/root/bitcoin/src/test/fuzz/crypto_diff_fuzz_chacha20.cpp
Line | Count | Source |
1 | | // Copyright (c) 2020-2021 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <crypto/chacha20.h> |
6 | | #include <test/fuzz/FuzzedDataProvider.h> |
7 | | #include <test/fuzz/fuzz.h> |
8 | | #include <test/fuzz/util.h> |
9 | | |
10 | | #include <cstdint> |
11 | | #include <vector> |
12 | | |
13 | | /* |
14 | | From https://cr.yp.to/chacha.html |
15 | | chacha-merged.c version 20080118 |
16 | | D. J. Bernstein |
17 | | Public domain. |
18 | | */ |
19 | | |
20 | | typedef unsigned int u32; |
21 | | typedef unsigned char u8; |
22 | | |
23 | 0 | #define U8C(v) (v##U) |
24 | 0 | #define U32C(v) (v##U) |
25 | | |
26 | 0 | #define U8V(v) ((u8)(v)&U8C(0xFF)) |
27 | 0 | #define U32V(v) ((u32)(v)&U32C(0xFFFFFFFF)) |
28 | | |
29 | 0 | #define ROTL32(v, n) (U32V((v) << (n)) | ((v) >> (32 - (n)))) |
30 | | |
31 | | #define U8TO32_LITTLE(p) \ |
32 | 0 | (((u32)((p)[0])) | ((u32)((p)[1]) << 8) | ((u32)((p)[2]) << 16) | \ |
33 | 0 | ((u32)((p)[3]) << 24)) |
34 | | |
35 | | #define U32TO8_LITTLE(p, v) \ |
36 | 0 | do { \ |
37 | 0 | (p)[0] = U8V((v)); \ |
38 | 0 | (p)[1] = U8V((v) >> 8); \ |
39 | 0 | (p)[2] = U8V((v) >> 16); \ |
40 | 0 | (p)[3] = U8V((v) >> 24); \ |
41 | 0 | } while (0) |
42 | | |
43 | | /* ------------------------------------------------------------------------- */ |
44 | | /* Data structures */ |
45 | | |
46 | | typedef struct |
47 | | { |
48 | | u32 input[16]; |
49 | | } ECRYPT_ctx; |
50 | | |
51 | | /* ------------------------------------------------------------------------- */ |
52 | | /* Mandatory functions */ |
53 | | |
54 | | void ECRYPT_keysetup( |
55 | | ECRYPT_ctx* ctx, |
56 | | const u8* key, |
57 | | u32 keysize, /* Key size in bits. */ |
58 | | u32 ivsize); /* IV size in bits. */ |
59 | | |
60 | | void ECRYPT_ivsetup( |
61 | | ECRYPT_ctx* ctx, |
62 | | const u8* iv); |
63 | | |
64 | | void ECRYPT_encrypt_bytes( |
65 | | ECRYPT_ctx* ctx, |
66 | | const u8* plaintext, |
67 | | u8* ciphertext, |
68 | | u32 msglen); /* Message length in bytes. */ |
69 | | |
70 | | /* ------------------------------------------------------------------------- */ |
71 | | |
72 | | /* Optional features */ |
73 | | |
74 | | void ECRYPT_keystream_bytes( |
75 | | ECRYPT_ctx* ctx, |
76 | | u8* keystream, |
77 | | u32 length); /* Length of keystream in bytes. */ |
78 | | |
79 | | /* ------------------------------------------------------------------------- */ |
80 | | |
81 | 0 | #define ROTATE(v, c) (ROTL32(v, c)) |
82 | 0 | #define XOR(v, w) ((v) ^ (w)) |
83 | 0 | #define PLUS(v, w) (U32V((v) + (w))) |
84 | 0 | #define PLUSONE(v) (PLUS((v), 1)) |
85 | | |
86 | | #define QUARTERROUND(a, b, c, d) \ |
87 | 0 | a = PLUS(a, b); d = ROTATE(XOR(d, a), 16); \ |
88 | 0 | c = PLUS(c, d); b = ROTATE(XOR(b, c), 12); \ |
89 | 0 | a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \ |
90 | 0 | c = PLUS(c, d); b = ROTATE(XOR(b, c), 7); |
91 | | |
92 | | static const char sigma[] = "expand 32-byte k"; |
93 | | static const char tau[] = "expand 16-byte k"; |
94 | | |
95 | | void ECRYPT_keysetup(ECRYPT_ctx* x, const u8* k, u32 kbits, u32 ivbits) |
96 | 0 | { |
97 | 0 | const char* constants; |
98 | |
|
