 | if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) { |
180 | 0 | secp256k1_scalar_negate(&s, &s); |
181 | 0 | sign = -1; |
182 | 0 | } |
183 | |
|
184 | 0 | bit = 0; |
185 | 0 | while (bit < len) { |
186 | 0 | int now; |
187 | 0 | int word; |
188 | 0 | if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) { |
189 | 0 | bit++; |
190 | 0 | continue; |
191 | 0 | } |
192 | | |
193 | 0 | now = w; |
194 | 0 | if (now > len - bit) { |
195 | 0 | now = len - bit; |
196 | 0 | } |
197 | |
|
198 | 0 | word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry; |
199 | |
|
200 | 0 | carry = (word >> (w-1)) & 1; |
201 | 0 | word -= carry << w; |
202 | |
|
203 | 0 | wnaf[bit] = sign * word; |
204 | 0 | last_set_bit = bit; |
205 | |
|
206 | 0 | bit += now; |
207 | 0 | } |
208 | | #ifdef VERIFY |
209 | | { |
210 | | int verify_bit = bit; |
211 | | |
212 | | VERIFY_CHECK(carry == 0); |
213 | | |
214 | | while (verify_bit < 256) { |
215 | | VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0); |
216 | | verify_bit++; |
217 | | } |
218 | | } |
219 | | #endif |
220 | 0 | return last_set_bit + 1; |
221 | 0 | } |
222 | | |
223 | | struct secp256k1_strauss_point_state { |
224 | | int wnaf_na_1[129]; |
225 | | int wnaf_na_lam[129]; |
226 | | int bits_na_1; |
227 | | int bits_na_lam; |
228 | | }; |
229 | | |
230 | | struct secp256k1_strauss_state { |
231 | | /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */ |
232 | | secp256k1_fe* aux; |
233 | | secp256k1_ge* pre_a; |
234 | | struct secp256k1_strauss_point_state* ps; |
235 | | }; |
236 | | |
237 | 0 | static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { |
238 | 0 | secp256k1_ge tmpa; |
239 | 0 | secp256k1_fe Z; |
240 | | /* Split G factors. */ |
241 | 0 | secp256k1_scalar ng_1, ng_128; |
242 | 0 | int wnaf_ng_1[129]; |
243 | 0 | int bits_ng_1 = 0; |
244 | 0 | int wnaf_ng_128[129]; |
245 | 0 | int bits_ng_128 = 0; |
246 | 0 | int i; |
247 | 0 | int bits = 0; |
248 | 0 | size_t np; |
249 | 0 | size_t no = 0; |
250 | |
|
251 | 0 | secp256k1_fe_set_int(&Z, 1); |
252 | 0 | for (np = 0; np < num; ++np) { |
253 | 0 | secp256k1_gej tmp; |
254 | 0 | secp256k1_scalar na_1, na_lam; |
255 | 0 | if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { |
256 | 0 | continue; |
257 | 0 | } |
258 | | /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ |
259 | 0 | secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]); |
260 | | |
261 | | /* build wnaf representation for na_1 and na_lam. */ |
262 | 0 | state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A); |
263 | 0 | state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A); |
264 | 0 | VERIFY_CHECK(state->ps[no].bits_na_1 <= 129); |
265 | 0 | VERIFY_CHECK(state->ps[no].bits_na_lam <= 129); |
266 | 0 | if (state->ps[no].bits_na_1 > bits) { |
267 | 0 | bits = state->ps[no].bits_na_1; |
268 | 0 | } |
269 | 0 | if (state->ps[no].bits_na_lam > bits) { |
270 | 0 | bits = state->ps[no].bits_na_lam; |
271 | 0 | } |
272 | | |
273 | | /* Calculate odd multiples of a. |
274 | | * All multiples are brought to the same Z 'denominator', which is stored |
275 | | * in Z. Due to secp256k1' isomorphism we can do all operations pretending |
276 | | * that the Z coordinate was 1, use affine addition formulae, and correct |
277 | | * the Z coordinate of the result once at the end. |
278 | | * The exception is the precomputed G table points, which are actually |
279 | | * affine. Compared to the base used for other points, they have a Z ratio |
280 | | * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same |
281 | | * isomorphism to efficiently add with a known Z inverse. |
282 | | */ |
283 | 0 | tmp = a[np]; |
284 | 0 | if (no) { |
285 | 0 | secp256k1_gej_rescale(&tmp, &Z); |
286 | 0 | } |
