Coverage Report

Created: 2025-03-18 19:28

/root/bitcoin/src/node/mini_miner.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2023 The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <node/mini_miner.h>
6
7
#include <boost/multi_index/detail/hash_index_iterator.hpp>
8
#include <boost/operators.hpp>
9
#include <consensus/amount.h>
10
#include <policy/feerate.h>
11
#include <primitives/transaction.h>
12
#include <sync.h>
13
#include <txmempool.h>
14
#include <uint256.h>
15
#include <util/check.h>
16
17
#include <algorithm>
18
#include <numeric>
19
#include <utility>
20
21
namespace node {
22
23
MiniMiner::MiniMiner(const CTxMemPool& mempool, const std::vector<COutPoint>& outpoints)
24
0
{
25
0
    LOCK(mempool.cs);
26
    // Find which outpoints to calculate bump fees for.
27
    // Anything that's spent by the mempool is to-be-replaced
28
    // Anything otherwise unavailable just has a bump fee of 0
29
0
    for (const auto& outpoint : outpoints) {
  Branch (29:31): [True: 0, False: 0]
30
0
        if (!mempool.exists(GenTxid::Txid(outpoint.hash))) {
  Branch (30:13): [True: 0, False: 0]
31
            // This UTXO is either confirmed or not yet submitted to mempool.
32
            // If it's confirmed, no bump fee is required.
33
            // If it's not yet submitted, we have no information, so return 0.
34
0
            m_bump_fees.emplace(outpoint, 0);
35
0
            continue;
36
0
        }
37
38
        // UXTO is created by transaction in mempool, add to map.
39
        // Note: This will either create a missing entry or add the outpoint to an existing entry
40
0
        m_requested_outpoints_by_txid[outpoint.hash].push_back(outpoint);
41
42
0
        if (const auto ptx{mempool.GetConflictTx(outpoint)}) {
  Branch (42:24): [True: 0, False: 0]
43
            // This outpoint is already being spent by another transaction in the mempool. We
44
            // assume that the caller wants to replace this transaction and its descendants. It
45
            // would be unusual for the transaction to have descendants as the wallet won’t normally
46
            // attempt to replace transactions with descendants. If the outpoint is from a mempool
47
            // transaction, we still need to calculate its ancestors bump fees (added to
48
            // m_requested_outpoints_by_txid below), but after removing the to-be-replaced entries.
49
            //
50
            // Note that the descendants of a transaction include the transaction itself. Also note,
51
            // that this is only calculating bump fees. RBF fee rules should be handled separately.
52
0
            CTxMemPool::setEntries descendants;
53
0
            mempool.CalculateDescendants(mempool.GetIter(ptx->GetHash()).value(), descendants);
54
0
            for (const auto& desc_txiter : descendants) {
  Branch (54:42): [True: 0, False: 0]
55
0
                m_to_be_replaced.insert(desc_txiter->GetTx().GetHash());
56
0
            }
57
0
        }
58
0
    }
59
60
    // No unconfirmed UTXOs, so nothing mempool-related needs to be calculated.
61
0
    if (m_requested_outpoints_by_txid.empty()) return;
  Branch (61:9): [True: 0, False: 0]
62
63
    // Calculate the cluster and construct the entry map.
64
0
    std::vector<uint256> txids_needed;
65
0
    txids_needed.reserve(m_requested_outpoints_by_txid.size());
66
0
    for (const auto& [txid, _]: m_requested_outpoints_by_txid) {
  Branch (66:31): [True: 0, False: 0]
67
0
        txids_needed.push_back(txid);
68
0
    }
69
0
    const auto cluster = mempool.GatherClusters(txids_needed);
70
0
    if (cluster.empty()) {
  Branch (70:9): [True: 0, False: 0]
71
        // An empty cluster means that at least one of the transactions is missing from the mempool
72
        // (should not be possible given processing above) or DoS limit was hit.
73
0
        m_ready_to_calculate = false;
74
0
        return;
75
0
    }
76
77
    // Add every entry to m_entries_by_txid and m_entries, except the ones that will be replaced.
