Coverage Report

Created: 2025-03-18 19:28

/root/bitcoin/src/net.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8
#include <net.h>
9
10
#include <addrdb.h>
11
#include <addrman.h>
12
#include <banman.h>
13
#include <clientversion.h>
14
#include <common/args.h>
15
#include <common/netif.h>
16
#include <compat/compat.h>
17
#include <consensus/consensus.h>
18
#include <crypto/sha256.h>
19
#include <i2p.h>
20
#include <key.h>
21
#include <logging.h>
22
#include <memusage.h>
23
#include <net_permissions.h>
24
#include <netaddress.h>
25
#include <netbase.h>
26
#include <node/eviction.h>
27
#include <node/interface_ui.h>
28
#include <protocol.h>
29
#include <random.h>
30
#include <scheduler.h>
31
#include <util/fs.h>
32
#include <util/sock.h>
33
#include <util/strencodings.h>
34
#include <util/thread.h>
35
#include <util/threadinterrupt.h>
36
#include <util/trace.h>
37
#include <util/translation.h>
38
#include <util/vector.h>
39
40
#ifdef WIN32
41
#include <string.h>
42
#endif
43
44
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45
#include <ifaddrs.h>
46
#endif
47
48
#include <algorithm>
49
#include <array>
50
#include <cmath>
51
#include <cstdint>
52
#include <functional>
53
#include <optional>
54
#include <unordered_map>
55
56
TRACEPOINT_SEMAPHORE(net, closed_connection);
57
TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58
TRACEPOINT_SEMAPHORE(net, inbound_connection);
59
TRACEPOINT_SEMAPHORE(net, outbound_connection);
60
TRACEPOINT_SEMAPHORE(net, outbound_message);
61
62
/** Maximum number of block-relay-only anchor connections */
63
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
65
/** Anchor IP address database file name */
66
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67
68
// How often to dump addresses to peers.dat
69
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70
71
/** Number of DNS seeds to query when the number of connections is low. */
72
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73
74
/** Minimum number of outbound connections under which we will keep fetching our address seeds. */
75
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76
77
/** How long to delay before querying DNS seeds
78
 *
79
 * If we have more than THRESHOLD entries in addrman, then it's likely
80
 * that we got those addresses from having previously connected to the P2P
81
 * network, and that we'll be able to successfully reconnect to the P2P
82
 * network via contacting one of them. So if that's the case, spend a
83
 * little longer trying to connect to known peers before querying the
84
 * DNS seeds.
85
 */
86
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89
90
/** The default timeframe for -maxuploadtarget. 1 day. */
91
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92
93
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94
static constexpr auto FEELER_SLEEP_WINDOW{1s};
95
96
/** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
97
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98
99
/** Used to pass flags to the Bind() function */
100
enum BindFlags {
101
    BF_NONE         = 0,
102
    BF_REPORT_ERROR = (1U << 0),
103
    /**
104
     * Do not call AddLocal() for our special addresses, e.g., for incoming
105
     * Tor connections, to prevent gossiping them over the network.
106
     */
107
    BF_DONT_ADVERTISE = (1U << 1),
108
};
109
110
// The set of sockets cannot be modified while waiting
111
// The sleep time needs to be small to avoid new sockets stalling
112
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113
114
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115
116
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119
//
120
// Global state variables
121
//
122
bool fDiscover = true;
123
bool fListen = true;
124
GlobalMutex g_maplocalhost_mutex;
125
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126
std::string strSubVersion;
127
128
size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
129
0
{
130
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131
0
}
132
133
size_t CNetMessage::GetMemoryUsage() const noexcept
134
0
{
135
0
    return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136
0
}
137
138
void CConnman::AddAddrFetch(const std::string& strDest)
139
0
{
140
0
    LOCK(m_addr_fetches_mutex);
141
0
    m_addr_fetches.push_back(strDest);
142
0
}
143
144
uint16_t GetListenPort()
145
0
{
146
    // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147
0
    for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
  Branch (147:38): [True: 0, False: 0]
148
0
        constexpr uint16_t dummy_port = 0;
149
150
0
        const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151
0
        if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
  Branch (151:13): [True: 0, False: 0]
  Branch (151:38): [True: 0, False: 0]
152
0
    }
153
154
    // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155
    // (-whitebind= is required to have ":port").
156
0
    for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
  Branch (156:43): [True: 0, False: 0]
157
0
        NetWhitebindPermissions whitebind;
158
0
        bilingual_str error;
159
0
        if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
  Branch (159:13): [True: 0, False: 0]
160
0
            if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
  Branch (160:17): [True: 0, False: 0]
161
0
                return whitebind.m_service.GetPort();
162
0
            }
163
0
        }
164
0
    }
165
166
    // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167
0
    return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168
0
}
169
170
// Determine the "best" local address for a particular peer.
171
[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172
0
{
173
0
    if (!fListen) return std::nullopt;
  Branch (173:9): [True: 0, False: 0]
174
175
0
    std::optional<CService> addr;
176
0
    int nBestScore = -1;
177
0
    int nBestReachability = -1;
178
0
    {
179
0
        LOCK(g_maplocalhost_mutex);
180
0
        for (const auto& [local_addr, local_service_info] : mapLocalHost) {
  Branch (180:59): [True: 0, False: 0]
181
            // For privacy reasons, don't advertise our privacy-network address
182
            // to other networks and don't advertise our other-network address
183
            // to privacy networks.
184
0
            if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
  Branch (184:17): [True: 0, False: 0]
185
0
                && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
  Branch (185:21): [True: 0, False: 0]
  Branch (185:50): [True: 0, False: 0]
186
0
                continue;
187
0
            }
188
0
            const int nScore{local_service_info.nScore};
189
0
            const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190
0
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
  Branch (190:17): [True: 0, False: 0]
  Branch (190:55): [True: 0, False: 0]
  Branch (190:93): [True: 0, False: 0]
191
0
                addr.emplace(CService{local_addr, local_service_info.nPort});
192
0
                nBestReachability = nReachability;
193
0
                nBestScore = nScore;
194
0
            }
195
0
        }
196
0
    }
197
0
    return addr;
198
0
}
199
200
//! Convert the serialized seeds into usable address objects.
201
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202
0
{
203
    // It'll only connect to one or two seed nodes because once it connects,
204
    // it'll get a pile of addresses with newer timestamps.
205
    // Seed nodes are given a random 'last seen time' of between one and two
206
    // weeks ago.
207
0
    const auto one_week{7 * 24h};
208
0
    std::vector<CAddress> vSeedsOut;
209
0
    FastRandomContext rng;
210
0
    ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
211
0
    while (!s.eof()) {
  Branch (211:12): [True: 0, False: 0]
212
0
        CService endpoint;
213
0
        s >> endpoint;
214
0
        CAddress addr{endpoint, SeedsServiceFlags()};
215
0
        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216
0
        LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
217
0
        vSeedsOut.push_back(addr);
218
0
    }
219
0
    return vSeedsOut;
220
0
}
221
222
// Determine the "best" local address for a particular peer.
223
// If none, return the unroutable 0.0.0.0 but filled in with
224
// the normal parameters, since the IP may be changed to a useful
225
// one by discovery.
226
CService GetLocalAddress(const CNode& peer)
227
0
{
228
0
    return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
229
0
}
230
231
static int GetnScore(const CService& addr)
232
0
{
233
0
    LOCK(g_maplocalhost_mutex);
234
0
    const auto it = mapLocalHost.find(addr);
235
0
    return (it != mapLocalHost.end()) ? it->second.nScore : 0;
  Branch (235:12): [True: 0, False: 0]
236
0
}
237
238
// Is our peer's addrLocal potentially useful as an external IP source?
239
[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240
0
{
241
0
    CService addrLocal = pnode->GetAddrLocal();
242
0
    return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
  Branch (242:12): [True: 0, False: 0]
  Branch (242:25): [True: 0, False: 0]
  Branch (242:53): [True: 0, False: 0]
243
0
           g_reachable_nets.Contains(addrLocal);
  Branch (243:12): [True: 0, False: 0]
244
0
}
245
246
std::optional<CService> GetLocalAddrForPeer(CNode& node)
247
0
{
248
0
    CService addrLocal{GetLocalAddress(node)};
249
    // If discovery is enabled, sometimes give our peer the address it
250
    // tells us that it sees us as in case it has a better idea of our
251
    // address than we do.
252
0
    FastRandomContext rng;
253
0
    if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
  Branch (253:9): [True: 0, False: 0]
  Branch (253:40): [True: 0, False: 0]
254
0
         rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
  Branch (254:10): [True: 0, False: 0]
  Branch (254:23): [True: 0, False: 0]
255
0
    {
256
0
        if (node.IsInboundConn()) {
  Branch (256:13): [True: 0, False: 0]
257
            // For inbound connections, assume both the address and the port
258
            // as seen from the peer.
259
0
            addrLocal = CService{node.GetAddrLocal()};
260
0
        } else {
261
            // For outbound connections, assume just the address as seen from
262
            // the peer and leave the port in `addrLocal` as returned by
263
            // `GetLocalAddress()` above. The peer has no way to observe our
264
            // listening port when we have initiated the connection.
265
0
            addrLocal.SetIP(node.GetAddrLocal());
266
0
        }
267
0
    }
268
0
    if (addrLocal.IsRoutable()) {
  Branch (268:9): [True: 0, False: 0]
269
0
        LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
270
0
        return addrLocal;
271
0
    }
272
    // Address is unroutable. Don't advertise.
273
0
    return std::nullopt;
274
0
}
275
276
// learn a new local address
277
bool AddLocal(const CService& addr_, int nScore)
278
0
{
279
0
    CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280
281
0
    if (!addr.IsRoutable())
  Branch (281:9): [True: 0, False: 0]
282
0
        return false;
283
284
0
    if (!fDiscover && nScore < LOCAL_MANUAL)
  Branch (284:9): [True: 0, False: 0]
  Branch (284:23): [True: 0, False: 0]
285
0
        return false;
286
287
0
    if (!g_reachable_nets.Contains(addr))
  Branch (287:9): [True: 0, False: 0]
288
0
        return false;
289
290
0
    LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291
292
0
    {
293
0
        LOCK(g_maplocalhost_mutex);
294
0
        const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295
0
        LocalServiceInfo &info = it->second;
296
0
        if (is_newly_added || nScore >= info.nScore) {
  Branch (296:13): [True: 0, False: 0]
  Branch (296:31): [True: 0, False: 0]
297
0
            info.nScore = nScore + (is_newly_added ? 0 : 1);
  Branch (297:37): [True: 0, False: 0]
298
0
            info.nPort = addr.GetPort();
299
0
        }
300
0
    }
301
302
0
    return true;
303
0
}
304
305
bool AddLocal(const CNetAddr &addr, int nScore)
306
0
{
307
0
    return AddLocal(CService(addr, GetListenPort()), nScore);
308
0
}
309
310
void RemoveLocal(const CService& addr)
311
0
{
312
0
    LOCK(g_maplocalhost_mutex);
313
0
    LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314
0
    mapLocalHost.erase(addr);
315
0
}
316
317
/** vote for a local address */
318
bool SeenLocal(const CService& addr)
319
0
{
320
0
    LOCK(g_maplocalhost_mutex);
321
0
    const auto it = mapLocalHost.find(addr);
322
0
    if (it == mapLocalHost.end()) return false;
  Branch (322:9): [True: 0, False: 0]
323
0
    ++it->second.nScore;
324
0
    return true;
325
0
}
326
327
328
/** check whether a given address is potentially local */
329
bool IsLocal(const CService& addr)
330
0
{
331
0
    LOCK(g_maplocalhost_mutex);
332
0
    return mapLocalHost.count(addr) > 0;
333
0
}
334
335
CNode* CConnman::FindNode(const CNetAddr& ip)
336
0
{
337
0
    LOCK(m_nodes_mutex);
338
0
    for (CNode* pnode : m_nodes) {
  Branch (338:23): [True: 0, False: 0]
339
0
      if (static_cast<CNetAddr>(pnode->addr) == ip) {
  Branch (339:11): [True: 0, False: 0]
340
0
            return pnode;
341
0
        }
342
0
    }
343
0
    return nullptr;
344
0
}
345
346
CNode* CConnman::FindNode(const std::string& addrName)
347
0
{
348
0
    LOCK(m_nodes_mutex);
349
0
    for (CNode* pnode : m_nodes) {
  Branch (349:23): [True: 0, False: 0]
350
0
        if (pnode->m_addr_name == addrName) {
  Branch (350:13): [True: 0, False: 0]
351
0
            return pnode;
352
0
        }
353
0
    }
354
0
    return nullptr;
355
0
}
356
357
CNode* CConnman::FindNode(const CService& addr)
358
0
{
359
0
    LOCK(m_nodes_mutex);
360
0
    for (CNode* pnode : m_nodes) {
  Branch (360:23): [True: 0, False: 0]
361
0
        if (static_cast<CService>(pnode->addr) == addr) {
  Branch (361:13): [True: 0, False: 0]
362
0
            return pnode;
363
0
        }
364
0
    }
365
0
    return nullptr;
366
0
}
367
368
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
369
0
{
370
0
    return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
  Branch (370:12): [True: 0, False: 0]
  Branch (370:53): [True: 0, False: 0]
371
0
}
372
373
bool CConnman::CheckIncomingNonce(uint64_t nonce)
374
0
{
375
0
    LOCK(m_nodes_mutex);
376
0
    for (const CNode* pnode : m_nodes) {
  Branch (376:29): [True: 0, False: 0]
377
0
        if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
  Branch (377:13): [True: 0, False: 0]
  Branch (377:47): [True: 0, False: 0]
  Branch (377:74): [True: 0, False: 0]
378
0
            return false;
379
0
    }
380
0
    return true;
381
0
}
382
383
/** Get the bind address for a socket as CService. */
384
static CService GetBindAddress(const Sock& sock)
385
0
{
386
0
    CService addr_bind;
387
0
    struct sockaddr_storage sockaddr_bind;
388
0
    socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389
0
    if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
  Branch (389:9): [True: 0, False: 0]
390
0
        addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
391
0
    } else {
392
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
393
0
    }
394
0
    return addr_bind;
395
0
}
396
397
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398
0
{
399
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
400
0
    assert(conn_type != ConnectionType::INBOUND);
401
402
0
    if (pszDest == nullptr) {
  Branch (402:9): [True: 0, False: 0]
403
0
        if (IsLocal(addrConnect))
  Branch (403:13): [True: 0, False: 0]
404
0
            return nullptr;
405
406
        // Look for an existing connection
407
0
        CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408
0
        if (pnode)
  Branch (408:13): [True: 0, False: 0]
409
0
        {
410
0
            LogPrintf("Failed to open new connection, already connected\n");
411
0
            return nullptr;
412
0
        }
413
0
    }
414
415
0
    LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
416
0
        use_v2transport ? "v2" : "v1",
417
0
        pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418
0
        Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419
420
    // Resolve
421
0
    const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
  Branch (421:33): [True: 0, False: 0]
422
0
                                                     m_params.GetDefaultPort()};
423
424
    // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425
0
    std::vector<CAddress> connect_to{};
426
0
    if (pszDest) {
  Branch (426:9): [True: 0, False: 0]
427
0
        std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
  Branch (427:70): [True: 0, False: 0]
  Branch (427:85): [True: 0, False: 0]
428
0
        if (!resolved.empty()) {
  Branch (428:13): [True: 0, False: 0]
429
0
            std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430
            // If the connection is made by name, it can be the case that the name resolves to more than one address.
431
            // We don't want to connect any more of them if we are already connected to one
432
0
            for (const auto& r : resolved) {
  Branch (432:32): [True: 0, False: 0]
433
0
                addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434
0
                if (!addrConnect.IsValid()) {
  Branch (434:21): [True: 0, False: 0]
435
0
                    LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
436
0
                    return nullptr;
437
0
                }
438
                // It is possible that we already have a connection to the IP/port pszDest resolved to.
439
                // In that case, drop the connection that was just created.
440
0
                LOCK(m_nodes_mutex);
441
0
                CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442
0
                if (pnode) {
  Branch (442:21): [True: 0, False: 0]
443
0
                    LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444
0
                    return nullptr;
445
0
                }
446
                // Add the address to the resolved addresses vector so we can try to connect to it later on
447
0
                connect_to.push_back(addrConnect);
448
0
            }
449
0
        } else {
450
            // For resolution via proxy
451
0
            connect_to.push_back(addrConnect);
452
0
        }
453
0
    } else {
454
        // Connect via addrConnect directly
455
0
        connect_to.push_back(addrConnect);
456
0
    }
457
458
    // Connect
459
0
    std::unique_ptr<Sock> sock;
460
0
    Proxy proxy;
461
0
    CService addr_bind;
462
0
    assert(!addr_bind.IsValid());
463
0
    std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464
465
0
    for (auto& target_addr: connect_to) {
  Branch (465:27): [True: 0, False: 0]
466
0
        if (target_addr.IsValid()) {
  Branch (466:13): [True: 0, False: 0]
467
0
            const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468
0
            bool proxyConnectionFailed = false;
469
470
0
            if (target_addr.IsI2P() && use_proxy) {
  Branch (470:17): [True: 0, False: 0]
  Branch (470:40): [True: 0, False: 0]
471
0
                i2p::Connection conn;
472
0
                bool connected{false};
473
474
0
                if (m_i2p_sam_session) {
  Branch (474:21): [True: 0, False: 0]
475
0
                    connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476
0
                } else {
477
0
                    {
478
0
                        LOCK(m_unused_i2p_sessions_mutex);
479
0
                        if (m_unused_i2p_sessions.empty()) {
  Branch (479:29): [True: 0, False: 0]
480
0
                            i2p_transient_session =
481
0
                                std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482
0
                        } else {
483
0
                            i2p_transient_session.swap(m_unused_i2p_sessions.front());
484
0
                            m_unused_i2p_sessions.pop();
485
0
                        }
486
0
                    }
487
0
                    connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488
0
                    if (!connected) {
  Branch (488:25): [True: 0, False: 0]
489
0
                        LOCK(m_unused_i2p_sessions_mutex);
490
0
                        if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
  Branch (490:29): [True: 0, False: 0]
491
0
                            m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492
0
                        }
493
0
                    }
494
0
                }
495
496
0
                if (connected) {
  Branch (496:21): [True: 0, False: 0]
497
0
                    sock = std::move(conn.sock);
498
0
                    addr_bind = conn.me;
499
0
                }
500
0
            } else if (use_proxy) {
  Branch (500:24): [True: 0, False: 0]
501
0
                LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
502
0
                sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
503
0
            } else {
504
                // no proxy needed (none set for target network)
505
0
                sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506
0
            }
507
0
            if (!proxyConnectionFailed) {
  Branch (507:17): [True: 0, False: 0]
508
                // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509
                // the proxy, mark this as an attempt.