287 | 0 | secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp); |
288 | 0 | if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z)); |
289 | |
|
290 | 0 | ++no; |
291 | 0 | } |
292 | | |
293 | | /* Bring them to the same Z denominator. */ |
294 | 0 | if (no) { |
295 | 0 | secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->aux); |
296 | 0 | } |
297 | |
|
298 | 0 | for (np = 0; np < no; ++np) { |
299 | 0 | for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { |
300 | 0 | secp256k1_fe_mul(&state->aux[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i].x, &secp256k1_const_beta); |
301 | 0 | } |
302 | 0 | } |
303 | |
|
304 | 0 | if (ng) { |
305 | | /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ |
306 | 0 | secp256k1_scalar_split_128(&ng_1, &ng_128, ng); |
307 | | |
308 | | /* Build wnaf representation for ng_1 and ng_128 */ |
309 | 0 | bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); |
310 | 0 | bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); |
311 | 0 | if (bits_ng_1 > bits) { |
312 | 0 | bits = bits_ng_1; |
313 | 0 | } |
314 | 0 | if (bits_ng_128 > bits) { |
315 | 0 | bits = bits_ng_128; |
316 | 0 | } |
317 | 0 | } |
318 | |
|
319 | 0 | secp256k1_gej_set_infinity(r); |
320 | |
|
321 | 0 | for (i = bits - 1; i >= 0; i--) { |
322 | 0 | int n; |
323 | 0 | secp256k1_gej_double_var(r, r, NULL); |
324 | 0 | for (np = 0; np < no; ++np) { |
325 | 0 | if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { |
326 | 0 | secp256k1_ecmult_table_get_ge(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); |
327 | 0 | secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); |
328 | 0 | } |
329 | 0 | if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) { |
330 | 0 | secp256k1_ecmult_table_get_ge_lambda(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); |
331 | 0 | secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); |
332 | 0 | } |
333 | 0 | } |
334 | 0 | if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { |
335 | 0 | secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g, n, WINDOW_G); |
336 | 0 | secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); |
337 | 0 | } |
338 | 0 | if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { |
339 | 0 | secp256k1_ecmult_table_get_ge_storage(&tmpa, secp256k1_pre_g_128, n, WINDOW_G); |
340 | 0 | secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); |
341 | 0 | } |
342 | 0 | } |
343 | |
|
344 | 0 | if (!r->infinity) { |
345 | 0 | secp256k1_fe_mul(&r->z, &r->z, &Z); |
346 | 0 | } |
347 | 0 | } |
348 | | |
349 | 0 | static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { |
350 | 0 | secp256k1_fe aux[ECMULT_TABLE_SIZE(WINDOW_A)]; |
351 | 0 | secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; |
352 | 0 | struct secp256k1_strauss_point_state ps[1]; |
353 | 0 | struct secp256k1_strauss_state state; |
354 | |
|
355 | 0 | state.aux = aux; |
356 | 0 | state.pre_a = pre_a; |
357 | 0 | state.ps = ps; |
358 | 0 | secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng); |
359 | 0 | } |
360 | | |
361 | 0 | static size_t secp256k1_strauss_scratch_size(size_t n_points) { |
362 | 0 | static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); |
363 | 0 | return n_points*point_size; |
364 | 0 | } |
365 | | |
366 | 0 | static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { |
367 | 0 | secp256k1_gej* points; |
368 | 0 | secp256k1_scalar* scalars; |
369 | 0 | struct secp256k1_strauss_state state; |
370 | 0 | size_t i; |
371 | 0 | const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch); |
372 | 0 |
|
373 | 0 | secp256k1_gej_set_infinity(r); |
374 | 0 | if (inp_g_sc == NULL && n_points == 0) { |
375 | 0 | return 1; |
376 | 0 | } |
377 | 0 |
|
378 | 0 | /* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these |