78
0
    for (const auto& txiter : cluster) {
  Branch (78:29): [True: 0, False: 0]
79
0
        if (!m_to_be_replaced.count(txiter->GetTx().GetHash())) {
  Branch (79:13): [True: 0, False: 0]
80
0
            auto [mapiter, success] = m_entries_by_txid.emplace(txiter->GetTx().GetHash(),
81
0
                MiniMinerMempoolEntry{/*tx_in=*/txiter->GetSharedTx(),
82
0
                                      /*vsize_self=*/txiter->GetTxSize(),
83
0
                                      /*vsize_ancestor=*/txiter->GetSizeWithAncestors(),
84
0
                                      /*fee_self=*/txiter->GetModifiedFee(),
85
0
                                      /*fee_ancestor=*/txiter->GetModFeesWithAncestors()});
86
0
            m_entries.push_back(mapiter);
87
0
        } else {
88
0
            auto outpoints_it = m_requested_outpoints_by_txid.find(txiter->GetTx().GetHash());
89
0
            if (outpoints_it != m_requested_outpoints_by_txid.end()) {
  Branch (89:17): [True: 0, False: 0]
90
                // This UTXO is the output of a to-be-replaced transaction. Bump fee is 0; spending
91
                // this UTXO is impossible as it will no longer exist after the replacement.
92
0
                for (const auto& outpoint : outpoints_it->second) {
  Branch (92:43): [True: 0, False: 0]
93
0
                    m_bump_fees.emplace(outpoint, 0);
94
0
                }
95
0
                m_requested_outpoints_by_txid.erase(outpoints_it);
96
0
            }
97
0
        }
98
0
    }
99
100
    // Build the m_descendant_set_by_txid cache.
101
0
    for (const auto& txiter : cluster) {
  Branch (101:29): [True: 0, False: 0]
102
0
        const auto& txid = txiter->GetTx().GetHash();
103
        // Cache descendants for future use. Unlike the real mempool, a descendant MiniMinerMempoolEntry
104
        // will not exist without its ancestor MiniMinerMempoolEntry, so these sets won't be invalidated.
105
0
        std::vector<MockEntryMap::iterator> cached_descendants;
106
0
        const bool remove{m_to_be_replaced.count(txid) > 0};
107
0
        CTxMemPool::setEntries descendants;
108
0
        mempool.CalculateDescendants(txiter, descendants);
109
0
        Assume(descendants.count(txiter) > 0);
110
0
        for (const auto& desc_txiter : descendants) {
  Branch (110:38): [True: 0, False: 0]
111
0
            const auto txid_desc = desc_txiter->GetTx().GetHash();
112
0
            const bool remove_desc{m_to_be_replaced.count(txid_desc) > 0};
113
0
            auto desc_it{m_entries_by_txid.find(txid_desc)};
114
0
            Assume((desc_it == m_entries_by_txid.end()) == remove_desc);
115
0
            if (remove) Assume(remove_desc);
  Branch (115:17): [True: 0, False: 0]
116
            // It's possible that remove=false but remove_desc=true.
117
0
            if (!remove && !remove_desc) {
  Branch (117:17): [True: 0, False: 0]
  Branch (117:28): [True: 0, False: 0]
118
0
                cached_descendants.push_back(desc_it);
119
0
            }
120
0
        }
121
0
        if (remove) {
  Branch (121:13): [True: 0, False: 0]
122
0
            Assume(cached_descendants.empty());
123
0
        } else {
124
0
            m_descendant_set_by_txid.emplace(txid, cached_descendants);
125
0
        }
126
0
    }
127
128
    // Release the mempool lock; we now have all the information we need for a subset of the entries
129
    // we care about. We will solely operate on the MiniMinerMempoolEntry map from now on.
130
0
    Assume(m_in_block.empty());
131
0
    Assume(m_requested_outpoints_by_txid.size() <= outpoints.size());
132
0
    SanityCheck();
133
0
}
134
135
MiniMiner::MiniMiner(const std::vector<MiniMinerMempoolEntry>& manual_entries,
136
                     const std::map<Txid, std::set<Txid>>& descendant_caches)
137
0
{
138
0
    for (const auto& entry : manual_entries) {
  Branch (138:28): [True: 0, False: 0]
139
0
        const auto& txid = entry.GetTx().GetHash();
140
        // We need to know the descendant set of every transaction.