510
0
                addrman.Attempt(target_addr, fCountFailure);
511
0
            }
512
0
        } else if (pszDest && GetNameProxy(proxy)) {
  Branch (512:20): [True: 0, False: 0]
  Branch (512:31): [True: 0, False: 0]
513
0
            std::string host;
514
0
            uint16_t port{default_port};
515
0
            SplitHostPort(std::string(pszDest), port, host);
516
0
            bool proxyConnectionFailed;
517
0
            sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518
0
        }
519
        // Check any other resolved address (if any) if we fail to connect
520
0
        if (!sock) {
  Branch (520:13): [True: 0, False: 0]
521
0
            continue;
522
0
        }
523
524
0
        NetPermissionFlags permission_flags = NetPermissionFlags::None;
525
0
        std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
  Branch (525:70): [True: 0, False: 0]
526
0
        AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527
528
        // Add node
529
0
        NodeId id = GetNewNodeId();
530
0
        uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
531
0
        if (!addr_bind.IsValid()) {
  Branch (531:13): [True: 0, False: 0]
532
0
            addr_bind = GetBindAddress(*sock);
533
0
        }
534
0
        CNode* pnode = new CNode(id,
535
0
                                std::move(sock),
536
0
                                target_addr,
537
0
                                CalculateKeyedNetGroup(target_addr),
538
0
                                nonce,
539
0
                                addr_bind,
540
0
                                pszDest ? pszDest : "",
  Branch (540:33): [True: 0, False: 0]
541
0
                                conn_type,
542
0
                                /*inbound_onion=*/false,
543
0
                                CNodeOptions{
544
0
                                    .permission_flags = permission_flags,
545
0
                                    .i2p_sam_session = std::move(i2p_transient_session),
546
0
                                    .recv_flood_size = nReceiveFloodSize,
547
0
                                    .use_v2transport = use_v2transport,
548
0
                                });
549
0
        pnode->AddRef();
550
551
        // We're making a new connection, harvest entropy from the time (and our peer count)
552
0
        RandAddEvent((uint32_t)id);
553
554
0
        return pnode;
555
0
    }
556
557
0
    return nullptr;
558
0
}
559
560
void CNode::CloseSocketDisconnect()
561
0
{
562
0
    fDisconnect = true;
563
0
    LOCK(m_sock_mutex);
564
0
    if (m_sock) {
  Branch (564:9): [True: 0, False: 0]
565
0
        LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
566
0
        m_sock.reset();
567
568
0
        TRACEPOINT(net, closed_connection,
569
0
            GetId(),
570
0
            m_addr_name.c_str(),
571
0
            ConnectionTypeAsString().c_str(),
572
0
            ConnectedThroughNetwork(),
573
0
            Ticks<std::chrono::seconds>(m_connected));
574
0
    }
575
0
    m_i2p_sam_session.reset();
576
0
}
577
578
0
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579
0
    for (const auto& subnet : ranges) {
  Branch (579:29): [True: 0, False: 0]
580
0
        if (subnet.m_subnet.Match(addr)) {
  Branch (580:13): [True: 0, False: 0]
581
0
            NetPermissions::AddFlag(flags, subnet.m_flags);
582
0
        }
583
0
    }
584
0
    if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
  Branch (584:9): [True: 0, False: 0]
585
0
        NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
586
0
        if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
  Branch (586:13): [True: 0, False: 0]
587
0
        if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
  Branch (587:13): [True: 0, False: 0]
588
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
589
0
        NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
590
0
    }
591
0
}
592
593
CService CNode::GetAddrLocal() const
594
0
{
595
0
    AssertLockNotHeld(m_addr_local_mutex);
596
0
    LOCK(m_addr_local_mutex);
597
0
    return m_addr_local;
598
0
}
599
600
0
void CNode::SetAddrLocal(const CService& addrLocalIn) {
601
0
    AssertLockNotHeld(m_addr_local_mutex);
602
0
    LOCK(m_addr_local_mutex);
603
0
    if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
604
0
        m_addr_local = addrLocalIn;
605
0
    }
606
0
}
607
608
Network CNode::ConnectedThroughNetwork() const
609
0
{
610
0
    return m_inbound_onion ? NET_ONION : addr.GetNetClass();
  Branch (610:12): [True: 0, False: 0]
611
0
}
612
613
bool CNode::IsConnectedThroughPrivacyNet() const
614
0
{
615
0
    return m_inbound_onion || addr.IsPrivacyNet();
  Branch (615:12): [True: 0, False: 0]
  Branch (615:31): [True: 0, False: 0]
616
0
}
617
618
#undef X
619
0
#define X(name) stats.name = name
620
void CNode::CopyStats(CNodeStats& stats)
621
0
{
622
0
    stats.nodeid = this->GetId();
623
0
    X(addr);
624
0
    X(addrBind);
625
0
    stats.m_network = ConnectedThroughNetwork();
626
0
    X(m_last_send);
627
0
    X(m_last_recv);
628
0
    X(m_last_tx_time);
629
0
    X(m_last_block_time);
630
0
    X(m_connected);
631
0
    X(m_addr_name);
632
0
    X(nVersion);
633
0
    {
634
0
        LOCK(m_subver_mutex);
635
0
        X(cleanSubVer);
636
0
    }
637
0
    stats.fInbound = IsInboundConn();
638
0
    X(m_bip152_highbandwidth_to);
639
0
    X(m_bip152_highbandwidth_from);
640
0
    {
641
0
        LOCK(cs_vSend);
642
0
        X(mapSendBytesPerMsgType);
643
0
        X(nSendBytes);
644
0
    }
645
0
    {
646
0
        LOCK(cs_vRecv);
647
0
        X(mapRecvBytesPerMsgType);
648
0
        X(nRecvBytes);
649
0
        Transport::Info info = m_transport->GetInfo();
650
0
        stats.m_transport_type = info.transport_type;
651
0
        if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
  Branch (651:13): [True: 0, False: 0]
652
0
    }
653
0
    X(m_permission_flags);
654
655
0
    X(m_last_ping_time);
656
0
    X(m_min_ping_time);
657
658
    // Leave string empty if addrLocal invalid (not filled in yet)
659
0
    CService addrLocalUnlocked = GetAddrLocal();
660
0
    stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
  Branch (660:23): [True: 0, False: 0]
661
662
0
    X(m_conn_type);
663
0
}
664
#undef X
665
666
bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
667
0
{
668
0
    complete = false;
669
0
    const auto time = GetTime<std::chrono::microseconds>();
670
0
    LOCK(cs_vRecv);
671
0
    m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672
0
    nRecvBytes += msg_bytes.size();
673
0
    while (msg_bytes.size() > 0) {
  Branch (673:12): [True: 0, False: 0]
674
        // absorb network data
675
0
        if (!m_transport->ReceivedBytes(msg_bytes)) {
  Branch (675:13): [True: 0, False: 0]
676
            // Serious transport problem, disconnect from the peer.
677
0
            return false;
678
0
        }
679
680
0
        if (m_transport->ReceivedMessageComplete()) {
  Branch (680:13): [True: 0, False: 0]
681
            // decompose a transport agnostic CNetMessage from the deserializer
682
0
            bool reject_message{false};
683
0
            CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684
0
            if (reject_message) {
  Branch (684:17): [True: 0, False: 0]
685
                // Message deserialization failed. Drop the message but don't disconnect the peer.
686
                // store the size of the corrupt message
687
0
                mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688
0
                continue;
689
0
            }
690
691
            // Store received bytes per message type.
692
            // To prevent a memory DOS, only allow known message types.
693
0
            auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694
0
            if (i == mapRecvBytesPerMsgType.end()) {
  Branch (694:17): [True: 0, False: 0]
695
0
                i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696
0
            }
697
0
            assert(i != mapRecvBytesPerMsgType.end());
698
0
            i->second += msg.m_raw_message_size;
699
700
            // push the message to the process queue,
701
0
            vRecvMsg.push_back(std::move(msg));
702
703
0
            complete = true;
704
0
        }
705
0
    }
706
707
0
    return true;
708
0
}
709
710
std::string CNode::LogIP(bool log_ip) const
711
0
{
712
0
    return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
  Branch (712:12): [True: 0, False: 0]
713
0
}
714
715
std::string CNode::DisconnectMsg(bool log_ip) const
716
0
{
717
0
    return strprintf("disconnecting peer=%d%s",
718
0
                     GetId(),
719
0
                     LogIP(log_ip));
720
0
}
721
722
V1Transport::V1Transport(const NodeId node_id) noexcept
723
0
    : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724
0
{
725
0
    LOCK(m_recv_mutex);
726
0
    Reset();
727
0
}
728
729
Transport::Info V1Transport::GetInfo() const noexcept
730
0
{
731
0
    return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732
0
}
733
734
int V1Transport::readHeader(Span<const uint8_t> msg_bytes)
735
0
{
736
0
    AssertLockHeld(m_recv_mutex);
737
    // copy data to temporary parsing buffer
738
0
    unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740
741
0
    memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742
0
    nHdrPos += nCopy;
743
744
    // if header incomplete, exit
745
0
    if (nHdrPos < CMessageHeader::HEADER_SIZE)
  Branch (745:9): [True: 0, False: 0]
746
0
        return nCopy;
747
748
    // deserialize to CMessageHeader
749
0
    try {
750
0
        hdrbuf >> hdr;
751
0
    }
752
0
    catch (const std::exception&) {
753
0
        LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
754
0
        return -1;
755
0
    }
756
757
    // Check start string, network magic
758
0
    if (hdr.pchMessageStart != m_magic_bytes) {
  Branch (758:9): [True: 0, False: 0]
759
0
        LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760
0
        return -1;
761
0
    }
762
763
    // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764
0
    if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
  Branch (764:9): [True: 0, False: 0]
  Branch (764:40): [True: 0, False: 0]
765
0
        LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
766
0
        return -1;
767
0
    }
768
769
    // switch state to reading message data
770
0
    in_data = true;
771
772
0
    return nCopy;
773
0
}
774
775
int V1Transport::readData(Span<const uint8_t> msg_bytes)
776
0
{
777
0
    AssertLockHeld(m_recv_mutex);
778
0
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
779
0
    unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
780
781
0
    if (vRecv.size() < nDataPos + nCopy) {
  Branch (781:9): [True: 0, False: 0]
782
        // Allocate up to 256 KiB ahead, but never more than the total message size.
783
0
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
784
0
    }
785
786
0
    hasher.Write(msg_bytes.first(nCopy));
787
0
    memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
788
0
    nDataPos += nCopy;
789
790
0
    return nCopy;
791
0
}
792
793
const uint256& V1Transport::GetMessageHash() const
794
0
{
795
0
    AssertLockHeld(m_recv_mutex);
796
0
    assert(CompleteInternal());
797
0
    if (data_hash.IsNull())
  Branch (797:9): [True: 0, False: 0]
798
0
        hasher.Finalize(data_hash);
799
0
    return data_hash;
800
0
}
801
802
CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
803
0
{
804
0
    AssertLockNotHeld(m_recv_mutex);
805
    // Initialize out parameter
806
0
    reject_message = false;
807
    // decompose a single CNetMessage from the TransportDeserializer
808
0
    LOCK(m_recv_mutex);
809
0
    CNetMessage msg(std::move(vRecv));
810
811
    // store message type string, time, and sizes
812
0
    msg.m_type = hdr.GetMessageType();
813
0
    msg.m_time = time;
814
0
    msg.m_message_size = hdr.nMessageSize;
815
0
    msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
816
817
0
    uint256 hash = GetMessageHash();
818
819
    // We just received a message off the wire, harvest entropy from the time (and the message checksum)
820
0
    RandAddEvent(ReadLE32(hash.begin()));
821
822
    // Check checksum and header message type string
823
0
    if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
  Branch (823:9): [True: 0, False: 0]
824
0
        LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
825
0
                 SanitizeString(msg.m_type), msg.m_message_size,
826
0
                 HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
827
0
                 HexStr(hdr.pchChecksum),
828
0
                 m_node_id);
829
0
        reject_message = true;
830
0
    } else if (!hdr.IsMessageTypeValid()) {
  Branch (830:16): [True: 0, False: 0]
831
0
        LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
832
0
                 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
833
0
        reject_message = true;
834
0
    }
835
836
    // Always reset the network deserializer (prepare for the next message)
837
0
    Reset();
838
0
    return msg;
839
0
}
840
841
bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
842
0
{
843
0
    AssertLockNotHeld(m_send_mutex);
844
    // Determine whether a new message can be set.
845
0
    LOCK(m_send_mutex);
846
0
    if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
  Branch (846:9): [True: 0, False: 0]
  Branch (846:29): [True: 0, False: 0]
847
848
    // create dbl-sha256 checksum
849
0
    uint256 hash = Hash(msg.data);
850
851
    // create header
852
0
    CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
853
0
    memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
854
855
    // serialize header
856
0
    m_header_to_send.clear();
857
0
    VectorWriter{m_header_to_send, 0, hdr};
858
859
    // update state
860
0
    m_message_to_send = std::move(msg);
861
0
    m_sending_header = true;
862
0
    m_bytes_sent = 0;
863
0
    return true;
864
0
}
865
866
Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
867
0
{
868
0
    AssertLockNotHeld(m_send_mutex);
869
0
    LOCK(m_send_mutex);
870
0
    if (m_sending_header) {
  Branch (870:9): [True: 0, False: 0]
871
0
        return {Span{m_header_to_send}.subspan(m_bytes_sent),
872
                // We have more to send after the header if the message has payload, or if there
873
                // is a next message after that.
874
0
                have_next_message || !m_message_to_send.data.empty(),
  Branch (874:17): [True: 0, False: 0]
  Branch (874:38): [True: 0, False: 0]
875
0
                m_message_to_send.m_type
876
0
               };
877
0
    } else {
878
0
        return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
879
                // We only have more to send after this message's payload if there is another
880
                // message.
881
0
                have_next_message,
882
0
                m_message_to_send.m_type
883
0
               };
884
0
    }
885
0
}
886
887
void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
888
0
{
889
0
    AssertLockNotHeld(m_send_mutex);
890
0
    LOCK(m_send_mutex);
891
0
    m_bytes_sent += bytes_sent;
892
0
    if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
  Branch (892:9): [True: 0, False: 0]
  Branch (892:29): [True: 0, False: 0]
893
        // We're done sending a message's header. Switch to sending its data bytes.
894
0
        m_sending_header = false;
895
0
        m_bytes_sent = 0;
896
0
    } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
  Branch (896:16): [True: 0, False: 0]
  Branch (896:37): [True: 0, False: 0]
897
        // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
898
0
        ClearShrink(m_message_to_send.data);
899
0
        m_bytes_sent = 0;
900
0
    }
901
0
}
902
903
size_t V1Transport::GetSendMemoryUsage() const noexcept
904
0
{
905
0
    AssertLockNotHeld(m_send_mutex);
906
0
    LOCK(m_send_mutex);
907
    // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
908
0
    return m_message_to_send.GetMemoryUsage();
909
0
}
910
911
namespace {
912
913
/** List of short messages as defined in BIP324, in order.
914
 *
915
 * Only message types that are actually implemented in this codebase need to be listed, as other
916
 * messages get ignored anyway - whether we know how to decode them or not.
917
 */
918
const std::array<std::string, 33> V2_MESSAGE_IDS = {
919
    "", // 12 bytes follow encoding the message type like in V1
920
    NetMsgType::ADDR,
921
    NetMsgType::BLOCK,
922
    NetMsgType::BLOCKTXN,
923
    NetMsgType::CMPCTBLOCK,
924
    NetMsgType::FEEFILTER,
925
    NetMsgType::FILTERADD,
926
    NetMsgType::FILTERCLEAR,
927
    NetMsgType::FILTERLOAD,
928
    NetMsgType::GETBLOCKS,
929
    NetMsgType::GETBLOCKTXN,
930
    NetMsgType::GETDATA,
931
    NetMsgType::GETHEADERS,
932
    NetMsgType::HEADERS,
933
    NetMsgType::INV,
934
    NetMsgType::MEMPOOL,
935
    NetMsgType::MERKLEBLOCK,
936
    NetMsgType::NOTFOUND,
937
    NetMsgType::PING,
938
    NetMsgType::PONG,
939
    NetMsgType::SENDCMPCT,
940
    NetMsgType::TX,
941
    NetMsgType::GETCFILTERS,
942
    NetMsgType::CFILTER,
943
    NetMsgType::GETCFHEADERS,
944
    NetMsgType::CFHEADERS,
945
    NetMsgType::GETCFCHECKPT,
946
    NetMsgType::CFCHECKPT,
947
    NetMsgType::ADDRV2,
948
    // Unimplemented message types that are assigned in BIP324:
949
    "",
950
    "",
951
    "",
952
    ""
953
};
954
955
class V2MessageMap
956
{
957
    std::unordered_map<std::string, uint8_t> m_map;
958
959
public:
960
    V2MessageMap() noexcept
961
0
    {
962
0
        for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
  Branch (962:28): [True: 0, False: 0]
963
0
            m_map.emplace(V2_MESSAGE_IDS[i], i);
964
0
        }
965
0
    }
966
967
    std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
968
0
    {
969
0
        auto it = m_map.find(message_name);
970
0
        if (it == m_map.end()) return std::nullopt;
  Branch (970:13): [True: 0, False: 0]
971
0
        return it->second;
972
0
    }
973
};
974
975
const V2MessageMap V2_MESSAGE_MAP;
976
977
std::vector<uint8_t> GenerateRandomGarbage() noexcept
978
0
{
979
0
    std::vector<uint8_t> ret;
980
0
    FastRandomContext rng;
981
0
    ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
982
0
    rng.fillrand(MakeWritableByteSpan(ret));
983
0
    return ret;
984
0
}
985
986
} // namespace
987
988
void V2Transport::StartSendingHandshake() noexcept
989
0
{
990
0
    AssertLockHeld(m_send_mutex);
991
0
    Assume(m_send_state == SendState::AWAITING_KEY);
992
0
    Assume(m_send_buffer.empty());
993
    // Initialize the send buffer with ellswift pubkey + provided garbage.
994
0
    m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
995
0
    std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
996
0
    std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
997
    // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
998
0
}
999
1000
V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1001
0
    : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1002
0
      m_v1_fallback{nodeid},
1003
0
      m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
  Branch (1003:20): [True: 0, False: 0]
1004
0
      m_send_garbage{std::move(garbage)},
1005
0
      m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
  Branch (1005:20): [True: 0, False: 0]
1006
0
{
1007
0
    Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1008
    // Start sending immediately if we're the initiator of the connection.
1009
0
    if (initiating) {
  Branch (1009:9): [True: 0, False: 0]
1010
0
        LOCK(m_send_mutex);
1011
0
        StartSendingHandshake();
1012
0
    }
1013
0
}
1014
1015
V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1016
0
    : V2Transport{nodeid, initiating, GenerateRandomKey(),
1017
0
                  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1018
1019
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1020
0
{
1021
0
    AssertLockHeld(m_recv_mutex);
1022
    // Enforce allowed state transitions.
1023
0
    switch (m_recv_state) {
  Branch (1023:13): [True: 0, False: 0]
1024
0
    case RecvState::KEY_MAYBE_V1:
  Branch (1024:5): [True: 0, False: 0]
1025
0
        Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1026
0
        break;
1027
0
    case RecvState::KEY:
  Branch (1027:5): [True: 0, False: 0]
1028
0
        Assume(recv_state == RecvState::GARB_GARBTERM);
1029
0
        break;
1030
0
    case RecvState::GARB_GARBTERM:
  Branch (1030:5): [True: 0, False: 0]
1031
0
        Assume(recv_state == RecvState::VERSION);
1032
0
        break;
1033
0
    case RecvState::VERSION:
  Branch (1033:5): [True: 0, False: 0]
1034
0
        Assume(recv_state == RecvState::APP);
1035
0
        break;
1036
0
    case RecvState::APP:
  Branch (1036:5): [True: 0, False: 0]
1037
0
        Assume(recv_state == RecvState::APP_READY);
1038
0
        break;
1039
0
    case RecvState::APP_READY:
  Branch (1039:5): [True: 0, False: 0]
1040
0
        Assume(recv_state == RecvState::APP);
1041
0
        break;
1042
0
    case RecvState::V1:
  Branch (1042:5): [True: 0, False: 0]
1043
0
        Assume(false); // V1 state cannot be left
1044
0
        break;
1045
0
    }
1046
    // Change state.
1047
0
    m_recv_state = recv_state;
1048
0
}
1049
1050
void V2Transport::SetSendState(SendState send_state) noexcept
1051
0
{
1052
0
    AssertLockHeld(m_send_mutex);
1053
    // Enforce allowed state transitions.
1054
0
    switch (m_send_state) {
  Branch (1054:13): [True: 0, False: 0]
1055
0
    case SendState::MAYBE_V1:
  Branch (1055:5): [True: 0, False: 0]
1056
0
        Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1057
0
        break;
1058
0
    case SendState::AWAITING_KEY:
  Branch (1058:5): [True: 0, False: 0]
1059
0
        Assume(send_state == SendState::READY);
1060
0
        break;
1061
0
    case SendState::READY:
  Branch (1061:5): [True: 0, False: 0]
1062
0
    case SendState::V1:
  Branch (1062:5): [True: 0, False: 0]
1063
0
        Assume(false); // Final states
1064
0
        break;
1065
0
    }
1066
    // Change state.
1067
0
    m_send_state = send_state;
1068
0
}
1069
1070
bool V2Transport::ReceivedMessageComplete() const noexcept
1071
0
{
1072
0
    AssertLockNotHeld(m_recv_mutex);
1073
0
    LOCK(m_recv_mutex);
1074
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
  Branch (1074:9): [True: 0, False: 0]
1075
1076
0
    return m_recv_state == RecvState::APP_READY;
1077
0
}
1078
1079
void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1080
0
{
1081
0
    AssertLockHeld(m_recv_mutex);
1082
0
    AssertLockNotHeld(m_send_mutex);
1083
0
    Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1084
    // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1085
    // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1086
    // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1087
    // sending of the key.
1088
0
    std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1089
0
    std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1090
0
    Assume(m_recv_buffer.size() <= v1_prefix.size());
1091
0
    if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
  Branch (1091:9): [True: 0, False: 0]
1092
        // Mismatch with v1 prefix, so we can assume a v2 connection.
1093
0
        SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1094
        // Transition the sender to AWAITING_KEY state and start sending.
1095
0
        LOCK(m_send_mutex);
1096
0
        SetSendState(SendState::AWAITING_KEY);
1097
0
        StartSendingHandshake();
1098
0
    } else if (m_recv_buffer.size() == v1_prefix.size()) {
  Branch (1098:16): [True: 0, False: 0]
1099
        // Full match with the v1 prefix, so fall back to v1 behavior.
1100
0
        LOCK(m_send_mutex);
1101
0
        Span<const uint8_t> feedback{m_recv_buffer};
1102
        // Feed already received bytes to v1 transport. It should always accept these, because it's
1103
        // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1104
0
        bool ret = m_v1_fallback.ReceivedBytes(feedback);
1105
0
        Assume(feedback.empty());
1106
0
        Assume(ret);
1107
0
        SetReceiveState(RecvState::V1);
1108
0
        SetSendState(SendState::V1);
1109
        // Reset v2 transport buffers to save memory.