379 | 0 | * allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS |
380 | 0 | * constant and strauss_scratch_size accordingly. */ |
381 | 0 | points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej)); |
382 | 0 | scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar)); |
383 | 0 | state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); |
384 | 0 | state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); |
385 | 0 | state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); |
386 | 0 |
|
387 | 0 | if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) { |
388 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
389 | 0 | return 0; |
390 | 0 | } |
391 | 0 |
|
392 | 0 | for (i = 0; i < n_points; i++) { |
393 | 0 | secp256k1_ge point; |
394 | 0 | if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) { |
395 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
396 | 0 | return 0; |
397 | 0 | } |
398 | 0 | secp256k1_gej_set_ge(&points[i], &point); |
399 | 0 | } |
400 | 0 | secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc); |
401 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
402 | 0 | return 1; |
403 | 0 | } |
404 | | |
405 | | /* Wrapper for secp256k1_ecmult_multi_func interface */ |
406 | 0 | static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
407 | 0 | return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0); |
408 | 0 | } |
409 | | |
410 | 0 | static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) { |
411 | 0 | return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); |
412 | 0 | } |
413 | | |
414 | | /** Convert a number to WNAF notation. |
415 | | * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. |
416 | | * It has the following guarantees: |
417 | | * - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w) |
418 | | * - the number of words set is always WNAF_SIZE(w) |
419 | | * - the returned skew is 0 or 1 |
420 | | */ |
421 | 0 | static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) { |
422 | 0 | int skew = 0; |
423 | 0 | int pos; |
424 | 0 | int max_pos; |
425 | 0 | int last_w; |
426 | 0 | const secp256k1_scalar *work = s; |
427 | 0 |
|
428 | 0 | if (secp256k1_scalar_is_zero(s)) { |
429 | 0 | for (pos = 0; pos < WNAF_SIZE(w); pos++) { |
430 | 0 | wnaf[pos] = 0; |
431 | 0 | } |
432 | 0 | return 0; |
433 | 0 | } |
434 | 0 |
|
435 | 0 | if (secp256k1_scalar_is_even(s)) { |
436 | 0 | skew = 1; |
437 | 0 | } |
438 | 0 |
|
439 | 0 | wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew; |
440 | 0 | /* Compute last window size. Relevant when window size doesn't divide the |
441 | 0 | * number of bits in the scalar */ |
442 | 0 | last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w; |
443 | 0 |
|
444 | 0 | /* Store the position of the first nonzero word in max_pos to allow |
445 | 0 | * skipping leading zeros when calculating the wnaf. */ |
446 | 0 | for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) { |
447 | 0 | int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); |
448 | 0 | if(val != 0) { |
449 | 0 | break; |
450 | 0 | } |
451 | 0 | wnaf[pos] = 0; |
452 | 0 | } |
453 | 0 | max_pos = pos; |
454 | 0 | pos = 1; |
455 | 0 |
|
456 | 0 | while (pos <= max_pos) { |
457 | 0 | int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); |
458 | 0 | if ((val & 1) == 0) { |
459 | 0 | wnaf[pos - 1] -= (1 << w); |
460 | 0 | wnaf[pos] = (val + 1); |
461 | 0 | } else { |
462 | 0 | wnaf[pos] = val; |
463 | 0 | } |
464 | 0 | /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit |
465 | 0 | * is strictly negative or strictly positive respectively. Only change |
466 | 0 | * coefficients at previous positions because above code assumes that |
467 | 0 | * wnaf[pos - 1] is odd. |