141
0
        if (!Assume(descendant_caches.count(txid) > 0)) {
  Branch (141:13): [True: 0, False: 0]
142
0
            m_ready_to_calculate = false;
143
0
            return;
144
0
        }
145
        // Just forward these args onto MiniMinerMempoolEntry
146
0
        auto [mapiter, success] = m_entries_by_txid.emplace(txid, entry);
147
        // Txids must be unique; this txid shouldn't already be an entry in m_entries_by_txid
148
0
        if (Assume(success)) m_entries.push_back(mapiter);
149
0
    }
150
    // Descendant cache is already built, but we need to translate them to m_entries_by_txid iters.
151
0
    for (const auto& [txid, desc_txids] : descendant_caches) {
  Branch (151:41): [True: 0, False: 0]
152
        // Descendant cache should include at least the tx itself.
153
0
        if (!Assume(!desc_txids.empty())) {
  Branch (153:13): [True: 0, False: 0]
154
0
            m_ready_to_calculate = false;
155
0
            return;
156
0
        }
157
0
        std::vector<MockEntryMap::iterator> descendants;
158
0
        for (const auto& desc_txid : desc_txids) {
  Branch (158:36): [True: 0, False: 0]
159
0
            auto desc_it{m_entries_by_txid.find(desc_txid)};
160
            // Descendants should only include transactions with corresponding entries.
161
0
            if (!Assume(desc_it != m_entries_by_txid.end())) {
  Branch (161:17): [True: 0, False: 0]
162
0
                m_ready_to_calculate = false;
163
0
                return;
164
0
            } else {
165
0
                descendants.emplace_back(desc_it);
166
0
            }
167
0
        }
168
0
        m_descendant_set_by_txid.emplace(txid, descendants);
169
0
    }
170
0
    Assume(m_to_be_replaced.empty());
171
0
    Assume(m_requested_outpoints_by_txid.empty());
172
0
    Assume(m_bump_fees.empty());
173
0
    Assume(m_inclusion_order.empty());
174
0
    SanityCheck();
175
0
}
176
177
// Compare by min(ancestor feerate, individual feerate), then txid
178
//
179
// Under the ancestor-based mining approach, high-feerate children can pay for parents, but high-feerate
180
// parents do not incentive inclusion of their children. Therefore the mining algorithm only considers
181
// transactions for inclusion on basis of the minimum of their own feerate or their ancestor feerate.
182
struct AncestorFeerateComparator
183
{
184
    template<typename I>
185
0
    bool operator()(const I& a, const I& b) const {
186
0
        auto min_feerate = [](const MiniMinerMempoolEntry& e) -> FeeFrac {
187
0
            FeeFrac self_feerate(e.GetModifiedFee(), e.GetTxSize());
188
0
            FeeFrac ancestor_feerate(e.GetModFeesWithAncestors(), e.GetSizeWithAncestors());
189
0
            return std::min(ancestor_feerate, self_feerate);
190
0
        };
191
0
        FeeFrac a_feerate{min_feerate(a->second)};
192
0
        FeeFrac b_feerate{min_feerate(b->second)};
193
0
        if (a_feerate != b_feerate) {
  Branch (193:13): [True: 0, False: 0]
194
0
            return a_feerate > b_feerate;
195
0
        }
196
        // Use txid as tiebreaker for stable sorting
197
0
        return a->first < b->first;
198
0
    }
199
};
200
201
void MiniMiner::DeleteAncestorPackage(const std::set<MockEntryMap::iterator, IteratorComparator>& ancestors)
202
0
{
203
0
    Assume(ancestors.size() >= 1);
204
    // "Mine" all transactions in this ancestor set.
205
0
    for (auto& anc : ancestors) {
  Branch (205:20): [True: 0, False: 0]
206
0
        Assume(m_in_block.count(anc->first) == 0);
207
0
        m_in_block.insert(anc->first);
208
0
        m_total_fees += anc->second.GetModifiedFee();
209
0
        m_total_vsize += anc->second.GetTxSize();
210
0
        auto it = m_descendant_set_by_txid.find(anc->first);
211
        // Each entry’s descendant set includes itself
212
0
        Assume(it != m_descendant_set_by_txid.end());
213
0
        for (auto& descendant : it->second) {
  Branch (213:31): [True: 0, False: 0]
214
            // If these fail, we must be double-deducting.