1110
0
        ClearShrink(m_recv_buffer);
1111
0
        ClearShrink(m_send_buffer);
1112
0
    } else {
1113
        // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1114
0
    }
1115
0
}
1116
1117
bool V2Transport::ProcessReceivedKeyBytes() noexcept
1118
0
{
1119
0
    AssertLockHeld(m_recv_mutex);
1120
0
    AssertLockNotHeld(m_send_mutex);
1121
0
    Assume(m_recv_state == RecvState::KEY);
1122
0
    Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1123
1124
    // As a special exception, if bytes 4-16 of the key on a responder connection match the
1125
    // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1126
    // (if they did, we'd have switched to V1 state already), assume this is a peer from
1127
    // another network, and disconnect them. They will almost certainly disconnect us too when
1128
    // they receive our uniformly random key and garbage, but detecting this case specially
1129
    // means we can log it.
1130
0
    static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1131
0
    static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1132
0
    if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
  Branch (1132:9): [True: 0, False: 0]
  Branch (1132:26): [True: 0, False: 0]
1133
0
        if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
  Branch (1133:13): [True: 0, False: 0]
1134
0
            LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1135
0
                     HexStr(Span(m_recv_buffer).first(OFFSET)));
1136
0
            return false;
1137
0
        }
1138
0
    }
1139
1140
0
    if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
  Branch (1140:9): [True: 0, False: 0]
1141
        // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1142
        // our key to initialize the encryption ciphers.
1143
1144
        // Initialize the ciphers.
1145
0
        EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1146
0
        LOCK(m_send_mutex);
1147
0
        m_cipher.Initialize(ellswift, m_initiating);
1148
1149
        // Switch receiver state to GARB_GARBTERM.
1150
0
        SetReceiveState(RecvState::GARB_GARBTERM);
1151
0
        m_recv_buffer.clear();
1152
1153
        // Switch sender state to READY.
1154
0
        SetSendState(SendState::READY);
1155
1156
        // Append the garbage terminator to the send buffer.
1157
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1158
0
        std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1159
0
                  m_cipher.GetSendGarbageTerminator().end(),
1160
0
                  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1161
1162
        // Construct version packet in the send buffer, with the sent garbage data as AAD.
1163
0
        m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1164
0
        m_cipher.Encrypt(
1165
0
            /*contents=*/VERSION_CONTENTS,
1166
0
            /*aad=*/MakeByteSpan(m_send_garbage),
1167
0
            /*ignore=*/false,
1168
0
            /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1169
        // We no longer need the garbage.
1170
0
        ClearShrink(m_send_garbage);
1171
0
    } else {
1172
        // We still have to receive more key bytes.
1173
0
    }
1174
0
    return true;
1175
0
}
1176
1177
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1178
0
{
1179
0
    AssertLockHeld(m_recv_mutex);
1180
0
    Assume(m_recv_state == RecvState::GARB_GARBTERM);
1181
0
    Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1182
0
    if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
  Branch (1182:9): [True: 0, False: 0]
1183
0
        if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
  Branch (1183:13): [True: 0, False: 0]
1184
            // Garbage terminator received. Store garbage to authenticate it as AAD later.
1185
0
            m_recv_aad = std::move(m_recv_buffer);
1186
0
            m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1187
0
            m_recv_buffer.clear();
1188
0
            SetReceiveState(RecvState::VERSION);
1189
0
        } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
  Branch (1189:20): [True: 0, False: 0]
1190
            // We've reached the maximum length for garbage + garbage terminator, and the
1191
            // terminator still does not match. Abort.
1192
0
            LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1193
0
            return false;
1194
0
        } else {
1195
            // We still need to receive more garbage and/or garbage terminator bytes.
1196
0
        }
1197
0
    } else {
1198
        // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1199
        // more first.
1200
0
    }
1201
0
    return true;
1202
0
}
1203
1204
bool V2Transport::ProcessReceivedPacketBytes() noexcept
1205
0
{
1206
0
    AssertLockHeld(m_recv_mutex);
1207
0
    Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1208
1209
    // The maximum permitted contents length for a packet, consisting of:
1210
    // - 0x00 byte: indicating long message type encoding
1211
    // - 12 bytes of message type
1212
    // - payload
1213
0
    static constexpr size_t MAX_CONTENTS_LEN =
1214
0
        1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1215
0
        std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1216
1217
0
    if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
  Branch (1217:9): [True: 0, False: 0]
1218
        // Length descriptor received.
1219
0
        m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1220
0
        if (m_recv_len > MAX_CONTENTS_LEN) {
  Branch (1220:13): [True: 0, False: 0]
1221
0
            LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1222
0
            return false;
1223
0
        }
1224
0
    } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
  Branch (1224:16): [True: 0, False: 0]
  Branch (1224:67): [True: 0, False: 0]
1225
        // Ciphertext received, decrypt it into m_recv_decode_buffer.
1226
        // Note that it is impossible to reach this branch without hitting the branch above first,
1227
        // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1228
0
        m_recv_decode_buffer.resize(m_recv_len);
1229
0
        bool ignore{false};
1230
0
        bool ret = m_cipher.Decrypt(
1231
0
            /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1232
0
            /*aad=*/MakeByteSpan(m_recv_aad),
1233
0
            /*ignore=*/ignore,
1234
0
            /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1235
0
        if (!ret) {
  Branch (1235:13): [True: 0, False: 0]
1236
0
            LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1237
0
            return false;
1238
0
        }
1239
        // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1240
0
        ClearShrink(m_recv_aad);
1241
        // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1242
0
        RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1243
1244
        // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1245
        // decoy, which we simply ignore, use the current state to decide what to do with it.
1246
0
        if (!ignore) {
  Branch (1246:13): [True: 0, False: 0]
1247
0
            switch (m_recv_state) {
1248
0
            case RecvState::VERSION:
  Branch (1248:13): [True: 0, False: 0]
1249
                // Version message received; transition to application phase. The contents is
1250
                // ignored, but can be used for future extensions.
1251
0
                SetReceiveState(RecvState::APP);
1252
0
                break;
1253
0
            case RecvState::APP:
  Branch (1253:13): [True: 0, False: 0]
1254
                // Application message decrypted correctly. It can be extracted using GetMessage().
1255
0
                SetReceiveState(RecvState::APP_READY);
1256
0
                break;
1257
0
            default:
  Branch (1257:13): [True: 0, False: 0]
1258
                // Any other state is invalid (this function should not have been called).
1259
0
                Assume(false);
1260
0
            }
1261
0
        }
1262
        // Wipe the receive buffer where the next packet will be received into.
1263
0
        ClearShrink(m_recv_buffer);
1264
        // In all but APP_READY state, we can wipe the decoded contents.
1265
0
        if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
  Branch (1265:13): [True: 0, False: 0]
1266
0
    } else {
1267
        // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1268
        // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1269
0
    }
1270
0
    return true;
1271
0
}
1272
1273
size_t V2Transport::GetMaxBytesToProcess() noexcept
1274
0
{
1275
0
    AssertLockHeld(m_recv_mutex);
1276
0
    switch (m_recv_state) {
  Branch (1276:13): [True: 0, False: 0]
1277
0
    case RecvState::KEY_MAYBE_V1:
  Branch (1277:5): [True: 0, False: 0]
1278
        // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1279
        // receive buffer.
1280
0
        Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1281
        // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1282
        // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1283
        // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1284
        // back into the m_v1_fallback V1 transport.
1285
0
        return V1_PREFIX_LEN - m_recv_buffer.size();
1286
0
    case RecvState::KEY:
  Branch (1286:5): [True: 0, False: 0]
1287
        // During the KEY state, we only allow the 64-byte key into the receive buffer.
1288
0
        Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1289
        // As long as we have not received the other side's public key, don't receive more than
1290
        // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1291
        // key exchange first.
1292
0
        return EllSwiftPubKey::size() - m_recv_buffer.size();
1293
0
    case RecvState::GARB_GARBTERM:
  Branch (1293:5): [True: 0, False: 0]
1294
        // Process garbage bytes one by one (because terminator may appear anywhere).
1295
0
        return 1;
1296
0
    case RecvState::VERSION:
  Branch (1296:5): [True: 0, False: 0]
1297
0
    case RecvState::APP:
  Branch (1297:5): [True: 0, False: 0]
1298
        // These three states all involve decoding a packet. Process the length descriptor first,
1299
        // so that we know where the current packet ends (and we don't process bytes from the next
1300
        // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1301
0
        if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
  Branch (1301:13): [True: 0, False: 0]
1302
0
            return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1303
0
        } else {
1304
            // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1305
            // and encoded packet size, which includes the 3 bytes due to the packet length.
1306
            // When transitioning from receiving the packet length to receiving its ciphertext,
1307
            // the encrypted packet length is left in the receive buffer.
1308
0
            return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1309
0
        }
1310
0
    case RecvState::APP_READY:
  Branch (1310:5): [True: 0, False: 0]
1311
        // No bytes can be processed until GetMessage() is called.
1312
0
        return 0;
1313
0
    case RecvState::V1:
  Branch (1313:5): [True: 0, False: 0]
1314
        // Not allowed (must be dealt with by the caller).
1315
0
        Assume(false);
1316
0
        return 0;
1317
0
    }
1318
0
    Assume(false); // unreachable
1319
0
    return 0;
1320
0
}
1321
1322
bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
1323
0
{
1324
0
    AssertLockNotHeld(m_recv_mutex);
1325
    /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1326
0
    static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1327
1328
0
    LOCK(m_recv_mutex);
1329
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
  Branch (1329:9): [True: 0, False: 0]
1330
1331
    // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1332
    // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1333
    // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1334
    // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1335
0
    while (!msg_bytes.empty()) {
  Branch (1335:12): [True: 0, False: 0]
1336
        // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1337
0
        size_t max_read = GetMaxBytesToProcess();
1338
1339
        // Reserve space in the buffer if there is not enough.
1340
0
        if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
  Branch (1340:13): [True: 0, False: 0]
1341
0
            switch (m_recv_state) {
  Branch (1341:21): [True: 0, False: 0]
1342
0
            case RecvState::KEY_MAYBE_V1:
  Branch (1342:13): [True: 0, False: 0]
1343
0
            case RecvState::KEY:
  Branch (1343:13): [True: 0, False: 0]
1344
0
            case RecvState::GARB_GARBTERM:
  Branch (1344:13): [True: 0, False: 0]
1345
                // During the initial states (key/garbage), allocate once to fit the maximum (4111
1346
                // bytes).
1347
0
                m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1348
0
                break;
1349
0
            case RecvState::VERSION:
  Branch (1349:13): [True: 0, False: 0]
1350
0
            case RecvState::APP: {
  Branch (1350:13): [True: 0, False: 0]
1351
                // During states where a packet is being received, as much as is expected but never
1352
                // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1353
                // This means attackers that want to cause us to waste allocated memory are limited
1354
                // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1355
                // MAX_RESERVE_AHEAD more than they've actually sent us.
1356
0
                size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1357
0
                m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1358
0
                break;
1359
0
            }
1360
0
            case RecvState::APP_READY:
  Branch (1360:13): [True: 0, False: 0]
1361
                // The buffer is empty in this state.
1362
0
                Assume(m_recv_buffer.empty());
1363
0
                break;
1364
0
            case RecvState::V1:
  Branch (1364:13): [True: 0, False: 0]
1365
                // Should have bailed out above.
1366
0
                Assume(false);
1367
0
                break;
1368
0
            }
1369
0
        }
1370
1371
        // Can't read more than provided input.
1372
0
        max_read = std::min(msg_bytes.size(), max_read);
1373
        // Copy data to buffer.
1374
0
        m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1375
0
        msg_bytes = msg_bytes.subspan(max_read);
1376
1377
        // Process data in the buffer.
1378
0
        switch (m_recv_state) {
  Branch (1378:17): [True: 0, False: 0]
1379
0
        case RecvState::KEY_MAYBE_V1:
  Branch (1379:9): [True: 0, False: 0]
1380
0
            ProcessReceivedMaybeV1Bytes();
1381
0
            if (m_recv_state == RecvState::V1) return true;
  Branch (1381:17): [True: 0, False: 0]
1382
0
            break;
1383
1384
0
        case RecvState::KEY:
  Branch (1384:9): [True: 0, False: 0]
1385
0
            if (!ProcessReceivedKeyBytes()) return false;
  Branch (1385:17): [True: 0, False: 0]
1386
0
            break;
1387
1388
0
        case RecvState::GARB_GARBTERM:
  Branch (1388:9): [True: 0, False: 0]
1389
0
            if (!ProcessReceivedGarbageBytes()) return false;
  Branch (1389:17): [True: 0, False: 0]
1390
0
            break;
1391
1392
0
        case RecvState::VERSION:
  Branch (1392:9): [True: 0, False: 0]
1393
0
        case RecvState::APP:
  Branch (1393:9): [True: 0, False: 0]
1394
0
            if (!ProcessReceivedPacketBytes()) return false;
  Branch (1394:17): [True: 0, False: 0]
1395
0
            break;
1396
1397
0
        case RecvState::APP_READY:
  Branch (1397:9): [True: 0, False: 0]
1398
0
            return true;
1399
1400
0
        case RecvState::V1:
  Branch (1400:9): [True: 0, False: 0]
1401
            // We should have bailed out before.
1402
0
            Assume(false);
1403
0
            break;
1404
0
        }
1405
        // Make sure we have made progress before continuing.
1406
0
        Assume(max_read > 0);
1407
0
    }
1408
1409
0
    return true;
1410
0
}
1411
1412
std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1413
0
{
1414
0
    if (contents.size() == 0) return std::nullopt; // Empty contents
  Branch (1414:9): [True: 0, False: 0]
1415
0
    uint8_t first_byte = contents[0];
1416
0
    contents = contents.subspan(1); // Strip first byte.
1417
1418
0
    if (first_byte != 0) {
  Branch (1418:9): [True: 0, False: 0]
1419
        // Short (1 byte) encoding.
1420
0
        if (first_byte < std::size(V2_MESSAGE_IDS)) {
  Branch (1420:13): [True: 0, False: 0]
1421
            // Valid short message id.
1422
0
            return V2_MESSAGE_IDS[first_byte];
1423
0
        } else {
1424
            // Unknown short message id.
1425
0
            return std::nullopt;
1426
0
        }
1427
0
    }
1428
1429
0
    if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
  Branch (1429:9): [True: 0, False: 0]
1430
0
        return std::nullopt; // Long encoding needs 12 message type bytes.
1431
0
    }
1432
1433
0
    size_t msg_type_len{0};
1434
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
  Branch (1434:12): [True: 0, False: 0]
  Branch (1434:64): [True: 0, False: 0]
1435
        // Verify that message type bytes before the first 0x00 are in range.
1436
0
        if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
  Branch (1436:13): [True: 0, False: 0]
  Branch (1436:45): [True: 0, False: 0]
1437
0
            return {};
1438
0
        }
1439
0
        ++msg_type_len;
1440
0
    }
1441
0
    std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1442
0
    while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
  Branch (1442:12): [True: 0, False: 0]
1443
        // Verify that message type bytes after the first 0x00 are also 0x00.
1444
0
        if (contents[msg_type_len] != 0) return {};
  Branch (1444:13): [True: 0, False: 0]
1445
0
        ++msg_type_len;
1446
0
    }
1447
    // Strip message type bytes of contents.
1448
0
    contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1449
0
    return ret;
1450
0
}
1451
1452
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1453
0
{
1454
0
    AssertLockNotHeld(m_recv_mutex);
1455
0
    LOCK(m_recv_mutex);
1456
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
  Branch (1456:9): [True: 0, False: 0]
1457
1458
0
    Assume(m_recv_state == RecvState::APP_READY);
1459
0
    Span<const uint8_t> contents{m_recv_decode_buffer};
1460
0
    auto msg_type = GetMessageType(contents);
1461
0
    CNetMessage msg{DataStream{}};
1462
    // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1463
0
    msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1464
0
    if (msg_type) {
  Branch (1464:9): [True: 0, False: 0]
1465
0
        reject_message = false;
1466
0
        msg.m_type = std::move(*msg_type);
1467
0
        msg.m_time = time;
1468
0
        msg.m_message_size = contents.size();
1469
0
        msg.m_recv.resize(contents.size());
1470
0
        std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1471
0
    } else {
1472
0
        LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1473
0
        reject_message = true;
1474
0
    }
1475
0
    ClearShrink(m_recv_decode_buffer);
1476
0
    SetReceiveState(RecvState::APP);
1477
1478
0
    return msg;
1479
0
}
1480
1481
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1482
0
{
1483
0
    AssertLockNotHeld(m_send_mutex);
1484
0
    LOCK(m_send_mutex);
1485
0
    if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
  Branch (1485:9): [True: 0, False: 0]
1486
    // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1487
    // is available) and the send buffer is empty. This limits the number of messages in the send
1488
    // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1489
0
    if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
  Branch (1489:11): [True: 0, False: 0]
  Branch (1489:47): [True: 0, False: 0]
1490
    // Construct contents (encoding message type + payload).
1491
0
    std::vector<uint8_t> contents;
1492
0
    auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1493
0
    if (short_message_id) {
  Branch (1493:9): [True: 0, False: 0]
1494
0
        contents.resize(1 + msg.data.size());
1495
0
        contents[0] = *short_message_id;
1496
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1497
0
    } else {
1498
        // Initialize with zeroes, and then write the message type string starting at offset 1.
1499
        // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1500
0
        contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1501
0
        std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1502
0
        std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1503
0
    }
1504
    // Construct ciphertext in send buffer.
1505
0
    m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1506
0
    m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1507
0
    m_send_type = msg.m_type;
1508
    // Release memory
1509
0
    ClearShrink(msg.data);
1510
0
    return true;
1511
0
}
1512
1513
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1514
0
{
1515
0
    AssertLockNotHeld(m_send_mutex);
1516
0
    LOCK(m_send_mutex);
1517
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
  Branch (1517:9): [True: 0, False: 0]
1518
1519
0
    if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
  Branch (1519:9): [True: 0, False: 0]
1520
0
    Assume(m_send_pos <= m_send_buffer.size());
1521
0
    return {
1522
0
        Span{m_send_buffer}.subspan(m_send_pos),
1523
        // We only have more to send after the current m_send_buffer if there is a (next)
1524
        // message to be sent, and we're capable of sending packets. */
1525
0
        have_next_message && m_send_state == SendState::READY,
  Branch (1525:9): [True: 0, False: 0]
  Branch (1525:30): [True: 0, False: 0]
1526
0
        m_send_type
1527
0
    };
1528
0
}
1529
1530
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1531
0
{
1532
0
    AssertLockNotHeld(m_send_mutex);
1533
0
    LOCK(m_send_mutex);
1534
0
    if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
  Branch (1534:9): [True: 0, False: 0]
1535
1536
0
    if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
  Branch (1536:9): [True: 0, False: 0]
  Branch (1536:52): [True: 0, False: 0]
  Branch (1536:71): [True: 0, False: 0]
1537
0
        LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1538
0
    }
1539
1540
0
    m_send_pos += bytes_sent;
1541
0
    Assume(m_send_pos <= m_send_buffer.size());
1542
0
    if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
  Branch (1542:9): [True: 0, False: 0]
1543
0
        m_sent_v1_header_worth = true;
1544
0
    }
1545
    // Wipe the buffer when everything is sent.
1546
0
    if (m_send_pos == m_send_buffer.size()) {
  Branch (1546:9): [True: 0, False: 0]
1547
0
        m_send_pos = 0;
1548
0
        ClearShrink(m_send_buffer);
1549
0
    }
1550
0
}
1551
1552
bool V2Transport::ShouldReconnectV1() const noexcept
1553
0
{
1554
0
    AssertLockNotHeld(m_send_mutex);
1555
0
    AssertLockNotHeld(m_recv_mutex);
1556
    // Only outgoing connections need reconnection.
1557
0
    if (!m_initiating) return false;
  Branch (1557:9): [True: 0, False: 0]
1558
1559
0
    LOCK(m_recv_mutex);
1560
    // We only reconnect in the very first state and when the receive buffer is empty. Together
1561
    // these conditions imply nothing has been received so far.
1562
0
    if (m_recv_state != RecvState::KEY) return false;
  Branch (1562:9): [True: 0, False: 0]
1563
0
    if (!m_recv_buffer.empty()) return false;
  Branch (1563:9): [True: 0, False: 0]
1564
    // Check if we've sent enough for the other side to disconnect us (if it was V1).