468 | 0 | */ |
469 | 0 | if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) { |
470 | 0 | if (wnaf[pos - 1] == 1) { |
471 | 0 | wnaf[pos - 2] += 1 << w; |
472 | 0 | } else { |
473 | 0 | wnaf[pos - 2] -= 1 << w; |
474 | 0 | } |
475 | 0 | wnaf[pos - 1] = 0; |
476 | 0 | } |
477 | 0 | ++pos; |
478 | 0 | } |
479 | 0 |
|
480 | 0 | return skew; |
481 | 0 | } |
482 | | |
483 | | struct secp256k1_pippenger_point_state { |
484 | | int skew_na; |
485 | | size_t input_pos; |
486 | | }; |
487 | | |
488 | | struct secp256k1_pippenger_state { |
489 | | int *wnaf_na; |
490 | | struct secp256k1_pippenger_point_state* ps; |
491 | | }; |
492 | | |
493 | | /* |
494 | | * pippenger_wnaf computes the result of a multi-point multiplication as |
495 | | * follows: The scalars are brought into wnaf with n_wnaf elements each. Then |
496 | | * for every i < n_wnaf, first each point is added to a "bucket" corresponding |
497 | | * to the point's wnaf[i]. Second, the buckets are added together such that |
498 | | * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ... |
499 | | */ |
500 | 0 | static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) { |
501 | 0 | size_t n_wnaf = WNAF_SIZE(bucket_window+1); |
502 | 0 | size_t np; |
503 | 0 | size_t no = 0; |
504 | 0 | int i; |
505 | 0 | int j; |
506 | 0 |
|
507 | 0 | for (np = 0; np < num; ++np) { |
508 | 0 | if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) { |
509 | 0 | continue; |
510 | 0 | } |
511 | 0 | state->ps[no].input_pos = np; |
512 | 0 | state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1); |
513 | 0 | no++; |
514 | 0 | } |
515 | 0 | secp256k1_gej_set_infinity(r); |
516 | 0 |
|
517 | 0 | if (no == 0) { |
518 | 0 | return 1; |
519 | 0 | } |
520 | 0 |
|
521 | 0 | for (i = n_wnaf - 1; i >= 0; i--) { |
522 | 0 | secp256k1_gej running_sum; |
523 | 0 |
|
524 | 0 | for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) { |
525 | 0 | secp256k1_gej_set_infinity(&buckets[j]); |
526 | 0 | } |
527 | 0 |
|
528 | 0 | for (np = 0; np < no; ++np) { |
529 | 0 | int n = state->wnaf_na[np*n_wnaf + i]; |
530 | 0 | struct secp256k1_pippenger_point_state point_state = state->ps[np]; |
531 | 0 | secp256k1_ge tmp; |
532 | 0 | int idx; |
533 | 0 |
|
534 | 0 | if (i == 0) { |
535 | 0 | /* correct for wnaf skew */ |
536 | 0 | int skew = point_state.skew_na; |
537 | 0 | if (skew) { |
538 | 0 | secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); |
539 | 0 | secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL); |
540 | 0 | } |
541 | 0 | } |
542 | 0 | if (n > 0) { |
543 | 0 | idx = (n - 1)/2; |
544 | 0 | secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL); |
545 | 0 | } else if (n < 0) { |
546 | 0 | idx = -(n + 1)/2; |
547 | 0 | secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); |
548 | 0 | secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL); |
549 | 0 | } |
550 | 0 | } |
551 | 0 |
|
552 | 0 | for(j = 0; j < bucket_window; j++) { |
553 | 0 | secp256k1_gej_double_var(r, r, NULL); |
554 | 0 | } |
555 | 0 |
|
556 | 0 | secp256k1_gej_set_infinity(&running_sum); |
557 | 0 | /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ... |
558 | 0 | * = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ... |
559 | 0 | * + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...) |
560 | 0 | * using an intermediate running sum: |
561 | 0 | * running_sum = bucket[0] + bucket[1] + bucket[2] + ... |
562 | 0 | * |
563 | 0 | * The doubling is done implicitly by deferring the final window doubling (of 'r'). |
564 | 0 | */ |
565 | 0 | for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) { |
566 | 0 | secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL); |
567 | 0 | secp256k1_gej_add_var(r, r, &running_sum, NULL); |
568 | 0 | } |