215
0
            Assume(descendant->second.GetModFeesWithAncestors() >= anc->second.GetModifiedFee());
216
0
            Assume(descendant->second.GetSizeWithAncestors() >= anc->second.GetTxSize());
217
0
            descendant->second.UpdateAncestorState(-anc->second.GetTxSize(), -anc->second.GetModifiedFee());
218
0
        }
219
0
    }
220
    // Delete these entries.
221
0
    for (const auto& anc : ancestors) {
  Branch (221:26): [True: 0, False: 0]
222
0
        m_descendant_set_by_txid.erase(anc->first);
223
        // The above loop should have deducted each ancestor's size and fees from each of their
224
        // respective descendants exactly once.
225
0
        Assume(anc->second.GetModFeesWithAncestors() == 0);
226
0
        Assume(anc->second.GetSizeWithAncestors() == 0);
227
0
        auto vec_it = std::find(m_entries.begin(), m_entries.end(), anc);
228
0
        Assume(vec_it != m_entries.end());
229
0
        m_entries.erase(vec_it);
230
0
        m_entries_by_txid.erase(anc);
231
0
    }
232
0
}
233
234
void MiniMiner::SanityCheck() const
235
0
{
236
    // m_entries, m_entries_by_txid, and m_descendant_set_by_txid all same size
237
0
    Assume(m_entries.size() == m_entries_by_txid.size());
238
0
    Assume(m_entries.size() == m_descendant_set_by_txid.size());
239
    // Cached ancestor values should be at least as large as the transaction's own fee and size
240
0
    Assume(std::all_of(m_entries.begin(), m_entries.end(), [](const auto& entry) {
241
0
        return entry->second.GetSizeWithAncestors() >= entry->second.GetTxSize() &&
242
0
               entry->second.GetModFeesWithAncestors() >= entry->second.GetModifiedFee();}));
243
    // None of the entries should be to-be-replaced transactions
244
0
    Assume(std::all_of(m_to_be_replaced.begin(), m_to_be_replaced.end(),
245
0
        [&](const auto& txid){return m_entries_by_txid.find(txid) == m_entries_by_txid.end();}));
246
0
}
247
248
void MiniMiner::BuildMockTemplate(std::optional<CFeeRate> target_feerate)
249
0
{
250
0
    const auto num_txns{m_entries_by_txid.size()};
251
0
    uint32_t sequence_num{0};
252
0
    while (!m_entries_by_txid.empty()) {
  Branch (252:12): [True: 0, False: 0]
253
        // Sort again, since transaction removal may change some m_entries' ancestor feerates.
254
0
        std::sort(m_entries.begin(), m_entries.end(), AncestorFeerateComparator());
255
256
        // Pick highest ancestor feerate entry.
257
0
        auto best_iter = m_entries.begin();
258
0
        Assume(best_iter != m_entries.end());
259
0
        const auto ancestor_package_size = (*best_iter)->second.GetSizeWithAncestors();
260
0
        const auto ancestor_package_fee = (*best_iter)->second.GetModFeesWithAncestors();
261
        // Stop here. Everything that didn't "make it into the block" has bumpfee.
262
0
        if (target_feerate.has_value() &&
  Branch (262:13): [True: 0, False: 0]
263
0
            ancestor_package_fee < target_feerate->GetFee(ancestor_package_size)) {
  Branch (263:13): [True: 0, False: 0]
264
0
            break;
265
0
        }
266
267
        // Calculate ancestors on the fly. This lookup should be fairly cheap, and ancestor sets
268
        // change at every iteration, so this is more efficient than maintaining a cache.
269
0
        std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
270
0
        {
271
0
            std::set<MockEntryMap::iterator, IteratorComparator> to_process;
272
0
            to_process.insert(*best_iter);
273
0
            while (!to_process.empty()) {
  Branch (273:20): [True: 0, False: 0]
274
0
                auto iter = to_process.begin();
275
0
                Assume(iter != to_process.end());
276
0
                ancestors.insert(*iter);
277
0
                for (const auto& input : (*iter)->second.GetTx().vin) {
  Branch (277:40): [True: 0, False: 0]
278
0
                    if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
  Branch (278:85): [True: 0, False: 0]
279
0
                        if (ancestors.count(parent_it) == 0) {
  Branch (279:29): [True: 0, False: 0]
280
0
                            to_process.insert(parent_it);
281
0
                        }
282
0
                    }
283
0
                }
284
0
                to_process.erase(iter);
285
0
            }
286
0
        }
287
        // Track the order in which transactions were selected.