1565
0
    LOCK(m_send_mutex);
1566
0
    return m_sent_v1_header_worth;
1567
0
}
1568
1569
size_t V2Transport::GetSendMemoryUsage() const noexcept
1570
0
{
1571
0
    AssertLockNotHeld(m_send_mutex);
1572
0
    LOCK(m_send_mutex);
1573
0
    if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
  Branch (1573:9): [True: 0, False: 0]
1574
1575
0
    return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1576
0
}
1577
1578
Transport::Info V2Transport::GetInfo() const noexcept
1579
0
{
1580
0
    AssertLockNotHeld(m_recv_mutex);
1581
0
    LOCK(m_recv_mutex);
1582
0
    if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
  Branch (1582:9): [True: 0, False: 0]
1583
1584
0
    Transport::Info info;
1585
1586
    // Do not report v2 and session ID until the version packet has been received
1587
    // and verified (confirming that the other side very likely has the same keys as us).
1588
0
    if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
  Branch (1588:9): [True: 0, False: 0]
  Branch (1588:52): [True: 0, False: 0]
1589
0
        m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
  Branch (1589:9): [True: 0, False: 0]
  Branch (1589:53): [True: 0, False: 0]
1590
0
        info.transport_type = TransportProtocolType::V2;
1591
0
        info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1592
0
    } else {
1593
0
        info.transport_type = TransportProtocolType::DETECTING;
1594
0
    }
1595
1596
0
    return info;
1597
0
}
1598
1599
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1600
0
{
1601
0
    auto it = node.vSendMsg.begin();
1602
0
    size_t nSentSize = 0;
1603
0
    bool data_left{false}; //!< second return value (whether unsent data remains)
1604
0
    std::optional<bool> expected_more;
1605
1606
0
    while (true) {
  Branch (1606:12): [Folded - Ignored]
1607
0
        if (it != node.vSendMsg.end()) {
  Branch (1607:13): [True: 0, False: 0]
1608
            // If possible, move one message from the send queue to the transport. This fails when
1609
            // there is an existing message still being sent, or (for v2 transports) when the
1610
            // handshake has not yet completed.
1611
0
            size_t memusage = it->GetMemoryUsage();
1612
0
            if (node.m_transport->SetMessageToSend(*it)) {
  Branch (1612:17): [True: 0, False: 0]
1613
                // Update memory usage of send buffer (as *it will be deleted).
1614
0
                node.m_send_memusage -= memusage;
1615
0
                ++it;
1616
0
            }
1617
0
        }
1618
0
        const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1619
        // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1620
        // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1621
        // verify that the previously returned 'more' was correct.
1622
0
        if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
  Branch (1622:13): [True: 0, False: 0]
1623
0
        expected_more = more;
1624
0
        data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1625
0
        int nBytes = 0;
1626
0
        if (!data.empty()) {
  Branch (1626:13): [True: 0, False: 0]
1627
0
            LOCK(node.m_sock_mutex);
1628
            // There is no socket in case we've already disconnected, or in test cases without
1629
            // real connections. In these cases, we bail out immediately and just leave things
1630
            // in the send queue and transport.
1631
0
            if (!node.m_sock) {
  Branch (1631:17): [True: 0, False: 0]
1632
0
                break;
1633
0
            }
1634
0
            int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1635
0
#ifdef MSG_MORE
1636
0
            if (more) {
  Branch (1636:17): [True: 0, False: 0]
1637
0
                flags |= MSG_MORE;
1638
0
            }
1639
0
#endif
1640
0
            nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1641
0
        }
1642
0
        if (nBytes > 0) {
  Branch (1642:13): [True: 0, False: 0]
1643
0
            node.m_last_send = GetTime<std::chrono::seconds>();
1644
0
            node.nSendBytes += nBytes;
1645
            // Notify transport that bytes have been processed.
1646
0
            node.m_transport->MarkBytesSent(nBytes);
1647
            // Update statistics per message type.
1648
0
            if (!msg_type.empty()) { // don't report v2 handshake bytes for now
  Branch (1648:17): [True: 0, False: 0]
1649
0
                node.AccountForSentBytes(msg_type, nBytes);
1650
0
            }
1651
0
            nSentSize += nBytes;
1652
0
            if ((size_t)nBytes != data.size()) {
  Branch (1652:17): [True: 0, False: 0]
1653
                // could not send full message; stop sending more
1654
0
                break;
1655
0
            }
1656
0
        } else {
1657
0
            if (nBytes < 0) {
  Branch (1657:17): [True: 0, False: 0]
1658
                // error
1659
0
                int nErr = WSAGetLastError();
1660
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
  Branch (1660:21): [True: 0, False: 0]
  Branch (1660:47): [True: 0, False: 0]
  Branch (1660:70): [True: 0, False: 0]
  Branch (1660:90): [True: 0, False: 0]
1661
0
                    LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1662
0
                    node.CloseSocketDisconnect();
1663
0
                }
1664
0
            }
1665
0
            break;
1666
0
        }
1667
0
    }
1668
1669
0
    node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1670
1671
0
    if (it == node.vSendMsg.end()) {
  Branch (1671:9): [True: 0, False: 0]
1672
0
        assert(node.m_send_memusage == 0);
1673
0
    }
1674
0
    node.vSendMsg.erase(node.vSendMsg.begin(), it);
1675
0
    return {nSentSize, data_left};
1676
0
}
1677
1678
/** Try to find a connection to evict when the node is full.
1679
 *  Extreme care must be taken to avoid opening the node to attacker
1680
 *   triggered network partitioning.
1681
 *  The strategy used here is to protect a small number of peers
1682
 *   for each of several distinct characteristics which are difficult
1683
 *   to forge.  In order to partition a node the attacker must be
1684
 *   simultaneously better at all of them than honest peers.
1685
 */
1686
bool CConnman::AttemptToEvictConnection()
1687
0
{
1688
0
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
1689
0
    {
1690
1691
0
        LOCK(m_nodes_mutex);
1692
0
        for (const CNode* node : m_nodes) {
  Branch (1692:32): [True: 0, False: 0]
1693
0
            if (node->fDisconnect)
  Branch (1693:17): [True: 0, False: 0]
1694
0
                continue;
1695
0
            NodeEvictionCandidate candidate{
1696
0
                .id = node->GetId(),
1697
0
                .m_connected = node->m_connected,
1698
0
                .m_min_ping_time = node->m_min_ping_time,
1699
0
                .m_last_block_time = node->m_last_block_time,
1700
0
                .m_last_tx_time = node->m_last_tx_time,
1701
0
                .fRelevantServices = node->m_has_all_wanted_services,
1702
0
                .m_relay_txs = node->m_relays_txs.load(),
1703
0
                .fBloomFilter = node->m_bloom_filter_loaded.load(),
1704
0
                .nKeyedNetGroup = node->nKeyedNetGroup,
1705
0
                .prefer_evict = node->m_prefer_evict,
1706
0
                .m_is_local = node->addr.IsLocal(),
1707
0
                .m_network = node->ConnectedThroughNetwork(),
1708
0
                .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1709
0
                .m_conn_type = node->m_conn_type,
1710
0
            };
1711
0
            vEvictionCandidates.push_back(candidate);
1712
0
        }
1713
0
    }
1714
0
    const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1715
0
    if (!node_id_to_evict) {
  Branch (1715:9): [True: 0, False: 0]
1716
0
        return false;
1717
0
    }
1718
0
    LOCK(m_nodes_mutex);
1719
0
    for (CNode* pnode : m_nodes) {
  Branch (1719:23): [True: 0, False: 0]
1720
0
        if (pnode->GetId() == *node_id_to_evict) {
  Branch (1720:13): [True: 0, False: 0]
1721
0
            LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1722
0
            TRACEPOINT(net, evicted_inbound_connection,
1723
0
                pnode->GetId(),
1724
0
                pnode->m_addr_name.c_str(),
1725
0
                pnode->ConnectionTypeAsString().c_str(),
1726
0
                pnode->ConnectedThroughNetwork(),
1727
0
                Ticks<std::chrono::seconds>(pnode->m_connected));
1728
0
            pnode->fDisconnect = true;
1729
0
            return true;
1730
0
        }
1731
0
    }
1732
0
    return false;
1733
0
}
1734
1735
0
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1736
0
    struct sockaddr_storage sockaddr;
1737
0
    socklen_t len = sizeof(sockaddr);
1738
0
    auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1739
1740
0
    if (!sock) {
  Branch (1740:9): [True: 0, False: 0]
1741
0
        const int nErr = WSAGetLastError();
1742
0
        if (nErr != WSAEWOULDBLOCK) {
  Branch (1742:13): [True: 0, False: 0]
1743
0
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1744
0
        }
1745
0
        return;
1746
0
    }
1747
1748
0
    CService addr;
1749
0
    if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
  Branch (1749:9): [True: 0, False: 0]
1750
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1751
0
    } else {
1752
0
        addr = MaybeFlipIPv6toCJDNS(addr);
1753
0
    }
1754
1755
0
    const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1756
1757
0
    NetPermissionFlags permission_flags = NetPermissionFlags::None;
1758
0
    hListenSocket.AddSocketPermissionFlags(permission_flags);
1759
1760
0
    CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1761
0
}
1762
1763
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1764
                                            NetPermissionFlags permission_flags,
1765
                                            const CService& addr_bind,
1766
                                            const CService& addr)
1767
0
{
1768
0
    int nInbound = 0;
1769
1770
0
    AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1771
1772
0
    {
1773
0
        LOCK(m_nodes_mutex);
1774
0
        for (const CNode* pnode : m_nodes) {
  Branch (1774:33): [True: 0, False: 0]
1775
0
            if (pnode->IsInboundConn()) nInbound++;
  Branch (1775:17): [True: 0, False: 0]
1776
0
        }
1777
0
    }
1778
1779
0
    if (!fNetworkActive) {
  Branch (1779:9): [True: 0, False: 0]
1780
0
        LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1781
0
        return;
1782
0
    }
1783
1784
0
    if (!sock->IsSelectable()) {
  Branch (1784:9): [True: 0, False: 0]
1785
0
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1786
0
        return;
1787
0
    }
1788
1789
    // According to the internet TCP_NODELAY is not carried into accepted sockets
1790
    // on all platforms.  Set it again here just to be sure.
1791
0
    const int on{1};
1792
0
    if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
  Branch (1792:9): [True: 0, False: 0]
1793
0
        LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1794
0
                 addr.ToStringAddrPort());
1795
0
    }
1796
1797
    // Don't accept connections from banned peers.
1798
0
    bool banned = m_banman && m_banman->IsBanned(addr);
  Branch (1798:19): [True: 0, False: 0]
  Branch (1798:31): [True: 0, False: 0]
1799
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
  Branch (1799:9): [True: 0, False: 0]
  Branch (1799:82): [True: 0, False: 0]
1800
0
    {
1801
0
        LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1802
0
        return;
1803
0
    }
1804
1805
    // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1806
0
    bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
  Branch (1806:24): [True: 0, False: 0]
  Branch (1806:36): [True: 0, False: 0]
1807
0
    if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
  Branch (1807:9): [True: 0, False: 0]
  Branch (1807:82): [True: 0, False: 0]
  Branch (1807:115): [True: 0, False: 0]
1808
0
    {
1809
0
        LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1810
0
        return;
1811
0
    }
1812
1813
0
    if (nInbound >= m_max_inbound)
  Branch (1813:9): [True: 0, False: 0]
1814
0
    {
1815
0
        if (!AttemptToEvictConnection()) {
  Branch (1815:13): [True: 0, False: 0]
1816
            // No connection to evict, disconnect the new connection
1817
0
            LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1818
0
            return;
1819
0
        }
1820
0
    }
1821
1822
0
    NodeId id = GetNewNodeId();
1823
0
    uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1824
1825
0
    const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1826
    // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1827
    // detected, so use it whenever we signal NODE_P2P_V2.
1828
0
    ServiceFlags local_services = GetLocalServices();
1829
0
    const bool use_v2transport(local_services & NODE_P2P_V2);
1830
1831
0
    CNode* pnode = new CNode(id,
1832
0
                             std::move(sock),
1833
0
                             CAddress{addr, NODE_NONE},
1834
0
                             CalculateKeyedNetGroup(addr),
1835
0
                             nonce,
1836
0
                             addr_bind,
1837
0
                             /*addrNameIn=*/"",
1838
0
                             ConnectionType::INBOUND,
1839
0
                             inbound_onion,
1840
0
                             CNodeOptions{
1841
0
                                 .permission_flags = permission_flags,
1842
0
                                 .prefer_evict = discouraged,
1843
0
                                 .recv_flood_size = nReceiveFloodSize,
1844
0
                                 .use_v2transport = use_v2transport,
1845
0
                             });
1846
0
    pnode->AddRef();
1847
0
    m_msgproc->InitializeNode(*pnode, local_services);
1848
0
    {
1849
0
        LOCK(m_nodes_mutex);
1850
0
        m_nodes.push_back(pnode);
1851
0
    }
1852
0
    LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1853
0
    TRACEPOINT(net, inbound_connection,
1854
0
        pnode->GetId(),
1855
0
        pnode->m_addr_name.c_str(),
1856
0
        pnode->ConnectionTypeAsString().c_str(),
1857
0
        pnode->ConnectedThroughNetwork(),
1858
0
        GetNodeCount(ConnectionDirection::In));
1859
1860
    // We received a new connection, harvest entropy from the time (and our peer count)
1861
0
    RandAddEvent((uint32_t)id);
1862
0
}
1863
1864
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1865
0
{
1866
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1867
0
    std::optional<int> max_connections;
1868
0
    switch (conn_type) {
  Branch (1868:13): [True: 0, False: 0]
1869
0
    case ConnectionType::INBOUND:
  Branch (1869:5): [True: 0, False: 0]
1870
0
    case ConnectionType::MANUAL:
  Branch (1870:5): [True: 0, False: 0]
1871
0
        return false;
1872
0
    case ConnectionType::OUTBOUND_FULL_RELAY:
  Branch (1872:5): [True: 0, False: 0]
1873
0
        max_connections = m_max_outbound_full_relay;
1874
0
        break;
1875
0
    case ConnectionType::BLOCK_RELAY:
  Branch (1875:5): [True: 0, False: 0]
1876
0
        max_connections = m_max_outbound_block_relay;
1877
0
        break;
1878
    // no limit for ADDR_FETCH because -seednode has no limit either
1879
0
    case ConnectionType::ADDR_FETCH:
  Branch (1879:5): [True: 0, False: 0]
1880
0
        break;
1881
    // no limit for FEELER connections since they're short-lived
1882
0
    case ConnectionType::FEELER:
  Branch (1882:5): [True: 0, False: 0]
1883
0
        break;
1884
0
    } // no default case, so the compiler can warn about missing cases
1885
1886
    // Count existing connections
1887
0
    int existing_connections = WITH_LOCK(m_nodes_mutex,
1888
0
                                         return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1889
1890
    // Max connections of specified type already exist
1891
0
    if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
  Branch (1891:9): [True: 0, False: 0]
  Branch (1891:44): [True: 0, False: 0]
1892
1893
    // Max total outbound connections already exist
1894
0
    CSemaphoreGrant grant(*semOutbound, true);
1895
0
    if (!grant) return false;
  Branch (1895:9): [True: 0, False: 0]
1896
1897
0
    OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1898
0
    return true;
1899
0
}
1900
1901
void CConnman::DisconnectNodes()
1902
0
{
1903
0
    AssertLockNotHeld(m_nodes_mutex);
1904
0
    AssertLockNotHeld(m_reconnections_mutex);
1905
1906
    // Use a temporary variable to accumulate desired reconnections, so we don't need
1907
    // m_reconnections_mutex while holding m_nodes_mutex.
1908
0
    decltype(m_reconnections) reconnections_to_add;
1909
1910
0
    {
1911
0
        LOCK(m_nodes_mutex);
1912
1913
0
        if (!fNetworkActive) {
  Branch (1913:13): [True: 0, False: 0]
1914
            // Disconnect any connected nodes
1915
0
            for (CNode* pnode : m_nodes) {
  Branch (1915:31): [True: 0, False: 0]
1916
0
                if (!pnode->fDisconnect) {
  Branch (1916:21): [True: 0, False: 0]
1917
0
                    LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1918
0
                    pnode->fDisconnect = true;
1919
0
                }
1920
0
            }
1921
0
        }
1922
1923
        // Disconnect unused nodes
1924
0
        std::vector<CNode*> nodes_copy = m_nodes;
1925
0
        for (CNode* pnode : nodes_copy)
  Branch (1925:27): [True: 0, False: 0]
1926
0
        {
1927
0
            if (pnode->fDisconnect)
  Branch (1927:17): [True: 0, False: 0]
1928
0
            {
1929
                // remove from m_nodes
1930
0
                m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1931
1932
                // Add to reconnection list if appropriate. We don't reconnect right here, because
1933
                // the creation of a connection is a blocking operation (up to several seconds),
1934
                // and we don't want to hold up the socket handler thread for that long.
1935
0
                if (pnode->m_transport->ShouldReconnectV1()) {
  Branch (1935:21): [True: 0, False: 0]
1936
0
                    reconnections_to_add.push_back({
1937
0
                        .addr_connect = pnode->addr,
1938
0
                        .grant = std::move(pnode->grantOutbound),
1939
0
                        .destination = pnode->m_dest,
1940
0
                        .conn_type = pnode->m_conn_type,
1941
0
                        .use_v2transport = false});
1942
0
                    LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1943
0
                }
1944
1945
                // release outbound grant (if any)
1946
0
                pnode->grantOutbound.Release();
1947
1948
                // close socket and cleanup
1949
0
                pnode->CloseSocketDisconnect();
1950
1951
                // update connection count by network
1952
0
                if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
  Branch (1952:21): [True: 0, False: 0]
1953
1954
                // hold in disconnected pool until all refs are released
1955
0
                pnode->Release();
1956
0
                m_nodes_disconnected.push_back(pnode);
1957
0
            }
1958
0
        }
1959
0
    }
1960
0
    {
1961
        // Delete disconnected nodes
1962
0
        std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1963
0
        for (CNode* pnode : nodes_disconnected_copy)
  Branch (1963:27): [True: 0, False: 0]
1964
0
        {
1965
            // Destroy the object only after other threads have stopped using it.
1966
0
            if (pnode->GetRefCount() <= 0) {
  Branch (1966:17): [True: 0, False: 0]
1967
0
                m_nodes_disconnected.remove(pnode);
1968
0
                DeleteNode(pnode);
1969
0
            }
1970
0
        }
1971
0
    }
1972
0
    {
1973
        // Move entries from reconnections_to_add to m_reconnections.
1974
0
        LOCK(m_reconnections_mutex);
1975
0
        m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1976
0
    }
1977
0
}
1978
1979
void CConnman::NotifyNumConnectionsChanged()
1980
0
{
1981
0
    size_t nodes_size;
1982
0
    {
1983
0
        LOCK(m_nodes_mutex);
1984
0
        nodes_size = m_nodes.size();
1985
0
    }
1986
0
    if(nodes_size != nPrevNodeCount) {
  Branch (1986:8): [True: 0, False: 0]
1987
0
        nPrevNodeCount = nodes_size;
1988
0
        if (m_client_interface) {
  Branch (1988:13): [True: 0, False: 0]
1989
0
            m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1990
0
        }
1991
0
    }
1992
0
}
1993
1994
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1995
0
{
1996
0
    return node.m_connected + m_peer_connect_timeout < now;
1997
0
}
1998
1999
bool CConnman::InactivityCheck(const CNode& node) const
2000
0
{
2001
    // Tests that see disconnects after using mocktime can start nodes with a
2002
    // large timeout. For example, -peertimeout=999999999.
2003
0
    const auto now{GetTime<std::chrono::seconds>()};
2004
0
    const auto last_send{node.m_last_send.load()};
2005
0
    const auto last_recv{node.m_last_recv.load()};
2006
2007
0
    if (!ShouldRunInactivityChecks(node, now)) return false;
  Branch (2007:9): [True: 0, False: 0]
2008
2009
0
    bool has_received{last_recv.count() != 0};
2010
0
    bool has_sent{last_send.count() != 0};
2011
2012
0
    if (!has_received || !has_sent) {
  Branch (2012:9): [True: 0, False: 0]
  Branch (2012:26): [True: 0, False: 0]
2013
0
        std::string has_never;
2014
0
        if (!has_received) has_never += ", never received from peer";
  Branch (2014:13): [True: 0, False: 0]
2015
0
        if (!has_sent) has_never += ", never sent to peer";
  Branch (2015:13): [True: 0, False: 0]
2016
0
        LogDebug(BCLog::NET,
2017
0
            "socket no message in first %i seconds%s, %s\n",
2018
0
            count_seconds(m_peer_connect_timeout),
2019
0
            has_never,
2020
0
            node.DisconnectMsg(fLogIPs)
2021
0
        );
2022
0
        return true;
2023
0
    }
2024
2025
0
    if (now > last_send + TIMEOUT_INTERVAL) {
  Branch (2025:9): [True: 0, False: 0]
2026
0
        LogDebug(BCLog::NET,
2027
0
            "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2028
0
            node.DisconnectMsg(fLogIPs)
2029
0
        );
2030
0
        return true;
2031
0
    }
2032
2033
0
    if (now > last_recv + TIMEOUT_INTERVAL) {
  Branch (2033:9): [True: 0, False: 0]
2034
0
        LogDebug(BCLog::NET,
2035
0
            "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2036
0
            node.DisconnectMsg(fLogIPs)
2037
0
        );
2038
0
        return true;
2039
0
    }
2040
2041
0
    if (!node.fSuccessfullyConnected) {
  Branch (2041:9): [True: 0, False: 0]
2042
0
        if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
  Branch (2042:13): [True: 0, False: 0]
2043
0
            LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2044
0
        } else {
2045
0
            LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2046
0
        }
2047
0
        return true;
2048
0
    }
2049
2050
0
    return false;
2051
0
}
2052
2053
Sock::EventsPerSock CConnman::GenerateWaitSockets(Span<CNode* const> nodes)
2054
0
{
2055
0
    Sock::EventsPerSock events_per_sock;
2056
2057
0
    for (const ListenSocket& hListenSocket : vhListenSocket) {
  Branch (2057:44): [True: 0, False: 0]
2058
0
        events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2059
0
    }
2060
2061
0
    for (CNode* pnode : nodes) {
  Branch (2061:23): [True: 0, False: 0]
2062
0
        bool select_recv = !pnode->fPauseRecv;
2063
0
        bool select_send;
2064
0
        {
2065
0
            LOCK(pnode->cs_vSend);
2066
            // Sending is possible if either there are bytes to send right now, or if there will be
2067
            // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2068
            // determines both of these in a single call.