569 | 0 |
|
570 | 0 | secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL); |
571 | 0 | secp256k1_gej_double_var(r, r, NULL); |
572 | 0 | secp256k1_gej_add_var(r, r, &running_sum, NULL); |
573 | 0 | } |
574 | 0 | return 1; |
575 | 0 | } |
576 | | |
577 | | /** |
578 | | * Returns optimal bucket_window (number of bits of a scalar represented by a |
579 | | * set of buckets) for a given number of points. |
580 | | */ |
581 | 0 | static int secp256k1_pippenger_bucket_window(size_t n) { |
582 | 0 | if (n <= 1) { |
583 | 0 | return 1; |
584 | 0 | } else if (n <= 4) { |
585 | 0 | return 2; |
586 | 0 | } else if (n <= 20) { |
587 | 0 | return 3; |
588 | 0 | } else if (n <= 57) { |
589 | 0 | return 4; |
590 | 0 | } else if (n <= 136) { |
591 | 0 | return 5; |
592 | 0 | } else if (n <= 235) { |
593 | 0 | return 6; |
594 | 0 | } else if (n <= 1260) { |
595 | 0 | return 7; |
596 | 0 | } else if (n <= 4420) { |
597 | 0 | return 9; |
598 | 0 | } else if (n <= 7880) { |
599 | 0 | return 10; |
600 | 0 | } else if (n <= 16050) { |
601 | 0 | return 11; |
602 | 0 | } else { |
603 | 0 | return PIPPENGER_MAX_BUCKET_WINDOW; |
604 | 0 | } |
605 | 0 | } |
606 | | |
607 | | /** |
608 | | * Returns the maximum optimal number of points for a bucket_window. |
609 | | */ |
610 | 0 | static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { |
611 | 0 | switch(bucket_window) { |
612 | 0 | case 1: return 1; |
613 | 0 | case 2: return 4; |
614 | 0 | case 3: return 20; |
615 | 0 | case 4: return 57; |
616 | 0 | case 5: return 136; |
617 | 0 | case 6: return 235; |
618 | 0 | case 7: return 1260; |
619 | 0 | case 8: return 1260; |
620 | 0 | case 9: return 4420; |
621 | 0 | case 10: return 7880; |
622 | 0 | case 11: return 16050; |
623 | 0 | case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; |
624 | 0 | } |
625 | 0 | return 0; |
626 | 0 | } |
627 | | |
628 | | |
629 | 0 | SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) { |
630 | 0 | secp256k1_scalar tmp = *s1; |
631 | 0 | secp256k1_scalar_split_lambda(s1, s2, &tmp); |
632 | 0 | secp256k1_ge_mul_lambda(p2, p1); |
633 | 0 |
|
634 | 0 | if (secp256k1_scalar_is_high(s1)) { |
635 | 0 | secp256k1_scalar_negate(s1, s1); |
636 | 0 | secp256k1_ge_neg(p1, p1); |
637 | 0 | } |
638 | 0 | if (secp256k1_scalar_is_high(s2)) { |
639 | 0 | secp256k1_scalar_negate(s2, s2); |
640 | 0 | secp256k1_ge_neg(p2, p2); |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | | /** |
645 | | * Returns the scratch size required for a given number of points (excluding |
646 | | * base point G) without considering alignment. |
647 | | */ |
648 | 0 | static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) { |
649 | 0 | size_t entries = 2*n_points + 2; |
650 | 0 | size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); |
651 | 0 | return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size; |
652 | 0 | } |
653 | | |
654 | 0 | static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { |
655 | 0 | const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch); |
656 | 0 | /* Use 2(n+1) with the endomorphism, when calculating batch |
657 | 0 | * sizes. The reason for +1 is that we add the G scalar to the list of |
658 | 0 | * other scalars. */ |
659 | 0 | size_t entries = 2*n_points + 2; |
660 | 0 | secp256k1_ge *points; |
661 | 0 | secp256k1_scalar *scalars; |
662 | 0 | secp256k1_gej *buckets; |
663 | 0 | struct secp256k1_pippenger_state *state_space; |
664 | 0 | size_t idx = 0; |
665 | 0 | size_t point_idx = 0; |
666 | 0 | int bucket_window; |
667 | 0 |
|
668 | 0 | secp256k1_gej_set_infinity(r); |
669 | 0 | if (inp_g_sc == NULL && n_points == 0) { |
670 | 0 | return 1; |
671 | 0 | } |
672 | 0 | bucket_window = secp256k1_pippenger_bucket_window(n_points); |
673 | 0 |
|