288
0
        for (const auto& ancestor : ancestors) {
  Branch (288:35): [True: 0, False: 0]
289
0
            m_inclusion_order.emplace(Txid::FromUint256(ancestor->first), sequence_num);
290
0
        }
291
0
        DeleteAncestorPackage(ancestors);
292
0
        SanityCheck();
293
0
        ++sequence_num;
294
0
    }
295
0
    if (!target_feerate.has_value()) {
  Branch (295:9): [True: 0, False: 0]
296
0
        Assume(m_in_block.size() == num_txns);
297
0
    } else {
298
0
        Assume(m_in_block.empty() || m_total_fees >= target_feerate->GetFee(m_total_vsize));
299
0
    }
300
0
    Assume(m_in_block.empty() || sequence_num > 0);
301
0
    Assume(m_in_block.size() == m_inclusion_order.size());
302
    // Do not try to continue building the block template with a different feerate.
303
0
    m_ready_to_calculate = false;
304
0
}
305
306
307
std::map<Txid, uint32_t> MiniMiner::Linearize()
308
0
{
309
0
    BuildMockTemplate(std::nullopt);
310
0
    return m_inclusion_order;
311
0
}
312
313
std::map<COutPoint, CAmount> MiniMiner::CalculateBumpFees(const CFeeRate& target_feerate)
314
0
{
315
0
    if (!m_ready_to_calculate) return {};
  Branch (315:9): [True: 0, False: 0]
316
    // Build a block template until the target feerate is hit.
317
0
    BuildMockTemplate(target_feerate);
318
319
    // Each transaction that "made it into the block" has a bumpfee of 0, i.e. they are part of an
320
    // ancestor package with at least the target feerate and don't need to be bumped.
321
0
    for (const auto& txid : m_in_block) {
  Branch (321:27): [True: 0, False: 0]
322
        // Not all of the block transactions were necessarily requested.
323
0
        auto it = m_requested_outpoints_by_txid.find(txid);
324
0
        if (it != m_requested_outpoints_by_txid.end()) {
  Branch (324:13): [True: 0, False: 0]
325
0
            for (const auto& outpoint : it->second) {
  Branch (325:39): [True: 0, False: 0]
326
0
                m_bump_fees.emplace(outpoint, 0);
327
0
            }
328
0
            m_requested_outpoints_by_txid.erase(it);
329
0
        }
330
0
    }
331
332
    // A transactions and its ancestors will only be picked into a block when
333
    // both the ancestor set feerate and the individual feerate meet the target
334
    // feerate.
335
    //
336
    // We had to convince ourselves that after running the mini miner and
337
    // picking all eligible transactions into our MockBlockTemplate, there
338
    // could still be transactions remaining that have a lower individual
339
    // feerate than their ancestor feerate. So here is an example:
340
    //
341
    //               ┌─────────────────┐
342
    //               │                 │
343
    //               │   Grandparent   │
344
    //               │    1700 vB      │
345
    //               │    1700 sats    │                    Target feerate: 10    s/vB
346
    //               │       1 s/vB    │    GP Ancestor Set Feerate (ASFR):  1    s/vB
347
    //               │                 │                           P1_ASFR:  9.84 s/vB
348
    //               └──────▲───▲──────┘                           P2_ASFR:  2.47 s/vB
349
    //                      │   │                                   C_ASFR: 10.27 s/vB
350
    // ┌───────────────┐    │   │    ┌──────────────┐
351
    // │               ├────┘   └────┤              │             ⇒ C_FR < TFR < C_ASFR
352
    // │   Parent 1    │             │   Parent 2   │
353
    // │    200 vB     │             │    200 vB    │
354
    // │  17000 sats   │             │   3000 sats  │
355
    // │     85 s/vB   │             │     15 s/vB  │
356
    // │               │             │              │
357
    // └───────────▲───┘             └───▲──────────┘
358
    //             │                     │
359
    //             │    ┌───────────┐    │
360
    //             └────┤           ├────┘
361
    //                  │   Child   │
362
    //                  │  100 vB   │
363
    //                  │  900 sats │
364
    //                  │    9 s/vB │
365
    //                  │           │
366
    //                  └───────────┘
367
    //
368
    // We therefore calculate both the bump fee that is necessary to elevate
369
    // the individual transaction to the target feerate:
370
    //         target_feerate × tx_size - tx_fees
371
    // and the bump fee that is necessary to bump the entire ancestor set to
372
    // the target feerate:
373
    //         target_feerate × ancestor_set_size - ancestor_set_fees
374
    // By picking the maximum from the two, we ensure that a transaction meets
375
    // both criteria.