2069
0
            const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2070
0
            select_send = !to_send.empty() || more;
  Branch (2070:27): [True: 0, False: 0]
  Branch (2070:47): [True: 0, False: 0]
2071
0
        }
2072
0
        if (!select_recv && !select_send) continue;
  Branch (2072:13): [True: 0, False: 0]
  Branch (2072:29): [True: 0, False: 0]
2073
2074
0
        LOCK(pnode->m_sock_mutex);
2075
0
        if (pnode->m_sock) {
  Branch (2075:13): [True: 0, False: 0]
2076
0
            Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
  Branch (2076:34): [True: 0, False: 0]
  Branch (2076:67): [True: 0, False: 0]
2077
0
            events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2078
0
        }
2079
0
    }
2080
2081
0
    return events_per_sock;
2082
0
}
2083
2084
void CConnman::SocketHandler()
2085
0
{
2086
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2087
2088
0
    Sock::EventsPerSock events_per_sock;
2089
2090
0
    {
2091
0
        const NodesSnapshot snap{*this, /*shuffle=*/false};
2092
2093
0
        const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2094
2095
        // Check for the readiness of the already connected sockets and the
2096
        // listening sockets in one call ("readiness" as in poll(2) or
2097
        // select(2)). If none are ready, wait for a short while and return
2098
        // empty sets.
2099
0
        events_per_sock = GenerateWaitSockets(snap.Nodes());
2100
0
        if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
  Branch (2100:13): [True: 0, False: 0]
  Branch (2100:13): [True: 0, False: 0]
  Branch (2100:40): [True: 0, False: 0]
2101
0
            interruptNet.sleep_for(timeout);
2102
0
        }
2103
2104
        // Service (send/receive) each of the already connected nodes.
2105
0
        SocketHandlerConnected(snap.Nodes(), events_per_sock);
2106
0
    }
2107
2108
    // Accept new connections from listening sockets.
2109
0
    SocketHandlerListening(events_per_sock);
2110
0
}
2111
2112
void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2113
                                      const Sock::EventsPerSock& events_per_sock)
2114
0
{
2115
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2116
2117
0
    for (CNode* pnode : nodes) {
  Branch (2117:23): [True: 0, False: 0]
2118
0
        if (interruptNet)
  Branch (2118:13): [True: 0, False: 0]
2119
0
            return;
2120
2121
        //
2122
        // Receive
2123
        //
2124
0
        bool recvSet = false;
2125
0
        bool sendSet = false;
2126
0
        bool errorSet = false;
2127
0
        {
2128
0
            LOCK(pnode->m_sock_mutex);
2129
0
            if (!pnode->m_sock) {
  Branch (2129:17): [True: 0, False: 0]
2130
0
                continue;
2131
0
            }
2132
0
            const auto it = events_per_sock.find(pnode->m_sock);
2133
0
            if (it != events_per_sock.end()) {
  Branch (2133:17): [True: 0, False: 0]
2134
0
                recvSet = it->second.occurred & Sock::RECV;
2135
0
                sendSet = it->second.occurred & Sock::SEND;
2136
0
                errorSet = it->second.occurred & Sock::ERR;
2137
0
            }
2138
0
        }
2139
2140
0
        if (sendSet) {
  Branch (2140:13): [True: 0, False: 0]
2141
            // Send data
2142
0
            auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2143
0
            if (bytes_sent) {
  Branch (2143:17): [True: 0, False: 0]
2144
0
                RecordBytesSent(bytes_sent);
2145
2146
                // If both receiving and (non-optimistic) sending were possible, we first attempt
2147
                // sending. If that succeeds, but does not fully drain the send queue, do not
2148
                // attempt to receive. This avoids needlessly queueing data if the remote peer
2149
                // is slow at receiving data, by means of TCP flow control. We only do this when
2150
                // sending actually succeeded to make sure progress is always made; otherwise a
2151
                // deadlock would be possible when both sides have data to send, but neither is
2152
                // receiving.
2153
0
                if (data_left) recvSet = false;
  Branch (2153:21): [True: 0, False: 0]
2154
0
            }
2155
0
        }
2156
2157
0
        if (recvSet || errorSet)
  Branch (2157:13): [True: 0, False: 0]
  Branch (2157:24): [True: 0, False: 0]
2158
0
        {
2159
            // typical socket buffer is 8K-64K
2160
0
            uint8_t pchBuf[0x10000];
2161
0
            int nBytes = 0;
2162
0
            {
2163
0
                LOCK(pnode->m_sock_mutex);
2164
0
                if (!pnode->m_sock) {
  Branch (2164:21): [True: 0, False: 0]
2165
0
                    continue;
2166
0
                }
2167
0
                nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2168
0
            }
2169
0
            if (nBytes > 0)
  Branch (2169:17): [True: 0, False: 0]
2170
0
            {
2171
0
                bool notify = false;
2172
0
                if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
  Branch (2172:21): [True: 0, False: 0]
2173
0
                    LogDebug(BCLog::NET,
2174
0
                        "receiving message bytes failed, %s\n",
2175
0
                        pnode->DisconnectMsg(fLogIPs)
2176
0
                    );
2177
0
                    pnode->CloseSocketDisconnect();
2178
0
                }
2179
0
                RecordBytesRecv(nBytes);
2180
0
                if (notify) {
  Branch (2180:21): [True: 0, False: 0]
2181
0
                    pnode->MarkReceivedMsgsForProcessing();
2182
0
                    WakeMessageHandler();
2183
0
                }
2184
0
            }
2185
0
            else if (nBytes == 0)
  Branch (2185:22): [True: 0, False: 0]
2186
0
            {
2187
                // socket closed gracefully
2188
0
                if (!pnode->fDisconnect) {
  Branch (2188:21): [True: 0, False: 0]
2189
0
                    LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2190
0
                }
2191
0
                pnode->CloseSocketDisconnect();
2192
0
            }
2193
0
            else if (nBytes < 0)
  Branch (2193:22): [True: 0, False: 0]
2194
0
            {
2195
                // error
2196
0
                int nErr = WSAGetLastError();
2197
0
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
  Branch (2197:21): [True: 0, False: 0]
  Branch (2197:47): [True: 0, False: 0]
  Branch (2197:70): [True: 0, False: 0]
  Branch (2197:90): [True: 0, False: 0]
2198
0
                {
2199
0
                    if (!pnode->fDisconnect) {
  Branch (2199:25): [True: 0, False: 0]
2200
0
                        LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2201
0
                    }
2202
0
                    pnode->CloseSocketDisconnect();
2203
0
                }
2204
0
            }
2205
0
        }
2206
2207
0
        if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
  Branch (2207:13): [True: 0, False: 0]
2208
0
    }
2209
0
}
2210
2211
void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2212
0
{
2213
0
    for (const ListenSocket& listen_socket : vhListenSocket) {
  Branch (2213:44): [True: 0, False: 0]
2214
0
        if (interruptNet) {
  Branch (2214:13): [True: 0, False: 0]
2215
0
            return;
2216
0
        }
2217
0
        const auto it = events_per_sock.find(listen_socket.sock);
2218
0
        if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
  Branch (2218:13): [True: 0, False: 0]
  Branch (2218:13): [True: 0, False: 0]
  Branch (2218:44): [True: 0, False: 0]
2219
0
            AcceptConnection(listen_socket);
2220
0
        }
2221
0
    }
2222
0
}
2223
2224
void CConnman::ThreadSocketHandler()
2225
0
{
2226
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
2227
2228
0
    while (!interruptNet)
  Branch (2228:12): [True: 0, False: 0]
2229
0
    {
2230
0
        DisconnectNodes();
2231
0
        NotifyNumConnectionsChanged();
2232
0
        SocketHandler();
2233
0
    }
2234
0
}
2235
2236
void CConnman::WakeMessageHandler()
2237
0
{
2238
0
    {
2239
0
        LOCK(mutexMsgProc);
2240
0
        fMsgProcWake = true;
2241
0
    }
2242
0
    condMsgProc.notify_one();
2243
0
}
2244
2245
void CConnman::ThreadDNSAddressSeed()
2246
0
{
2247
0
    int outbound_connection_count = 0;
2248
2249
0
    if (!gArgs.GetArgs("-seednode").empty()) {
  Branch (2249:9): [True: 0, False: 0]
2250
0
        auto start = NodeClock::now();
2251
0
        constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2252
0
        LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2253
0
        while (!interruptNet) {
  Branch (2253:16): [True: 0, False: 0]
2254
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2254:17): [True: 0, False: 0]
2255
0
                return;
2256
2257
            // Abort if we have spent enough time without reaching our target.
2258
            // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2259
0
            if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
  Branch (2259:17): [True: 0, False: 0]
2260
0
                LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2261
0
                break;
2262
0
            }
2263
2264
0
            outbound_connection_count = GetFullOutboundConnCount();
2265
0
            if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
  Branch (2265:17): [True: 0, False: 0]
2266
0
                LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2267
0
                break;
2268
0
            }
2269
0
        }
2270
0
    }
2271
2272
0
    FastRandomContext rng;
2273
0
    std::vector<std::string> seeds = m_params.DNSSeeds();
2274
0
    std::shuffle(seeds.begin(), seeds.end(), rng);
2275
0
    int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2276
2277
0
    if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
  Branch (2277:9): [True: 0, False: 0]
2278
        // When -forcednsseed is provided, query all.
2279
0
        seeds_right_now = seeds.size();
2280
0
    } else if (addrman.Size() == 0) {
  Branch (2280:16): [True: 0, False: 0]
2281
        // If we have no known peers, query all.
2282
        // This will occur on the first run, or if peers.dat has been
2283
        // deleted.
2284
0
        seeds_right_now = seeds.size();
2285
0
    }
2286
2287
    // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2288
0
    if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
  Branch (2288:9): [True: 0, False: 0]
  Branch (2288:75): [True: 0, False: 0]
2289
        // goal: only query DNS seed if address need is acute
2290
        // * If we have a reasonable number of peers in addrman, spend
2291
        //   some time trying them first. This improves user privacy by
2292
        //   creating fewer identifying DNS requests, reduces trust by
2293
        //   giving seeds less influence on the network topology, and
2294
        //   reduces traffic to the seeds.
2295
        // * When querying DNS seeds query a few at once, this ensures
2296
        //   that we don't give DNS seeds the ability to eclipse nodes
2297
        //   that query them.
2298
        // * If we continue having problems, eventually query all the
2299
        //   DNS seeds, and if that fails too, also try the fixed seeds.
2300
        //   (done in ThreadOpenConnections)
2301
0
        int found = 0;
2302
0
        const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
  Branch (2302:55): [True: 0, False: 0]
2303
2304
0
        for (const std::string& seed : seeds) {
  Branch (2304:38): [True: 0, False: 0]
2305
0
            if (seeds_right_now == 0) {
  Branch (2305:17): [True: 0, False: 0]
2306
0
                seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2307
2308
0
                if (addrman.Size() > 0) {
  Branch (2308:21): [True: 0, False: 0]
2309
0
                    LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2310
0
                    std::chrono::seconds to_wait = seeds_wait_time;
2311
0
                    while (to_wait.count() > 0) {
  Branch (2311:28): [True: 0, False: 0]
2312
                        // if sleeping for the MANY_PEERS interval, wake up
2313
                        // early to see if we have enough peers and can stop
2314
                        // this thread entirely freeing up its resources
2315
0
                        std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2316
0
                        if (!interruptNet.sleep_for(w)) return;
  Branch (2316:29): [True: 0, False: 0]
2317
0
                        to_wait -= w;
2318
2319
0
                        if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
  Branch (2319:29): [True: 0, False: 0]
2320
0
                            if (found > 0) {
  Branch (2320:33): [True: 0, False: 0]
2321
0
                                LogPrintf("%d addresses found from DNS seeds\n", found);
2322
0
                                LogPrintf("P2P peers available. Finished DNS seeding.\n");
2323
0
                            } else {
2324
0
                                LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2325
0
                            }
2326
0
                            return;
2327
0
                        }
2328
0
                    }
2329
0
                }
2330
0
            }
2331
2332
0
            if (interruptNet) return;
  Branch (2332:17): [True: 0, False: 0]
2333
2334
            // hold off on querying seeds if P2P network deactivated
2335
0
            if (!fNetworkActive) {
  Branch (2335:17): [True: 0, False: 0]
2336
0
                LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2337
0
                do {
2338
0
                    if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
  Branch (2338:25): [True: 0, False: 0]
2339
0
                } while (!fNetworkActive);
  Branch (2339:26): [True: 0, False: 0]
2340
0
            }
2341
2342
0
            LogPrintf("Loading addresses from DNS seed %s\n", seed);
2343
            // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2344
            // for the base dns seed domain in chainparams
2345
0
            if (HaveNameProxy()) {
  Branch (2345:17): [True: 0, False: 0]
2346
0
                AddAddrFetch(seed);
2347
0
            } else {
2348
0
                std::vector<CAddress> vAdd;
2349
0
                constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2350
0
                std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2351
0
                CNetAddr resolveSource;
2352
0
                if (!resolveSource.SetInternal(host)) {
  Branch (2352:21): [True: 0, False: 0]
2353
0
                    continue;
2354
0
                }
2355
                // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2356
                // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2357
                // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2358
                // returned.
2359
0
                unsigned int nMaxIPs = 32;
2360
0
                const auto addresses{LookupHost(host, nMaxIPs, true)};
2361
0
                if (!addresses.empty()) {
  Branch (2361:21): [True: 0, False: 0]
2362
0
                    for (const CNetAddr& ip : addresses) {
  Branch (2362:45): [True: 0, False: 0]
2363
0
                        CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2364
0
                        addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2365
0
                        vAdd.push_back(addr);
2366
0
                        found++;
2367
0
                    }
2368
0
                    addrman.Add(vAdd, resolveSource);
2369
0
                } else {
2370
                    // If the seed does not support a subdomain with our desired service bits,
2371
                    // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2372
                    // base dns seed domain in chainparams
2373
0
                    AddAddrFetch(seed);
2374
0
                }
2375
0
            }
2376
0
            --seeds_right_now;
2377
0
        }
2378
0
        LogPrintf("%d addresses found from DNS seeds\n", found);
2379
0
    } else {
2380
0
        LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2381
0
    }
2382
0
}
2383
2384
void CConnman::DumpAddresses()
2385
0
{
2386
0
    const auto start{SteadyClock::now()};
2387
2388
0
    DumpPeerAddresses(::gArgs, addrman);
2389
2390
0
    LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
2391
0
             addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2392
0
}
2393
2394
void CConnman::ProcessAddrFetch()
2395
0
{
2396
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2397
0
    std::string strDest;
2398
0
    {
2399
0
        LOCK(m_addr_fetches_mutex);
2400
0
        if (m_addr_fetches.empty())
  Branch (2400:13): [True: 0, False: 0]
2401
0
            return;
2402
0
        strDest = m_addr_fetches.front();
2403
0
        m_addr_fetches.pop_front();
2404
0
    }
2405
    // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2406
    // peer doesn't support it or immediately disconnects us for another reason.
2407
0
    const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2408
0
    CAddress addr;
2409
0
    CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2410
0
    if (grant) {
  Branch (2410:9): [True: 0, False: 0]
2411
0
        OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2412
0
    }
2413
0
}
2414
2415
bool CConnman::GetTryNewOutboundPeer() const
2416
0
{
2417
0
    return m_try_another_outbound_peer;
2418
0
}
2419
2420
void CConnman::SetTryNewOutboundPeer(bool flag)
2421
0
{
2422
0
    m_try_another_outbound_peer = flag;
2423
0
    LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2424
0
}
2425
2426
void CConnman::StartExtraBlockRelayPeers()
2427
0
{
2428
0
    LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2429
0
    m_start_extra_block_relay_peers = true;
2430
0
}
2431
2432
// Return the number of outbound connections that are full relay (not blocks only)
2433
int CConnman::GetFullOutboundConnCount() const
2434
0
{
2435
0
    int nRelevant = 0;
2436
0
    {
2437
0
        LOCK(m_nodes_mutex);
2438
0
        for (const CNode* pnode : m_nodes) {
  Branch (2438:33): [True: 0, False: 0]
2439
0
            if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
  Branch (2439:17): [True: 0, False: 0]
  Branch (2439:50): [True: 0, False: 0]
2440
0
        }
2441
0
    }
2442
0
    return nRelevant;
2443
0
}
2444
2445
// Return the number of peers we have over our outbound connection limit
2446
// Exclude peers that are marked for disconnect, or are going to be
2447
// disconnected soon (eg ADDR_FETCH and FEELER)
2448
// Also exclude peers that haven't finished initial connection handshake yet
2449
// (so that we don't decide we're over our desired connection limit, and then
2450
// evict some peer that has finished the handshake)
2451
int CConnman::GetExtraFullOutboundCount() const
2452
0
{
2453
0
    int full_outbound_peers = 0;
2454
0
    {
2455
0
        LOCK(m_nodes_mutex);
2456
0
        for (const CNode* pnode : m_nodes) {
  Branch (2456:33): [True: 0, False: 0]
2457
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
  Branch (2457:17): [True: 0, False: 0]
  Branch (2457:50): [True: 0, False: 0]
  Branch (2457:73): [True: 0, False: 0]
2458
0
                ++full_outbound_peers;
2459
0
            }
2460
0
        }
2461
0
    }
2462
0
    return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2463
0
}
2464
2465
int CConnman::GetExtraBlockRelayCount() const
2466
0
{
2467
0
    int block_relay_peers = 0;
2468
0
    {
2469
0
        LOCK(m_nodes_mutex);
2470
0
        for (const CNode* pnode : m_nodes) {
  Branch (2470:33): [True: 0, False: 0]
2471
0
            if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
  Branch (2471:17): [True: 0, False: 0]
  Branch (2471:50): [True: 0, False: 0]
  Branch (2471:73): [True: 0, False: 0]
2472
0
                ++block_relay_peers;
2473
0
            }
2474
0
        }
2475
0
    }
2476
0
    return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2477
0
}
2478
2479
std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2480
0
{
2481
0
    std::unordered_set<Network> networks{};
2482
0
    for (int n = 0; n < NET_MAX; n++) {
  Branch (2482:21): [True: 0, False: 0]
2483
0
        enum Network net = (enum Network)n;
2484
0
        if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
  Branch (2484:13): [True: 0, False: 0]
  Branch (2484:38): [True: 0, False: 0]
2485
0
        if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
  Branch (2485:13): [True: 0, False: 0]
  Branch (2485:47): [True: 0, False: 0]
2486
0
            networks.insert(net);
2487
0
        }
2488
0
    }
2489
0
    return networks;
2490
0
}
2491
2492
bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2493
0
{
2494
0
    AssertLockHeld(m_nodes_mutex);
2495
0
    return m_network_conn_counts[net] > 1;
2496
0
}
2497
2498
bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2499
0
{
2500
0
    std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2501
0
    std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2502
2503
0
    LOCK(m_nodes_mutex);
2504
0
    for (const auto net : nets) {
  Branch (2504:25): [True: 0, False: 0]
2505
0
        if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
  Branch (2505:13): [True: 0, False: 0]
  Branch (2505:47): [True: 0, False: 0]
  Branch (2505:82): [True: 0, False: 0]
2506
0
            network = net;
2507
0
            return true;
2508
0
        }
2509
0
    }
2510
2511
0
    return false;
2512
0
}
2513
2514
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2515
0
{
2516
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2517
0
    AssertLockNotHeld(m_reconnections_mutex);
2518
0
    FastRandomContext rng;
2519
    // Connect to specific addresses
2520
0
    if (!connect.empty())
  Branch (2520:9): [True: 0, False: 0]
2521
0
    {
2522
        // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2523
        // peer doesn't support it or immediately disconnects us for another reason.