674 | 0 | /* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If |
675 | 0 | * these allocations change, make sure to update the |
676 | 0 | * PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size |
677 | 0 | * accordingly. */ |
678 | 0 | points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points)); |
679 | 0 | scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars)); |
680 | 0 | state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space)); |
681 | 0 | if (points == NULL || scalars == NULL || state_space == NULL) { |
682 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
683 | 0 | return 0; |
684 | 0 | } |
685 | 0 | state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps)); |
686 | 0 | state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); |
687 | 0 | buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets)); |
688 | 0 | if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) { |
689 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
690 | 0 | return 0; |
691 | 0 | } |
692 | 0 |
|
693 | 0 | if (inp_g_sc != NULL) { |
694 | 0 | scalars[0] = *inp_g_sc; |
695 | 0 | points[0] = secp256k1_ge_const_g; |
696 | 0 | idx++; |
697 | 0 | secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]); |
698 | 0 | idx++; |
699 | 0 | } |
700 | 0 |
|
701 | 0 | while (point_idx < n_points) { |
702 | 0 | if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) { |
703 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
704 | 0 | return 0; |
705 | 0 | } |
706 | 0 | idx++; |
707 | 0 | secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]); |
708 | 0 | idx++; |
709 | 0 | point_idx++; |
710 | 0 | } |
711 | 0 |
|
712 | 0 | secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx); |
713 | 0 | secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); |
714 | 0 | return 1; |
715 | 0 | } |
716 | | |
717 | | /* Wrapper for secp256k1_ecmult_multi_func interface */ |
718 | 0 | static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
719 | 0 | return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0); |
720 | 0 | } |
721 | | |
722 | | /** |
723 | | * Returns the maximum number of points in addition to G that can be used with |
724 | | * a given scratch space. The function ensures that fewer points may also be |
725 | | * used. |
726 | | */ |
727 | 0 | static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) { |
728 | 0 | size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS); |
729 | 0 | int bucket_window; |
730 | 0 | size_t res = 0; |
731 | 0 |
|
732 | 0 | for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) { |
733 | 0 | size_t n_points; |
734 | 0 | size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window); |
735 | 0 | size_t space_for_points; |
736 | 0 | size_t space_overhead; |
737 | 0 | size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); |
738 | 0 |
|
739 | 0 | entry_size = 2*entry_size; |
740 | 0 | space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state); |
741 | 0 | if (space_overhead > max_alloc) { |
742 | 0 | break; |
743 | 0 | } |
744 | 0 | space_for_points = max_alloc - space_overhead; |
745 | 0 |
|
746 | 0 | n_points = space_for_points/entry_size; |
747 | 0 | n_points = n_points > max_points ? max_points : n_points; |
748 | 0 | if (n_points > res) { |
749 | 0 | res = n_points; |
750 | 0 | } |
751 | 0 | if (n_points < max_points) { |
752 | 0 | /* A larger bucket_window may support even more points. But if we |
753 | 0 | * would choose that then the caller couldn't safely use any number |
754 | 0 | * smaller than what this function returns */ |
755 | 0 | break; |
756 | 0 | } |
757 | 0 | } |
758 | 0 | return res; |
759 | 0 | } |
760 | | |
761 | | /* Computes ecmult_multi by simply multiplying and adding each point. Does not |