376
0
    for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
  Branch (376:40): [True: 0, False: 0]
377
0
        auto it = m_entries_by_txid.find(txid);
378
0
        Assume(it != m_entries_by_txid.end());
379
0
        if (it != m_entries_by_txid.end()) {
  Branch (379:13): [True: 0, False: 0]
380
0
            Assume(target_feerate.GetFee(it->second.GetSizeWithAncestors()) > std::min(it->second.GetModifiedFee(), it->second.GetModFeesWithAncestors()));
381
0
            CAmount bump_fee_with_ancestors = target_feerate.GetFee(it->second.GetSizeWithAncestors()) - it->second.GetModFeesWithAncestors();
382
0
            CAmount bump_fee_individual = target_feerate.GetFee(it->second.GetTxSize()) - it->second.GetModifiedFee();
383
0
            const CAmount bump_fee{std::max(bump_fee_with_ancestors, bump_fee_individual)};
384
0
            Assume(bump_fee >= 0);
385
0
            for (const auto& outpoint : outpoints) {
  Branch (385:39): [True: 0, False: 0]
386
0
                m_bump_fees.emplace(outpoint, bump_fee);
387
0
            }
388
0
        }
389
0
    }
390
0
    return m_bump_fees;
391
0
}
392
393
std::optional<CAmount> MiniMiner::CalculateTotalBumpFees(const CFeeRate& target_feerate)
394
0
{
395
0
    if (!m_ready_to_calculate) return std::nullopt;
  Branch (395:9): [True: 0, False: 0]
396
    // Build a block template until the target feerate is hit.
397
0
    BuildMockTemplate(target_feerate);
398
399
    // All remaining ancestors that are not part of m_in_block must be bumped, but no other relatives
400
0
    std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
401
0
    std::set<MockEntryMap::iterator, IteratorComparator> to_process;
402
0
    for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
  Branch (402:40): [True: 0, False: 0]
403
        // Skip any ancestors that already have a miner score higher than the target feerate
404
        // (already "made it" into the block)
405
0
        if (m_in_block.count(txid)) continue;
  Branch (405:13): [True: 0, False: 0]
406
0
        auto iter = m_entries_by_txid.find(txid);
407
0
        if (iter == m_entries_by_txid.end()) continue;
  Branch (407:13): [True: 0, False: 0]
408
0
        to_process.insert(iter);
409
0
        ancestors.insert(iter);
410
0
    }
411
412
0
    std::set<uint256> has_been_processed;
413
0
    while (!to_process.empty()) {
  Branch (413:12): [True: 0, False: 0]
414
0
        auto iter = to_process.begin();
415
0
        const CTransaction& tx = (*iter)->second.GetTx();
416
0
        for (const auto& input : tx.vin) {
  Branch (416:32): [True: 0, False: 0]
417
0
            if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
  Branch (417:77): [True: 0, False: 0]
418
0
                if (!has_been_processed.count(input.prevout.hash)) {
  Branch (418:21): [True: 0, False: 0]
419
0
                    to_process.insert(parent_it);
420
0
                }
421
0
                ancestors.insert(parent_it);
422
0
            }
423
0
        }
424
0
        has_been_processed.insert(tx.GetHash());
425
0
        to_process.erase(iter);
426
0
    }
427
0
    const auto ancestor_package_size = std::accumulate(ancestors.cbegin(), ancestors.cend(), int64_t{0},
428
0
        [](int64_t sum, const auto it) {return sum + it->second.GetTxSize();});
429
0
    const auto ancestor_package_fee = std::accumulate(ancestors.cbegin(), ancestors.cend(), CAmount{0},
430
0
        [](CAmount sum, const auto it) {return sum + it->second.GetModifiedFee();});
431
0
    return target_feerate.GetFee(ancestor_package_size) - ancestor_package_fee;
432
0
}
433
} // namespace node