2524
0
        const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2525
0
        for (int64_t nLoop = 0;; nLoop++)
2526
0
        {
2527
0
            for (const std::string& strAddr : connect)
  Branch (2527:45): [True: 0, False: 0]
2528
0
            {
2529
0
                CAddress addr(CService(), NODE_NONE);
2530
0
                OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2531
0
                for (int i = 0; i < 10 && i < nLoop; i++)
  Branch (2531:33): [True: 0, False: 0]
  Branch (2531:43): [True: 0, False: 0]
2532
0
                {
2533
0
                    if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2533:25): [True: 0, False: 0]
2534
0
                        return;
2535
0
                }
2536
0
            }
2537
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2537:17): [True: 0, False: 0]
2538
0
                return;
2539
0
            PerformReconnections();
2540
0
        }
2541
0
    }
2542
2543
    // Initiate network connections
2544
0
    auto start = GetTime<std::chrono::microseconds>();
2545
2546
    // Minimum time before next feeler connection (in microseconds).
2547
0
    auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2548
0
    auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2549
0
    auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2550
0
    const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2551
0
    bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2552
0
    const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2553
2554
0
    auto seed_node_timer = NodeClock::now();
2555
0
    bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
  Branch (2555:25): [True: 0, False: 0]
  Branch (2555:48): [True: 0, False: 0]
2556
0
    constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2557
2558
0
    if (!add_fixed_seeds) {
  Branch (2558:9): [True: 0, False: 0]
2559
0
        LogPrintf("Fixed seeds are disabled\n");
2560
0
    }
2561
2562
0
    while (!interruptNet)
  Branch (2562:12): [True: 0, False: 0]
2563
0
    {
2564
0
        if (add_addr_fetch) {
  Branch (2564:13): [True: 0, False: 0]
2565
0
            add_addr_fetch = false;
2566
0
            const auto& seed{SpanPopBack(seed_nodes)};
2567
0
            AddAddrFetch(seed);
2568
2569
0
            if (addrman.Size() == 0) {
  Branch (2569:17): [True: 0, False: 0]
2570
0
                LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2571
0
            } else {
2572
0
                LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2573
0
            }
2574
0
        }
2575
2576
0
        ProcessAddrFetch();
2577
2578
0
        if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
  Branch (2578:13): [True: 0, False: 0]
2579
0
            return;
2580
2581
0
        PerformReconnections();
2582
2583
0
        CSemaphoreGrant grant(*semOutbound);
2584
0
        if (interruptNet)
  Branch (2584:13): [True: 0, False: 0]
2585
0
            return;
2586
2587
0
        const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2588
0
        if (add_fixed_seeds && !fixed_seed_networks.empty()) {
  Branch (2588:13): [True: 0, False: 0]
  Branch (2588:32): [True: 0, False: 0]
2589
            // When the node starts with an empty peers.dat, there are a few other sources of peers before
2590
            // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2591
            // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2592
            // 60 seconds for any of those sources to populate addrman.
2593
0
            bool add_fixed_seeds_now = false;
2594
            // It is cheapest to check if enough time has passed first.
2595
0
            if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
  Branch (2595:17): [True: 0, False: 0]
2596
0
                add_fixed_seeds_now = true;
2597
0
                LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2598
0
            }
2599
2600
            // Perform cheap checks before locking a mutex.
2601
0
            else if (!dnsseed && !use_seednodes) {
  Branch (2601:22): [True: 0, False: 0]
  Branch (2601:34): [True: 0, False: 0]
2602
0
                LOCK(m_added_nodes_mutex);
2603
0
                if (m_added_node_params.empty()) {
  Branch (2603:21): [True: 0, False: 0]
2604
0
                    add_fixed_seeds_now = true;
2605
0
                    LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2606
0
                }
2607
0
            }
2608
2609
0
            if (add_fixed_seeds_now) {
  Branch (2609:17): [True: 0, False: 0]
2610
0
                std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2611
                // We will not make outgoing connections to peers that are unreachable
2612
                // (e.g. because of -onlynet configuration).
2613
                // Therefore, we do not add them to addrman in the first place.
2614
                // In case previously unreachable networks become reachable
2615
                // (e.g. in case of -onlynet changes by the user), fixed seeds will
2616
                // be loaded only for networks for which we have no addresses.
2617
0
                seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2618
0
                                                [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2619
0
                                 seed_addrs.end());
2620
0
                CNetAddr local;
2621
0
                local.SetInternal("fixedseeds");
2622
0
                addrman.Add(seed_addrs, local);
2623
0
                add_fixed_seeds = false;
2624
0
                LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2625
0
            }
2626
0
        }
2627
2628
        //
2629
        // Choose an address to connect to based on most recently seen
2630
        //
2631
0
        CAddress addrConnect;
2632
2633
        // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2634
0
        int nOutboundFullRelay = 0;
2635
0
        int nOutboundBlockRelay = 0;
2636
0
        int outbound_privacy_network_peers = 0;
2637
0
        std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2638
2639
0
        {
2640
0
            LOCK(m_nodes_mutex);
2641
0
            for (const CNode* pnode : m_nodes) {
  Branch (2641:37): [True: 0, False: 0]
2642
0
                if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
  Branch (2642:21): [True: 0, False: 0]
2643
0
                if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
  Branch (2643:21): [True: 0, False: 0]
2644
2645
                // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2646
0
                switch (pnode->m_conn_type) {
  Branch (2646:25): [True: 0, False: 0]
2647
                    // We currently don't take inbound connections into account. Since they are
2648
                    // free to make, an attacker could make them to prevent us from connecting to
2649
                    // certain peers.
2650
0
                    case ConnectionType::INBOUND:
  Branch (2650:21): [True: 0, False: 0]
2651
                    // Short-lived outbound connections should not affect how we select outbound
2652
                    // peers from addrman.
2653
0
                    case ConnectionType::ADDR_FETCH:
  Branch (2653:21): [True: 0, False: 0]
2654
0
                    case ConnectionType::FEELER:
  Branch (2654:21): [True: 0, False: 0]
2655
0
                        break;
2656
0
                    case ConnectionType::MANUAL:
  Branch (2656:21): [True: 0, False: 0]
2657
0
                    case ConnectionType::OUTBOUND_FULL_RELAY:
  Branch (2657:21): [True: 0, False: 0]
2658
0
                    case ConnectionType::BLOCK_RELAY:
  Branch (2658:21): [True: 0, False: 0]
2659
0
                        const CAddress address{pnode->addr};
2660
0
                        if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
  Branch (2660:29): [True: 0, False: 0]
  Branch (2660:48): [True: 0, False: 0]
  Branch (2660:67): [True: 0, False: 0]
2661
                            // Since our addrman-groups for these networks are
2662
                            // random, without relation to the route we
2663
                            // take to connect to these peers or to the
2664
                            // difficulty in obtaining addresses with diverse
2665
                            // groups, we don't worry about diversity with
2666
                            // respect to our addrman groups when connecting to
2667
                            // these networks.
2668
0
                            ++outbound_privacy_network_peers;
2669
0
                        } else {
2670
0
                            outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2671
0
                        }
2672
0
                } // no default case, so the compiler can warn about missing cases
2673
0
            }
2674
0
        }
2675
2676
0
        if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
  Branch (2676:13): [True: 0, False: 0]
  Branch (2676:36): [True: 0, False: 0]
2677
0
            if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
  Branch (2677:17): [True: 0, False: 0]
2678
0
                seed_node_timer = NodeClock::now();
2679
0
                add_addr_fetch = true;
2680
0
            }
2681
0
        }
2682
2683
0
        ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2684
0
        auto now = GetTime<std::chrono::microseconds>();
2685
0
        bool anchor = false;
2686
0
        bool fFeeler = false;
2687
0
        std::optional<Network> preferred_net;
2688
2689
        // Determine what type of connection to open. Opening
2690
        // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2691
        // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2692
        // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2693
        // until we hit our block-relay-only peer limit.
2694
        // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2695
        // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2696
        // these conditions are met, check to see if it's time to try an extra
2697
        // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2698
        // timer to decide if we should open a FEELER.
2699
2700
0
        if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
  Branch (2700:13): [True: 0, False: 0]
  Branch (2700:35): [True: 0, False: 0]
2701
0
            conn_type = ConnectionType::BLOCK_RELAY;
2702
0
            anchor = true;
2703
0
        } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
  Branch (2703:20): [True: 0, False: 0]
2704
            // OUTBOUND_FULL_RELAY
2705
0
        } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
  Branch (2705:20): [True: 0, False: 0]
2706
0
            conn_type = ConnectionType::BLOCK_RELAY;
2707
0
        } else if (GetTryNewOutboundPeer()) {
  Branch (2707:20): [True: 0, False: 0]
2708
            // OUTBOUND_FULL_RELAY
2709
0
        } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
  Branch (2709:20): [True: 0, False: 0]
  Branch (2709:52): [True: 0, False: 0]
2710
            // Periodically connect to a peer (using regular outbound selection
2711
            // methodology from addrman) and stay connected long enough to sync
2712
            // headers, but not much else.
2713
            //
2714
            // Then disconnect the peer, if we haven't learned anything new.
2715
            //
2716
            // The idea is to make eclipse attacks very difficult to pull off,
2717
            // because every few minutes we're finding a new peer to learn headers
2718
            // from.
2719
            //
2720
            // This is similar to the logic for trying extra outbound (full-relay)
2721
            // peers, except:
2722
            // - we do this all the time on an exponential timer, rather than just when
2723
            //   our tip is stale
2724
            // - we potentially disconnect our next-youngest block-relay-only peer, if our
2725
            //   newest block-relay-only peer delivers a block more recently.
2726
            //   See the eviction logic in net_processing.cpp.
2727
            //
2728
            // Because we can promote these connections to block-relay-only
2729
            // connections, they do not get their own ConnectionType enum
2730
            // (similar to how we deal with extra outbound peers).
2731
0
            next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2732
0
            conn_type = ConnectionType::BLOCK_RELAY;
2733
0
        } else if (now > next_feeler) {
  Branch (2733:20): [True: 0, False: 0]
2734
0
            next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2735
0
            conn_type = ConnectionType::FEELER;
2736
0
            fFeeler = true;
2737
0
        } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
  Branch (2737:20): [True: 0, False: 0]
2738
0
                   m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
  Branch (2738:20): [True: 0, False: 0]
2739
0
                   now > next_extra_network_peer &&
  Branch (2739:20): [True: 0, False: 0]
2740
0
                   MaybePickPreferredNetwork(preferred_net)) {
  Branch (2740:20): [True: 0, False: 0]
2741
            // Full outbound connection management: Attempt to get at least one
2742
            // outbound peer from each reachable network by making extra connections
2743
            // and then protecting "only" peers from a network during outbound eviction.
2744
            // This is not attempted if the user changed -maxconnections to a value
2745
            // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2746
            // to prevent interactions with otherwise protected outbound peers.
2747
0
            next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2748
0
        } else {
2749
            // skip to next iteration of while loop
2750
0
            continue;
2751
0
        }
2752
2753
0
        addrman.ResolveCollisions();
2754
2755
0
        const auto current_time{NodeClock::now()};
2756
0
        int nTries = 0;
2757
0
        const auto reachable_nets{g_reachable_nets.All()};
2758
2759
0
        while (!interruptNet)
  Branch (2759:16): [True: 0, False: 0]
2760
0
        {
2761
0
            if (anchor && !m_anchors.empty()) {
  Branch (2761:17): [True: 0, False: 0]
  Branch (2761:27): [True: 0, False: 0]
2762
0
                const CAddress addr = m_anchors.back();
2763
0
                m_anchors.pop_back();
2764
0
                if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
  Branch (2764:21): [True: 0, False: 0]
  Branch (2764:21): [True: 0, False: 0]
  Branch (2764:40): [True: 0, False: 0]
  Branch (2764:57): [True: 0, False: 0]
2765
0
                    !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
  Branch (2765:21): [True: 0, False: 0]
2766
0
                    outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
  Branch (2766:21): [True: 0, False: 0]
2767
0
                addrConnect = addr;
2768
0
                LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2769
0
                break;
2770
0
            }
2771
2772
            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2773
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2774
            // already-connected network ranges, ...) before trying new addrman addresses.
2775
0
            nTries++;
2776
0
            if (nTries > 100)
  Branch (2776:17): [True: 0, False: 0]
2777
0
                break;
2778
2779
0
            CAddress addr;
2780
0
            NodeSeconds addr_last_try{0s};
2781
2782
0
            if (fFeeler) {
  Branch (2782:17): [True: 0, False: 0]
2783
                // First, try to get a tried table collision address. This returns
2784
                // an empty (invalid) address if there are no collisions to try.
2785
0
                std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2786
2787
0
                if (!addr.IsValid()) {
  Branch (2787:21): [True: 0, False: 0]
2788
                    // No tried table collisions. Select a new table address
2789
                    // for our feeler.
2790
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2791
0
                } else if (AlreadyConnectedToAddress(addr)) {
  Branch (2791:28): [True: 0, False: 0]
2792
                    // If test-before-evict logic would have us connect to a
2793
                    // peer that we're already connected to, just mark that
2794
                    // address as Good(). We won't be able to initiate the
2795
                    // connection anyway, so this avoids inadvertently evicting
2796
                    // a currently-connected peer.
2797
0
                    addrman.Good(addr);
2798
                    // Select a new table address for our feeler instead.
2799
0
                    std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2800
0
                }
2801
0
            } else {
2802
                // Not a feeler
2803
                // If preferred_net has a value set, pick an extra outbound
2804
                // peer from that network. The eviction logic in net_processing
2805
                // ensures that a peer from another network will be evicted.
2806
0
                std::tie(addr, addr_last_try) = preferred_net.has_value()
  Branch (2806:49): [True: 0, False: 0]
2807
0
                    ? addrman.Select(false, {*preferred_net})
2808
0
                    : addrman.Select(false, reachable_nets);
2809
0
            }
2810
2811
            // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2812
0
            if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
  Branch (2812:17): [True: 0, False: 0]
  Branch (2812:17): [True: 0, False: 0]
  Branch (2812:29): [True: 0, False: 0]
2813
0
                continue;
2814
0
            }
2815
2816
            // if we selected an invalid or local address, restart
2817
0
            if (!addr.IsValid() || IsLocal(addr)) {
  Branch (2817:17): [True: 0, False: 0]
  Branch (2817:36): [True: 0, False: 0]
2818
0
                break;
2819
0
            }
2820
2821
0
            if (!g_reachable_nets.Contains(addr)) {
  Branch (2821:17): [True: 0, False: 0]
2822
0
                continue;
2823
0
            }
2824
2825
            // only consider very recently tried nodes after 30 failed attempts
2826
0
            if (current_time - addr_last_try < 10min && nTries < 30) {
  Branch (2826:17): [True: 0, False: 0]
  Branch (2826:17): [True: 0, False: 0]
  Branch (2826:57): [True: 0, False: 0]
2827
0
                continue;
2828
0
            }
2829
2830
            // for non-feelers, require all the services we'll want,
2831
            // for feelers, only require they be a full node (only because most
2832
            // SPV clients don't have a good address DB available)
2833
0
            if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
  Branch (2833:17): [True: 0, False: 0]
  Branch (2833:29): [True: 0, False: 0]
2834
0
                continue;
2835
0
            } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
  Branch (2835:24): [True: 0, False: 0]
  Branch (2835:35): [True: 0, False: 0]
2836
0
                continue;
2837
0
            }
2838
2839
            // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2840
0
            if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
  Branch (2840:17): [True: 0, False: 0]
  Branch (2840:33): [True: 0, False: 0]
  Branch (2840:50): [True: 0, False: 0]
  Branch (2840:68): [True: 0, False: 0]
2841
0
                continue;
2842
0
            }
2843
2844
            // Do not make automatic outbound connections to addnode peers, to
2845
            // not use our limited outbound slots for them and to ensure
2846
            // addnode connections benefit from their intended protections.
2847
0
            if (AddedNodesContain(addr)) {
  Branch (2847:17): [True: 0, False: 0]
2848
0
                LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2849
0
                              preferred_net.has_value() ? "network-specific " : "",
2850
0
                              ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2851
0
                              fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2852
0
                continue;
2853
0
            }
2854
2855
0
            addrConnect = addr;
2856
0
            break;
2857
0
        }
2858
2859
0
        if (addrConnect.IsValid()) {
  Branch (2859:13): [True: 0, False: 0]
2860
0
            if (fFeeler) {
  Branch (2860:17): [True: 0, False: 0]
2861
                // Add small amount of random noise before connection to avoid synchronization.
2862
0
                if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
  Branch (2862:21): [True: 0, False: 0]
2863
0
                    return;
2864
0
                }
2865
0
                LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2866
0
            }
2867
2868
0
            if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
  Branch (2868:17): [True: 0, False: 0]
2869
2870
            // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2871
            // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2872
            // Don't record addrman failure attempts when node is offline. This can be identified since all local
2873
            // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2874
0
            const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2875
            // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2876
0
            const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2877
0
            OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2878
0
        }
2879
0
    }
2880
0
}
2881
2882
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2883
0
{
2884
0
    std::vector<CAddress> ret;
2885
0
    LOCK(m_nodes_mutex);
2886
0
    for (const CNode* pnode : m_nodes) {
  Branch (2886:29): [True: 0, False: 0]
2887
0
        if (pnode->IsBlockOnlyConn()) {
  Branch (2887:13): [True: 0, False: 0]
2888
0
            ret.push_back(pnode->addr);
2889
0
        }
2890
0
    }
2891
2892
0
    return ret;
2893
0
}
2894
2895
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2896
0
{
2897
0
    std::vector<AddedNodeInfo> ret;
2898
2899
0
    std::list<AddedNodeParams> lAddresses(0);
2900
0
    {
2901
0
        LOCK(m_added_nodes_mutex);
2902
0
        ret.reserve(m_added_node_params.size());
2903
0
        std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2904
0
    }
2905
2906
2907
    // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2908
0
    std::map<CService, bool> mapConnected;
2909
0
    std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2910
0
    {
2911
0
        LOCK(m_nodes_mutex);
2912
0
        for (const CNode* pnode : m_nodes) {
  Branch (2912:33): [True: 0, False: 0]
2913
0
            if (pnode->addr.IsValid()) {
  Branch (2913:17): [True: 0, False: 0]
2914
0
                mapConnected[pnode->addr] = pnode->IsInboundConn();
2915
0
            }
2916
0
            std::string addrName{pnode->m_addr_name};
2917
0
            if (!addrName.empty()) {
  Branch (2917:17): [True: 0, False: 0]
2918
0
                mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2919
0
            }
2920
0
        }
2921
0
    }
2922
2923
0
    for (const auto& addr : lAddresses) {
  Branch (2923:27): [True: 0, False: 0]
2924
0
        CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2925
0
        AddedNodeInfo addedNode{addr, CService(), false, false};
2926
0
        if (service.IsValid()) {
  Branch (2926:13): [True: 0, False: 0]
2927
            // strAddNode is an IP:port
2928
0
            auto it = mapConnected.find(service);
2929
0
            if (it != mapConnected.end()) {
  Branch (2929:17): [True: 0, False: 0]
2930
0
                if (!include_connected) {
  Branch (2930:21): [True: 0, False: 0]
2931
0
                    continue;
2932
0
                }
2933
0
                addedNode.resolvedAddress = service;
2934
0
                addedNode.fConnected = true;
2935
0
                addedNode.fInbound = it->second;
2936
0
            }
2937
0
        } else {
2938
            // strAddNode is a name
2939
0
            auto it = mapConnectedByName.find(addr.m_added_node);
2940
0
            if (it != mapConnectedByName.end()) {
  Branch (2940:17): [True: 0, False: 0]
2941
0
                if (!include_connected) {
  Branch (2941:21): [True: 0, False: 0]
2942
0
                    continue;
2943
0
                }
2944
0
                addedNode.resolvedAddress = it->second.second;
2945
0
                addedNode.fConnected = true;
2946
0
                addedNode.fInbound = it->second.first;
2947
0
            }
2948
0
        }
2949
0
        ret.emplace_back(std::move(addedNode));
2950
0
    }
2951
2952
0
    return ret;
2953
0
}
2954
2955
void CConnman::ThreadOpenAddedConnections()
2956
0
{
2957
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2958
0
    AssertLockNotHeld(m_reconnections_mutex);
2959
0
    while (true)
  Branch (2959:12): [Folded - Ignored]
2960
0
    {
2961
0
        CSemaphoreGrant grant(*semAddnode);
2962
0
        std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2963
0
        bool tried = false;
2964
0
        for (const AddedNodeInfo& info : vInfo) {
  Branch (2964:40): [True: 0, False: 0]
2965
0
            if (!grant) {
  Branch (2965:17): [True: 0, False: 0]
2966
                // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2967
                // the addednodeinfo state might change.