762 | | * require a scratch space */ |
763 | 0 | static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) { |
764 | 0 | size_t point_idx; |
765 | 0 | secp256k1_gej tmpj; |
766 | 0 |
|
767 | 0 | secp256k1_gej_set_infinity(r); |
768 | 0 | secp256k1_gej_set_infinity(&tmpj); |
769 | 0 | /* r = inp_g_sc*G */ |
770 | 0 | secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc); |
771 | 0 | for (point_idx = 0; point_idx < n_points; point_idx++) { |
772 | 0 | secp256k1_ge point; |
773 | 0 | secp256k1_gej pointj; |
774 | 0 | secp256k1_scalar scalar; |
775 | 0 | if (!cb(&scalar, &point, point_idx, cbdata)) { |
776 | 0 | return 0; |
777 | 0 | } |
778 | 0 | /* r += scalar*point */ |
779 | 0 | secp256k1_gej_set_ge(&pointj, &point); |
780 | 0 | secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL); |
781 | 0 | secp256k1_gej_add_var(r, r, &tmpj, NULL); |
782 | 0 | } |
783 | 0 | return 1; |
784 | 0 | } |
785 | | |
786 | | /* Compute the number of batches and the batch size given the maximum batch size and the |
787 | | * total number of points */ |
788 | 0 | static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) { |
789 | 0 | if (max_n_batch_points == 0) { |
790 | 0 | return 0; |
791 | 0 | } |
792 | 0 | if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) { |
793 | 0 | max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; |
794 | 0 | } |
795 | 0 | if (n == 0) { |
796 | 0 | *n_batches = 0; |
797 | 0 | *n_batch_points = 0; |
798 | 0 | return 1; |
799 | 0 | } |
800 | 0 | /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */ |
801 | 0 | *n_batches = CEIL_DIV(n, max_n_batch_points); |
802 | 0 | *n_batch_points = CEIL_DIV(n, *n_batches); |
803 | 0 | return 1; |
804 | 0 | } |
805 | | |
806 | | typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); |
807 | 0 | static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
808 | 0 | size_t i; |
809 | 0 |
|
810 | 0 | int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); |
811 | 0 | size_t n_batches; |
812 | 0 | size_t n_batch_points; |
813 | 0 |
|
814 | 0 | secp256k1_gej_set_infinity(r); |
815 | 0 | if (inp_g_sc == NULL && n == 0) { |
816 | 0 | return 1; |
817 | 0 | } else if (n == 0) { |
818 | 0 | secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc); |
819 | 0 | return 1; |
820 | 0 | } |
821 | 0 | if (scratch == NULL) { |
822 | 0 | return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n); |
823 | 0 | } |
824 | 0 |
|
825 | 0 | /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than |
826 | 0 | * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm. |
827 | 0 | * As a first step check if there's enough space for Pippenger's algo (which requires less space |
828 | 0 | * than Strauss' algo) and if not, use the simple algorithm. */ |
829 | 0 | if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) { |
830 | 0 | return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n); |
831 | 0 | } |
832 | 0 | if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) { |
833 | 0 | f = secp256k1_ecmult_pippenger_batch; |
834 | 0 | } else { |
835 | 0 | if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) { |
836 | 0 | return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n); |
837 | 0 | } |
838 | 0 | f = secp256k1_ecmult_strauss_batch; |
839 | 0 | } |
840 | 0 | for(i = 0; i < n_batches; i++) { |
841 | 0 | size_t nbp = n < n_batch_points ? n : n_batch_points; |
842 | 0 | size_t offset = n_batch_points*i; |
843 | 0 | secp256k1_gej tmp; |
844 | 0 | if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { |
845 | 0 | return 0; |
846 | 0 | } |
847 | 0 | secp256k1_gej_add_var(r, r, &tmp, NULL); |
848 | 0 | n -= nbp; |
849 | 0 | } |
850 | 0 | return 1; |
851 | 0 | } |
852 | | |
853 | | #endif /* SECP256K1_ECMULT_IMPL_H */ |