2968
0
                break;
2969
0
            }
2970
0
            tried = true;
2971
0
            CAddress addr(CService(), NODE_NONE);
2972
0
            OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2973
0
            if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
  Branch (2973:17): [True: 0, False: 0]
2974
0
            grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2975
0
        }
2976
        // See if any reconnections are desired.
2977
0
        PerformReconnections();
2978
        // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2979
0
        if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
  Branch (2979:13): [True: 0, False: 0]
  Branch (2979:58): [True: 0, False: 0]
2980
0
            return;
2981
0
    }
2982
0
}
2983
2984
// if successful, this moves the passed grant to the constructed node
2985
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2986
0
{
2987
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2988
0
    assert(conn_type != ConnectionType::INBOUND);
2989
2990
    //
2991
    // Initiate outbound network connection
2992
    //
2993
0
    if (interruptNet) {
  Branch (2993:9): [True: 0, False: 0]
2994
0
        return;
2995
0
    }
2996
0
    if (!fNetworkActive) {
  Branch (2996:9): [True: 0, False: 0]
2997
0
        return;
2998
0
    }
2999
0
    if (!pszDest) {
  Branch (2999:9): [True: 0, False: 0]
3000
0
        bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
  Branch (3000:38): [True: 0, False: 0]
  Branch (3000:51): [True: 0, False: 0]
  Branch (3000:91): [True: 0, False: 0]
3001
0
        if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
  Branch (3001:13): [True: 0, False: 0]
  Branch (3001:37): [True: 0, False: 0]
  Branch (3001:62): [True: 0, False: 0]
3002
0
            return;
3003
0
        }
3004
0
    } else if (FindNode(std::string(pszDest)))
  Branch (3004:16): [True: 0, False: 0]
3005
0
        return;
3006
3007
0
    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3008
3009
0
    if (!pnode)
  Branch (3009:9): [True: 0, False: 0]
3010
0
        return;
3011
0
    pnode->grantOutbound = std::move(grant_outbound);
3012
3013
0
    m_msgproc->InitializeNode(*pnode, m_local_services);
3014
0
    {
3015
0
        LOCK(m_nodes_mutex);
3016
0
        m_nodes.push_back(pnode);
3017
3018
        // update connection count by network
3019
0
        if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
  Branch (3019:13): [True: 0, False: 0]
3020
0
    }
3021
3022
0
    TRACEPOINT(net, outbound_connection,
3023
0
        pnode->GetId(),
3024
0
        pnode->m_addr_name.c_str(),
3025
0
        pnode->ConnectionTypeAsString().c_str(),
3026
0
        pnode->ConnectedThroughNetwork(),
3027
0
        GetNodeCount(ConnectionDirection::Out));
3028
0
}
3029
3030
Mutex NetEventsInterface::g_msgproc_mutex;
3031
3032
void CConnman::ThreadMessageHandler()
3033
0
{
3034
0
    LOCK(NetEventsInterface::g_msgproc_mutex);
3035
3036
0
    while (!flagInterruptMsgProc)
  Branch (3036:12): [True: 0, False: 0]
3037
0
    {
3038
0
        bool fMoreWork = false;
3039
3040
0
        {
3041
            // Randomize the order in which we process messages from/to our peers.
3042
            // This prevents attacks in which an attacker exploits having multiple
3043
            // consecutive connections in the m_nodes list.
3044
0
            const NodesSnapshot snap{*this, /*shuffle=*/true};
3045
3046
0
            for (CNode* pnode : snap.Nodes()) {
  Branch (3046:31): [True: 0, False: 0]
3047
0
                if (pnode->fDisconnect)
  Branch (3047:21): [True: 0, False: 0]
3048
0
                    continue;
3049
3050
                // Receive messages
3051
0
                bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3052
0
                fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
  Branch (3052:31): [True: 0, False: 0]
  Branch (3052:48): [True: 0, False: 0]
3053
0
                if (flagInterruptMsgProc)
  Branch (3053:21): [True: 0, False: 0]
3054
0
                    return;
3055
                // Send messages
3056
0
                m_msgproc->SendMessages(pnode);
3057
3058
0
                if (flagInterruptMsgProc)
  Branch (3058:21): [True: 0, False: 0]
3059
0
                    return;
3060
0
            }
3061
0
        }
3062
3063
0
        WAIT_LOCK(mutexMsgProc, lock);
3064
0
        if (!fMoreWork) {
  Branch (3064:13): [True: 0, False: 0]
3065
0
            condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3066
0
        }
3067
0
        fMsgProcWake = false;
3068
0
    }
3069
0
}
3070
3071
void CConnman::ThreadI2PAcceptIncoming()
3072
0
{
3073
0
    static constexpr auto err_wait_begin = 1s;
3074
0
    static constexpr auto err_wait_cap = 5min;
3075
0
    auto err_wait = err_wait_begin;
3076
3077
0
    bool advertising_listen_addr = false;
3078
0
    i2p::Connection conn;
3079
3080
0
    auto SleepOnFailure = [&]() {
3081
0
        interruptNet.sleep_for(err_wait);
3082
0
        if (err_wait < err_wait_cap) {
  Branch (3082:13): [True: 0, False: 0]
3083
0
            err_wait += 1s;
3084
0
        }
3085
0
    };
3086
3087
0
    while (!interruptNet) {
  Branch (3087:12): [True: 0, False: 0]
3088
3089
0
        if (!m_i2p_sam_session->Listen(conn)) {
  Branch (3089:13): [True: 0, False: 0]
3090
0
            if (advertising_listen_addr && conn.me.IsValid()) {
  Branch (3090:17): [True: 0, False: 0]
  Branch (3090:44): [True: 0, False: 0]
3091
0
                RemoveLocal(conn.me);
3092
0
                advertising_listen_addr = false;
3093
0
            }
3094
0
            SleepOnFailure();
3095
0
            continue;
3096
0
        }
3097
3098
0
        if (!advertising_listen_addr) {
  Branch (3098:13): [True: 0, False: 0]
3099
0
            AddLocal(conn.me, LOCAL_MANUAL);
3100
0
            advertising_listen_addr = true;
3101
0
        }
3102
3103
0
        if (!m_i2p_sam_session->Accept(conn)) {
  Branch (3103:13): [True: 0, False: 0]
3104
0
            SleepOnFailure();
3105
0
            continue;
3106
0
        }
3107
3108
0
        CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3109
3110
0
        err_wait = err_wait_begin;
3111
0
    }
3112
0
}
3113
3114
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3115
0
{
3116
0
    int nOne = 1;
3117
3118
    // Create socket for listening for incoming connections
3119
0
    struct sockaddr_storage sockaddr;
3120
0
    socklen_t len = sizeof(sockaddr);
3121
0
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
  Branch (3121:9): [True: 0, False: 0]
3122
0
    {
3123
0
        strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3124
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3125
0
        return false;
3126
0
    }
3127
3128
0
    std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3129
0
    if (!sock) {
  Branch (3129:9): [True: 0, False: 0]
3130
0
        strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3131
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3132
0
        return false;
3133
0
    }
3134
3135
    // Allow binding if the port is still in TIME_WAIT state after
3136
    // the program was closed and restarted.
3137
0
    if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
  Branch (3137:9): [True: 0, False: 0]
3138
0
        strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3139
0
        LogPrintf("%s\n", strError.original);
3140
0
    }
3141
3142
    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3143
    // and enable it by default or not. Try to enable it, if possible.
3144
0
    if (addrBind.IsIPv6()) {
  Branch (3144:9): [True: 0, False: 0]
3145
0
#ifdef IPV6_V6ONLY
3146
0
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
  Branch (3146:13): [True: 0, False: 0]
3147
0
            strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3148
0
            LogPrintf("%s\n", strError.original);
3149
0
        }
3150
0
#endif
3151
#ifdef WIN32
3152
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3153
        if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3154
            strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3155
            LogPrintf("%s\n", strError.original);
3156
        }
3157
#endif
3158
0
    }
3159
3160
0
    if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
  Branch (3160:9): [True: 0, False: 0]
3161
0
        int nErr = WSAGetLastError();
3162
0
        if (nErr == WSAEADDRINUSE)
  Branch (3162:13): [True: 0, False: 0]
3163
0
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3164
0
        else
3165
0
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3166
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3167
0
        return false;
3168
0
    }
3169
0
    LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3170
3171
    // Listen for incoming connections
3172
0
    if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
  Branch (3172:9): [True: 0, False: 0]
3173
0
    {
3174
0
        strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3175
0
        LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3176
0
        return false;
3177
0
    }
3178
3179
0
    vhListenSocket.emplace_back(std::move(sock), permissions);
3180
0
    return true;
3181
0
}
3182
3183
void Discover()
3184
0
{
3185
0
    if (!fDiscover)
  Branch (3185:9): [True: 0, False: 0]
3186
0
        return;
3187
3188
0
    for (const CNetAddr &addr: GetLocalAddresses()) {
  Branch (3188:30): [True: 0, False: 0]
3189
0
        if (AddLocal(addr, LOCAL_IF))
  Branch (3189:13): [True: 0, False: 0]
3190
0
            LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3191
0
    }
3192
0
}
3193
3194
void CConnman::SetNetworkActive(bool active)
3195
0
{
3196
0
    LogPrintf("%s: %s\n", __func__, active);
3197
3198
0
    if (fNetworkActive == active) {
  Branch (3198:9): [True: 0, False: 0]
3199
0
        return;
3200
0
    }
3201
3202
0
    fNetworkActive = active;
3203
3204
0
    if (m_client_interface) {
  Branch (3204:9): [True: 0, False: 0]
3205
0
        m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3206
0
    }
3207
0
}
3208
3209
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3210
                   const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3211
0
    : addrman(addrman_in)
3212
0
    , m_netgroupman{netgroupman}
3213
0
    , nSeed0(nSeed0In)
3214
0
    , nSeed1(nSeed1In)
3215
0
    , m_params(params)
3216
0
{
3217
0
    SetTryNewOutboundPeer(false);
3218
3219
0
    Options connOptions;
3220
0
    Init(connOptions);
3221
0
    SetNetworkActive(network_active);
3222
0
}
3223
3224
NodeId CConnman::GetNewNodeId()
3225
0
{
3226
0
    return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3227
0
}
3228
3229
uint16_t CConnman::GetDefaultPort(Network net) const
3230
0
{
3231
0
    return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
  Branch (3231:12): [True: 0, False: 0]
3232
0
}
3233
3234
uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3235
0
{
3236
0
    CNetAddr a;
3237
0
    return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
  Branch (3237:12): [True: 0, False: 0]
3238
0
}
3239
3240
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3241
0
{
3242
0
    const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3243
3244
0
    bilingual_str strError;
3245
0
    if (!BindListenPort(addr, strError, permissions)) {
  Branch (3245:9): [True: 0, False: 0]
3246
0
        if ((flags & BF_REPORT_ERROR) && m_client_interface) {
  Branch (3246:13): [True: 0, False: 0]
  Branch (3246:42): [True: 0, False: 0]
3247
0
            m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3248
0
        }
3249
0
        return false;
3250
0
    }
3251
3252
0
    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
  Branch (3252:9): [True: 0, False: 0]
  Branch (3252:30): [True: 0, False: 0]
  Branch (3252:43): [True: 0, False: 0]
  Branch (3252:75): [True: 0, False: 0]
3253
0
        AddLocal(addr, LOCAL_BIND);
3254
0
    }
3255
3256
0
    return true;
3257
0
}
3258
3259
bool CConnman::InitBinds(const Options& options)
3260
0
{
3261
0
    for (const auto& addrBind : options.vBinds) {
  Branch (3261:31): [True: 0, False: 0]
3262
0
        if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
  Branch (3262:13): [True: 0, False: 0]
3263
0
            return false;
3264
0
        }
3265
0
    }
3266
0
    for (const auto& addrBind : options.vWhiteBinds) {
  Branch (3266:31): [True: 0, False: 0]
3267
0
        if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
  Branch (3267:13): [True: 0, False: 0]
3268
0
            return false;
3269
0
        }
3270
0
    }
3271
0
    for (const auto& addr_bind : options.onion_binds) {
  Branch (3271:32): [True: 0, False: 0]
3272
0
        if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
  Branch (3272:13): [True: 0, False: 0]
3273
0
            return false;
3274
0
        }
3275
0
    }
3276
0
    if (options.bind_on_any) {
  Branch (3276:9): [True: 0, False: 0]
3277
        // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3278
        // may not have IPv6 support and the user did not explicitly ask us to
3279
        // bind on that.
3280
0
        const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3281
0
        Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3282
3283
0
        struct in_addr inaddr_any;
3284
0
        inaddr_any.s_addr = htonl(INADDR_ANY);
3285
0
        const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3286
0
        if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
  Branch (3286:13): [True: 0, False: 0]
3287
0
            return false;
3288
0
        }
3289
0
    }
3290
0
    return true;
3291
0
}
3292
3293
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3294
0
{
3295
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3296
0
    Init(connOptions);
3297
3298
0
    if (fListen && !InitBinds(connOptions)) {
  Branch (3298:9): [True: 0, False: 0]
  Branch (3298:20): [True: 0, False: 0]
3299
0
        if (m_client_interface) {
  Branch (3299:13): [True: 0, False: 0]
3300
0
            m_client_interface->ThreadSafeMessageBox(
3301
0
                _("Failed to listen on any port. Use -listen=0 if you want this."),
3302
0
                "", CClientUIInterface::MSG_ERROR);
3303
0
        }
3304
0
        return false;
3305
0
    }
3306
3307
0
    Proxy i2p_sam;
3308
0
    if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
  Branch (3308:9): [True: 0, False: 0]
  Branch (3308:39): [True: 0, False: 0]
3309
0
        m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3310
0
                                                                i2p_sam, &interruptNet);
3311
0
    }
3312
3313
    // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3314
0
    std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3315
0
    if (!seed_nodes.empty()) {
  Branch (3315:9): [True: 0, False: 0]
3316
0
        std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3317
0
    }
3318
3319
0
    if (m_use_addrman_outgoing) {
  Branch (3319:9): [True: 0, False: 0]
3320
        // Load addresses from anchors.dat
3321
0
        m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
3322
0
        if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
  Branch (3322:13): [True: 0, False: 0]
3323
0
            m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3324
0
        }
3325
0
        LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3326
0
    }
3327
3328
0
    if (m_client_interface) {
  Branch (3328:9): [True: 0, False: 0]
3329
0
        m_client_interface->InitMessage(_("Starting network threads…"));
3330
0
    }
3331
3332
0
    fAddressesInitialized = true;
3333
3334
0
    if (semOutbound == nullptr) {
  Branch (3334:9): [True: 0, False: 0]
3335
        // initialize semaphore
3336
0
        semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3337
0
    }
3338
0
    if (semAddnode == nullptr) {
  Branch (3338:9): [True: 0, False: 0]
3339
        // initialize semaphore
3340
0
        semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3341
0
    }
3342
3343
    //
3344
    // Start threads
3345
    //
3346
0
    assert(m_msgproc);
3347
0
    interruptNet.reset();
3348
0
    flagInterruptMsgProc = false;
3349
3350
0
    {
3351
0
        LOCK(mutexMsgProc);
3352
0
        fMsgProcWake = false;
3353
0
    }
3354
3355
    // Send and receive from sockets, accept connections
3356
0
    threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3357
3358
0
    if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
  Branch (3358:9): [True: 0, False: 0]
3359
0
        LogPrintf("DNS seeding disabled\n");
3360
0
    else
3361
0
        threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3362
3363
    // Initiate manual connections
3364
0
    threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3365
3366
0
    if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
  Branch (3366:9): [True: 0, False: 0]
  Branch (3366:47): [True: 0, False: 0]
3367
0
        if (m_client_interface) {
  Branch (3367:13): [True: 0, False: 0]
3368
0
            m_client_interface->ThreadSafeMessageBox(
3369
0
                _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3370
0
                "", CClientUIInterface::MSG_ERROR);
3371
0
        }
3372
0
        return false;
3373
0
    }
3374
0
    if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
  Branch (3374:9): [True: 0, False: 0]
  Branch (3374:47): [True: 0, False: 0]
3375
0
        threadOpenConnections = std::thread(
3376
0
            &util::TraceThread, "opencon",
3377
0
            [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3378
0
    }
3379
3380
    // Process messages
3381
0
    threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3382
3383
0
    if (m_i2p_sam_session) {
  Branch (3383:9): [True: 0, False: 0]
3384
0
        threadI2PAcceptIncoming =
3385
0
            std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3386
0
    }
3387
3388
    // Dump network addresses
3389
0
    scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3390
3391
    // Run the ASMap Health check once and then schedule it to run every 24h.
3392
0
    if (m_netgroupman.UsingASMap()) {
  Branch (3392:9): [True: 0, False: 0]
3393
0
        ASMapHealthCheck();
3394
0
        scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3395
0
    }
3396
3397
0
    return true;
3398
0
}
3399
3400
class CNetCleanup
3401
{
3402
public:
3403
    CNetCleanup() = default;
3404
3405
    ~CNetCleanup()
3406
0
    {
3407
#ifdef WIN32
3408
        // Shutdown Windows Sockets
3409
        WSACleanup();
3410
#endif
3411
0
    }
3412
};
3413
static CNetCleanup instance_of_cnetcleanup;
3414
3415
void CConnman::Interrupt()
3416
0
{
3417
0
    {
3418
0
        LOCK(mutexMsgProc);
3419
0
        flagInterruptMsgProc = true;
3420
0
    }
3421
0
    condMsgProc.notify_all();
3422
3423
0
    interruptNet();
3424
0
    g_socks5_interrupt();
3425
3426
0
    if (semOutbound) {
  Branch (3426:9): [True: 0, False: 0]
3427
0
        for (int i=0; i<m_max_automatic_outbound; i++) {
  Branch (3427:23): [True: 0, False: 0]
3428
0
            semOutbound->post();
3429
0
        }
3430
0
    }
3431
3432
0
    if (semAddnode) {
  Branch (3432:9): [True: 0, False: 0]
3433
0
        for (int i=0; i<m_max_addnode; i++) {
  Branch (3433:23): [True: 0, False: 0]
3434
0
            semAddnode->post();
3435
0
        }
3436
0
    }
3437
0
}
3438
3439
void CConnman::StopThreads()
3440
0
{
3441
0
    if (threadI2PAcceptIncoming.joinable()) {
  Branch (3441:9): [True: 0, False: 0]
3442
0
        threadI2PAcceptIncoming.join();
3443
0
    }
3444
0
    if (threadMessageHandler.joinable())
  Branch (3444:9): [True: 0, False: 0]
3445
0
        threadMessageHandler.join();
3446
0
    if (threadOpenConnections.joinable())
  Branch (3446:9): [True: 0, False: 0]
3447
0
        threadOpenConnections.join();
3448
0
    if (threadOpenAddedConnections.joinable())
  Branch (3448:9): [True: 0, False: 0]
3449
0
        threadOpenAddedConnections.join();
3450
0
    if (threadDNSAddressSeed.joinable())
  Branch (3450:9): [True: 0, False: 0]
3451
0
        threadDNSAddressSeed.join();
3452
0
    if (threadSocketHandler.joinable())
  Branch (3452:9): [True: 0, False: 0]
3453
0
        threadSocketHandler.join();
3454
0
}
3455
3456
void CConnman::StopNodes()
3457
0
{
3458
0
    if (fAddressesInitialized) {
  Branch (3458:9): [True: 0, False: 0]
3459
0
        DumpAddresses();
3460
0
        fAddressesInitialized = false;
3461
3462
0
        if (m_use_addrman_outgoing) {
  Branch (3462:13): [True: 0, False: 0]
3463
            // Anchor connections are only dumped during clean shutdown.
3464
0
            std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3465
0
            if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
  Branch (3465:17): [True: 0, False: 0]
3466
0
                anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3467
0
            }
3468
0
            DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
3469
0
        }
3470
0
    }
3471
3472
    // Delete peer connections.
3473
0
    std::vector<CNode*> nodes;
3474
0
    WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3475
0
    for (CNode* pnode : nodes) {
  Branch (3475:23): [True: 0, False: 0]
3476
0
        LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3477
0
        pnode->CloseSocketDisconnect();
3478
0
        DeleteNode(pnode);
3479
0
    }
3480
3481
0
    for (CNode* pnode : m_nodes_disconnected) {
  Branch (3481:23): [True: 0, False: 0]
3482
0
        DeleteNode(pnode);
3483
0
    }
3484
0
    m_nodes_disconnected.clear();
3485
0
    vhListenSocket.clear();
3486
0
    semOutbound.reset();
3487
0
    semAddnode.reset();
3488
0
}
3489
3490
void CConnman::DeleteNode(CNode* pnode)
3491
0
{
3492
0
    assert(pnode);
3493
0
    m_msgproc->FinalizeNode(*pnode);
3494
0
    delete pnode;
3495
0
}
3496
3497
CConnman::~CConnman()
3498
0
{
3499
0
    Interrupt();
3500
0
    Stop();
3501
0
}
3502
3503
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3504
0
{
3505
0
    std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3506
0
    if (m_banman) {
  Branch (3506:9): [True: 0, False: 0]
3507
0
        addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3508
0
                        [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
  Branch (3508:61): [True: 0, False: 0]
  Branch (3508:94): [True: 0, False: 0]
3509
0
                        addresses.end());
3510
0
    }
3511
0
    return addresses;
3512
0
}
3513
3514
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3515
0
{
3516
0
    auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3517
0
    uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3518
0
        .Write(requestor.ConnectedThroughNetwork())
3519
0
        .Write(local_socket_bytes)
3520
        // For outbound connections, the port of the bound address is randomly
3521
        // assigned by the OS and would therefore not be useful for seeding.
3522
0
        .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
  Branch (3522:16): [True: 0, False: 0]
3523
0
        .Finalize();
3524
0
    const auto current_time = GetTime<std::chrono::microseconds>();
3525
0
    auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3526
0
    CachedAddrResponse& cache_entry = r.first->second;
3527
0
    if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
  Branch (3527:9): [True: 0, False: 0]
3528
0
        cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3529
        // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3530
        // and the usefulness of ADDR responses to honest users.
3531
        //
3532
        // Longer cache lifetime makes it more difficult for an attacker to scrape
3533
        // enough AddrMan data to maliciously infer something useful.
3534
        // By the time an attacker scraped enough AddrMan records, most of
3535
        // the records should be old enough to not leak topology info by
3536
        // e.g. analyzing real-time changes in timestamps.
3537
        //
3538
        // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3539
        // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3540
        // most of it could be scraped (considering that timestamps are updated via
3541
        // ADDR self-announcements and when nodes communicate).
3542
        // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3543
        // (because even several timestamps of the same handful of nodes may leak privacy).
3544
        //
3545
        // On the other hand, longer cache lifetime makes ADDR responses
3546
        // outdated and less useful for an honest requestor, e.g. if most nodes
3547
        // in the ADDR response are no longer active.
3548
        //
3549
        // However, the churn in the network is known to be rather low. Since we consider
3550
        // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3551
        // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3552
        // in terms of the freshness of the response.
3553
0
        cache_entry.m_cache_entry_expiration = current_time +
3554
0
            21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3555
0
    }
3556
0
    return cache_entry.m_addrs_response_cache;
3557
0
}
3558
3559
bool CConnman::AddNode(const AddedNodeParams& add)
3560
0
{
3561
0
    const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3562
0
    const bool resolved_is_valid{resolved.IsValid()};
3563
3564
0
    LOCK(m_added_nodes_mutex);
3565
0
    for (const auto& it : m_added_node_params) {
  Branch (3565:25): [True: 0, False: 0]
3566
0
        if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
  Branch (3566:13): [True: 0, False: 0]
  Branch (3566:13): [True: 0, False: 0]
  Branch (3566:53): [True: 0, False: 0]
  Branch (3566:74): [True: 0, False: 0]
3567
0
    }
3568
3569
0
    m_added_node_params.push_back(add);
3570
0
    return true;
3571
0
}
3572
3573
bool CConnman::RemoveAddedNode(const std::string& strNode)
3574
0
{
3575
0
    LOCK(m_added_nodes_mutex);
3576
0
    for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
  Branch (3576:49): [True: 0, False: 0]
3577
0
        if (strNode == it->m_added_node) {
  Branch (3577:13): [True: 0, False: 0]
3578
0
            m_added_node_params.erase(it);
3579
0
            return true;
3580
0
        }
3581
0
    }
3582
0
    return false;
3583
0
}
3584
3585
bool CConnman::AddedNodesContain(const CAddress& addr) const
3586
0
{
3587
0
    AssertLockNotHeld(m_added_nodes_mutex);
3588
0
    const std::string addr_str{addr.ToStringAddr()};
3589
0
    const std::string addr_port_str{addr.ToStringAddrPort()};
3590
0
    LOCK(m_added_nodes_mutex);
3591
0
    return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
  Branch (3591:13): [True: 0, False: 0]
3592
0
            && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
  Branch (3592:16): [True: 0, False: 0]
3593
0
                           [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
  Branch (3593:56): [True: 0, False: 0]
  Branch (3593:86): [True: 0, False: 0]
3594
0
}
3595
3596
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3597
0
{
3598
0
    LOCK(m_nodes_mutex);
3599
0
    if (flags == ConnectionDirection::Both) // Shortcut if we want total
  Branch (3599:9): [True: 0, False: 0]
3600
0
        return m_nodes.size();
3601
3602
0
    int nNum = 0;
3603
0
    for (const auto& pnode : m_nodes) {
  Branch (3603:28): [True: 0, False: 0]
3604
0
        if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
  Branch (3604:13): [True: 0, False: 0]
  Branch (3604:22): [True: 0, False: 0]
3605
0
            nNum++;
3606
0
        }
3607
0
    }
3608
3609
0
    return nNum;
3610
0
}
3611
3612
3613
std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3614
0
{
3615
0
    LOCK(g_maplocalhost_mutex);
3616
0
    return mapLocalHost;
3617
0
}
3618
3619
uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3620
0
{
3621
0
    return m_netgroupman.GetMappedAS(addr);
3622
0
}
3623
3624
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3625
0
{
3626
0
    vstats.clear();
3627
0
    LOCK(m_nodes_mutex);
3628
0
    vstats.reserve(m_nodes.size());
3629
0
    for (CNode* pnode : m_nodes) {
  Branch (3629:23): [True: 0, False: 0]
3630
0
        vstats.emplace_back();
3631
0
        pnode->CopyStats(vstats.back());
3632
0
        vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3633
0
    }
3634
0
}
3635
3636
bool CConnman::DisconnectNode(const std::string& strNode)
3637
0
{
3638
0
    LOCK(m_nodes_mutex);
3639
0
    if (CNode* pnode = FindNode(strNode)) {
  Branch (3639:16): [True: 0, False: 0]
3640
0
        LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3641
0
        pnode->fDisconnect = true;
3642
0
        return true;
3643
0
    }
3644
0
    return false;
3645
0
}
3646
3647
bool CConnman::DisconnectNode(const CSubNet& subnet)
3648
0
{
3649
0
    bool disconnected = false;
3650
0
    LOCK(m_nodes_mutex);
3651
0
    for (CNode* pnode : m_nodes) {
  Branch (3651:23): [True: 0, False: 0]
3652
0
        if (subnet.Match(pnode->addr)) {
  Branch (3652:13): [True: 0, False: 0]
3653
0
            LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3654
0
            pnode->fDisconnect = true;
3655
0
            disconnected = true;
3656
0
        }
3657
0
    }
3658
0
    return disconnected;
3659
0
}
3660
3661
bool CConnman::DisconnectNode(const CNetAddr& addr)
3662
0
{
3663
0
    return DisconnectNode(CSubNet(addr));
3664
0
}
3665
3666
bool CConnman::DisconnectNode(NodeId id)
3667
0
{
3668
0
    LOCK(m_nodes_mutex);
3669
0
    for(CNode* pnode : m_nodes) {
  Branch (3669:22): [True: 0, False: 0]
3670
0
        if (id == pnode->GetId()) {
  Branch (3670:13): [True: 0, False: 0]
3671
0
            LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3672
0
            pnode->fDisconnect = true;
3673
0
            return true;
3674
0
        }
3675
0
    }
3676
0
    return false;
3677
0
}
3678
3679
void CConnman::RecordBytesRecv(uint64_t bytes)
3680
0
{
3681
0
    nTotalBytesRecv += bytes;
3682
0
}
3683
3684
void CConnman::RecordBytesSent(uint64_t bytes)
3685
0
{
3686
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3687
0
    LOCK(m_total_bytes_sent_mutex);
3688
3689
0
    nTotalBytesSent += bytes;
3690
3691
0
    const auto now = GetTime<std::chrono::seconds>();
3692
0
    if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
  Branch (3692:9): [True: 0, False: 0]
3693
0
    {
3694
        // timeframe expired, reset cycle
3695
0
        nMaxOutboundCycleStartTime = now;
3696
0
        nMaxOutboundTotalBytesSentInCycle = 0;
3697
0
    }
3698
3699
0
    nMaxOutboundTotalBytesSentInCycle += bytes;
3700
0
}
3701
3702
uint64_t CConnman::GetMaxOutboundTarget() const
3703
0
{
3704
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3705
0
    LOCK(m_total_bytes_sent_mutex);
3706
0
    return nMaxOutboundLimit;
3707
0
}
3708
3709
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3710
0
{
3711
0
    return MAX_UPLOAD_TIMEFRAME;
3712
0
}
3713
3714
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3715
0
{
3716
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3717
0
    LOCK(m_total_bytes_sent_mutex);
3718
0
    return GetMaxOutboundTimeLeftInCycle_();
3719
0
}
3720
3721
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3722
0
{
3723
0
    AssertLockHeld(m_total_bytes_sent_mutex);
3724
3725
0
    if (nMaxOutboundLimit == 0)
  Branch (3725:9): [True: 0, False: 0]
3726
0
        return 0s;
3727
3728
0
    if (nMaxOutboundCycleStartTime.count() == 0)
  Branch (3728:9): [True: 0, False: 0]
3729
0
        return MAX_UPLOAD_TIMEFRAME;
3730
3731
0
    const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3732
0
    const auto now = GetTime<std::chrono::seconds>();
3733
0
    return (cycleEndTime < now) ? 0s : cycleEndTime - now;
  Branch (3733:12): [True: 0, False: 0]
3734
0
}
3735
3736
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3737
0
{
3738
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3739
0
    LOCK(m_total_bytes_sent_mutex);
3740
0
    if (nMaxOutboundLimit == 0)
  Branch (3740:9): [True: 0, False: 0]
3741
0
        return false;
3742
3743
0
    if (historicalBlockServingLimit)
  Branch (3743:9): [True: 0, False: 0]
3744
0
    {
3745
        // keep a large enough buffer to at least relay each block once
3746
0
        const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3747
0
        const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3748
0
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
  Branch (3748:13): [True: 0, False: 0]
  Branch (3748:44): [True: 0, False: 0]
3749
0
            return true;
3750
0
    }
3751
0
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
  Branch (3751:14): [True: 0, False: 0]
3752
0
        return true;
3753
3754
0
    return false;
3755
0
}
3756
3757
uint64_t CConnman::GetOutboundTargetBytesLeft() const
3758
0
{
3759
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3760
0
    LOCK(m_total_bytes_sent_mutex);
3761
0
    if (nMaxOutboundLimit == 0)
  Branch (3761:9): [True: 0, False: 0]
3762
0
        return 0;
3763
3764
0
    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
  Branch (3764:12): [True: 0, False: 0]
3765
0
}
3766
3767
uint64_t CConnman::GetTotalBytesRecv() const
3768
0
{
3769
0
    return nTotalBytesRecv;
3770
0
}
3771
3772
uint64_t CConnman::GetTotalBytesSent() const
3773
0
{
3774
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3775
0
    LOCK(m_total_bytes_sent_mutex);
3776
0
    return nTotalBytesSent;
3777
0
}
3778
3779
ServiceFlags CConnman::GetLocalServices() const
3780
0
{
3781
0
    return m_local_services;
3782
0
}
3783
3784
static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3785
0
{
3786
0
    if (use_v2transport) {
  Branch (3786:9): [True: 0, False: 0]
3787
0
        return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3788
0
    } else {
3789
0
        return std::make_unique<V1Transport>(id);
3790
0
    }
3791
0
}
3792
3793
CNode::CNode(NodeId idIn,
3794
             std::shared_ptr<Sock> sock,
3795
             const CAddress& addrIn,
3796
             uint64_t nKeyedNetGroupIn,
3797
             uint64_t nLocalHostNonceIn,
3798
             const CService& addrBindIn,
3799
             const std::string& addrNameIn,
3800
             ConnectionType conn_type_in,
3801
             bool inbound_onion,
3802
             CNodeOptions&& node_opts)
3803
0
    : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3804
0
      m_permission_flags{node_opts.permission_flags},
3805
0
      m_sock{sock},
3806
0
      m_connected{GetTime<std::chrono::seconds>()},
3807
0
      addr{addrIn},
3808
0
      addrBind{addrBindIn},
3809
0
      m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
  Branch (3809:19): [True: 0, False: 0]
3810
0
      m_dest(addrNameIn),
3811
0
      m_inbound_onion{inbound_onion},
3812
0
      m_prefer_evict{node_opts.prefer_evict},
3813
0
      nKeyedNetGroup{nKeyedNetGroupIn},
3814
0
      m_conn_type{conn_type_in},
3815
0
      id{idIn},
3816
0
      nLocalHostNonce{nLocalHostNonceIn},
3817
0
      m_recv_flood_size{node_opts.recv_flood_size},
3818
0
      m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3819
0
{
3820
0
    if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
  Branch (3820:9): [True: 0, False: 0]
3821
3822
0
    for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
  Branch (3822:26): [True: 0, False: 0]
3823
0
        mapRecvBytesPerMsgType[msg] = 0;
3824
0
    }
3825
0
    mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3826
3827
0
    if (fLogIPs) {
  Branch (3827:9): [True: 0, False: 0]
3828
0
        LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3829
0
    } else {
3830
0
        LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3831
0
    }
3832
0
}
3833
3834
void CNode::MarkReceivedMsgsForProcessing()
3835
0
{
3836
0
    AssertLockNotHeld(m_msg_process_queue_mutex);
3837
3838
0
    size_t nSizeAdded = 0;
3839
0
    for (const auto& msg : vRecvMsg) {
  Branch (3839:26): [True: 0, False: 0]
3840
        // vRecvMsg contains only completed CNetMessage
3841
        // the single possible partially deserialized message are held by TransportDeserializer
3842
0
        nSizeAdded += msg.GetMemoryUsage();
3843
0
    }
3844
3845
0
    LOCK(m_msg_process_queue_mutex);
3846
0
    m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3847
0
    m_msg_process_queue_size += nSizeAdded;
3848
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3849
0
}
3850
3851
std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3852
0
{
3853
0
    LOCK(m_msg_process_queue_mutex);
3854
0
    if (m_msg_process_queue.empty()) return std::nullopt;
  Branch (3854:9): [True: 0, False: 0]
3855
3856
0
    std::list<CNetMessage> msgs;
3857
    // Just take one message
3858
0
    msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3859
0
    m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3860
0
    fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3861
3862
0
    return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3863
0
}
3864
3865
bool CConnman::NodeFullyConnected(const CNode* pnode)
3866
0
{
3867
0
    return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
  Branch (3867:12): [True: 0, False: 0]
  Branch (3867:21): [True: 0, False: 0]
  Branch (3867:54): [True: 0, False: 0]
3868
0
}
3869
3870
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3871
0
{
3872
0
    AssertLockNotHeld(m_total_bytes_sent_mutex);
3873
0
    size_t nMessageSize = msg.data.size();
3874
0
    LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3875
0
    if (gArgs.GetBoolArg("-capturemessages", false)) {
  Branch (3875:9): [True: 0, False: 0]
3876
0
        CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3877
0
    }
3878
3879
0
    TRACEPOINT(net, outbound_message,
3880
0
        pnode->GetId(),
3881
0
        pnode->m_addr_name.c_str(),
3882
0
        pnode->ConnectionTypeAsString().c_str(),
3883
0
        msg.m_type.c_str(),
3884
0
        msg.data.size(),
3885
0
        msg.data.data()
3886
0
    );
3887
3888
0
    size_t nBytesSent = 0;
3889
0
    {
3890
0
        LOCK(pnode->cs_vSend);
3891
        // Check if the transport still has unsent bytes, and indicate to it that we're about to
3892
        // give it a message to send.
3893
0
        const auto& [to_send, more, _msg_type] =
3894
0
            pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3895
0
        const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
  Branch (3895:36): [True: 0, False: 0]
  Branch (3895:55): [True: 0, False: 0]
3896
3897
        // Update memory usage of send buffer.
3898
0
        pnode->m_send_memusage += msg.GetMemoryUsage();
3899
0
        if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
  Branch (3899:13): [True: 0, False: 0]
3900
        // Move message to vSendMsg queue.
3901
0
        pnode->vSendMsg.push_back(std::move(msg));
3902
3903
        // If there was nothing to send before, and there is now (predicted by the "more" value
3904
        // returned by the GetBytesToSend call above), attempt "optimistic write":
3905
        // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3906
        // doing a send, try sending from the calling thread if the queue was empty before.
3907
        // With a V1Transport, more will always be true here, because adding a message always
3908
        // results in sendable bytes there, but with V2Transport this is not the case (it may
3909
        // still be in the handshake).
3910
0
        if (queue_was_empty && more) {
  Branch (3910:13): [True: 0, False: 0]
  Branch (3910:32): [True: 0, False: 0]
3911
0
            std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3912
0
        }
3913
0
    }
3914
0
    if (nBytesSent) RecordBytesSent(nBytesSent);
  Branch (3914:9): [True: 0, False: 0]
3915
0
}
3916
3917
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3918
0
{
3919
0
    CNode* found = nullptr;
3920
0
    LOCK(m_nodes_mutex);
3921
0
    for (auto&& pnode : m_nodes) {
  Branch (3921:23): [True: 0, False: 0]
3922
0
        if(pnode->GetId() == id) {
  Branch (3922:12): [True: 0, False: 0]
3923
0
            found = pnode;
3924
0
            break;
3925
0
        }
3926
0
    }
3927
0
    return found != nullptr && NodeFullyConnected(found) && func(found);
  Branch (3927:12): [True: 0, False: 0]
  Branch (3927:32): [True: 0, False: 0]
  Branch (3927:61): [True: 0, False: 0]
3928
0
}
3929
3930
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3931
0
{
3932
0
    return CSipHasher(nSeed0, nSeed1).Write(id);
3933
0
}
3934
3935
uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3936
0
{
3937
0
    std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3938
3939
0
    return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
3940
0
}
3941
3942
void CConnman::PerformReconnections()
3943
0
{
3944
0
    AssertLockNotHeld(m_reconnections_mutex);
3945
0
    AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3946
0
    while (true) {
  Branch (3946:12): [Folded - Ignored]
3947
        // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3948
0
        decltype(m_reconnections) todo;
3949
0
        {
3950
0
            LOCK(m_reconnections_mutex);
3951
0
            if (m_reconnections.empty()) break;
  Branch (3951:17): [True: 0, False: 0]
3952
0
            todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3953
0
        }
3954
3955
0
        auto& item = *todo.begin();
3956
0
        OpenNetworkConnection(item.addr_connect,
3957
                              // We only reconnect if the first attempt to connect succeeded at
3958
                              // connection time, but then failed after the CNode object was
3959
                              // created. Since we already know connecting is possible, do not
3960
                              // count failure to reconnect.
3961
0
                              /*fCountFailure=*/false,
3962
0
                              std::move(item.grant),
3963
0
                              item.destination.empty() ? nullptr : item.destination.c_str(),
  Branch (3963:31): [True: 0, False: 0]
3964
0
                              item.conn_type,
3965
0
                              item.use_v2transport);
3966
0
    }
3967
0
}
3968
3969
void CConnman::ASMapHealthCheck()
3970
0
{
3971
0
    const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3972
0
    const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3973
0
    std::vector<CNetAddr> clearnet_addrs;
3974
0
    clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3975
0
    std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3976
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3977
0
    std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3978
0
        [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3979
0
    m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3980
0
}
3981
3982
// Dump binary message to file, with timestamp.
3983
static void CaptureMessageToFile(const CAddress& addr,
3984
                                 const std::string& msg_type,
3985
                                 Span<const unsigned char> data,
3986
                                 bool is_incoming)
3987
0
{
3988
    // Note: This function captures the message at the time of processing,
3989
    // not at socket receive/send time.
3990
    // This ensures that the messages are always in order from an application
3991
    // layer (processing) perspective.
3992
0
    auto now = GetTime<std::chrono::microseconds>();
3993
3994
    // Windows folder names cannot include a colon
3995
0
    std::string clean_addr = addr.ToStringAddrPort();
3996
0
    std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3997
3998
0
    fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3999
0
    fs::create_directories(base_path);
4000
4001
0
    fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
  Branch (4001:34): [True: 0, False: 0]
4002
0
    AutoFile f{fsbridge::fopen(path, "ab")};
4003
4004
0
    ser_writedata64(f, now.count());
4005
0
    f << Span{msg_type};
4006
0
    for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
  Branch (4006:38): [True: 0, False: 0]
4007
0
        f << uint8_t{'\0'};
4008
0
    }
4009
0
    uint32_t size = data.size();
4010
0
    ser_writedata32(f, size);
4011
0
    f << data;
4012
0
}
4013
4014
std::function<void(const CAddress& addr,
4015
                   const std::string& msg_type,
4016
                   Span<const unsigned char> data,
4017
                   bool is_incoming)>
4018
    CaptureMessage = CaptureMessageToFile;