99 | 0 | x->input[4] = U8TO32_LITTLE(k + 0); |
100 | 0 | x->input[5] = U8TO32_LITTLE(k + 4); |
101 | 0 | x->input[6] = U8TO32_LITTLE(k + 8); |
102 | 0 | x->input[7] = U8TO32_LITTLE(k + 12); |
103 | 0 | if (kbits == 256) { /* recommended */ |
104 | 0 | k += 16; |
105 | 0 | constants = sigma; |
106 | 0 | } else { /* kbits == 128 */ |
107 | 0 | constants = tau; |
108 | 0 | } |
109 | 0 | x->input[8] = U8TO32_LITTLE(k + 0); |
110 | 0 | x->input[9] = U8TO32_LITTLE(k + 4); |
111 | 0 | x->input[10] = U8TO32_LITTLE(k + 8); |
112 | 0 | x->input[11] = U8TO32_LITTLE(k + 12); |
113 | 0 | x->input[0] = U8TO32_LITTLE(constants + 0); |
114 | 0 | x->input[1] = U8TO32_LITTLE(constants + 4); |
115 | 0 | x->input[2] = U8TO32_LITTLE(constants + 8); |
116 | 0 | x->input[3] = U8TO32_LITTLE(constants + 12); |
117 | 0 | } |
118 | | |
119 | | void ECRYPT_ivsetup(ECRYPT_ctx* x, const u8* iv) |
120 | 0 | { |
121 | 0 | x->input[12] = 0; |
122 | 0 | x->input[13] = 0; |
123 | 0 | x->input[14] = U8TO32_LITTLE(iv + 0); |
124 | 0 | x->input[15] = U8TO32_LITTLE(iv + 4); |
125 | 0 | } |
126 | | |
127 | | void ECRYPT_encrypt_bytes(ECRYPT_ctx* x, const u8* m, u8* c, u32 bytes) |
128 | 0 | { |
129 | 0 | u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
130 | 0 | u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; |
131 | 0 | u8* ctarget = nullptr; |
132 | 0 | u8 tmp[64]; |
133 | 0 | uint32_t i; |
134 | |
|
135 | 0 | if (!bytes) return; |
136 | | |
137 | 0 | j0 = x->input[0]; |
138 | 0 | j1 = x->input[1]; |
139 | 0 | j2 = x->input[2]; |
140 | 0 | j3 = x->input[3]; |
141 | 0 | j4 = x->input[4]; |
142 | 0 | j5 = x->input[5]; |
143 | 0 | j6 = x->input[6]; |
144 | 0 | j7 = x->input[7]; |
145 | 0 | j8 = x->input[8]; |
146 | 0 | j9 = x->input[9]; |
147 | 0 | j10 = x->input[10]; |
148 | 0 | j11 = x->input[11]; |
149 | 0 | j12 = x->input[12]; |
150 | 0 | j13 = x->input[13]; |
151 | 0 | j14 = x->input[14]; |
152 | 0 | j15 = x->input[15]; |
153 | |
|
154 | 0 | for (;;) { |
155 | 0 | if (bytes < 64) { |
156 | 0 | for (i = 0; i < bytes; ++i) |
157 | 0 | tmp[i] = m[i]; |
158 | 0 | m = tmp; |
159 | 0 | ctarget = c; |
160 | 0 | c = tmp; |
161 | 0 | } |
162 | 0 | x0 = j0; |
163 | 0 | x1 = j1; |
164 | 0 | x2 = j2; |
165 | 0 | x3 = j3; |
166 | 0 | x4 = j4; |
167 | 0 | x5 = j5; |
168 | 0 | x6 = j6; |
169 | 0 | x7 = j7; |
170 | 0 | x8 = j8; |
171 | 0 | x9 = j9; |
172 | 0 | x10 = j10; |
173 | 0 | x11 = j11; |
174 | 0 | x12 = j12; |
175 | 0 | x13 = j13; |
176 | 0 | x14 = j14; |
177 | 0 | x15 = j15; |
178 | 0 | for (i = 20; i > 0; i -= 2) { |
179 | 0 | QUARTERROUND(x0, x4, x8, x12) |
180 | 0 | QUARTERROUND(x1, x5, x9, x13) |
181 | 0 | QUARTERROUND(x2, x6, x10, x14) |
182 | 0 | QUARTERROUND(x3, x7, x11, x15) |
183 | 0 | QUARTERROUND(x0, x5, x10, x15) |
184 | 0 | QUARTERROUND(x1, x6, x11, x12) |
185 | 0 | QUARTERROUND(x2, x7, x8, x13) |
186 | 0 | QUARTERROUND(x3, x4, x9, x14) |
187 | 0 | } |
188 | 0 | x0 = PLUS(x0, j0); |
189 | 0 | x1 = PLUS(x1, j1); |
190 | 0 | x2 = PLUS(x2, j2); |
191 | 0 | x3 = PLUS(x3, j3); |
192 | 0 | x4 = PLUS(x4, j4); |
193 | 0 | x5 = PLUS(x5, j5); |
194 | 0 | x6 = PLUS(x6, j6); |
195 | 0 | x7 = PLUS(x7, j7); |
196 | 0 | x8 = PLUS(x8, j8); |
197 | 0 | x9 = PLUS(x9, j9); |
198 | 0 | x10 = PLUS(x10, j10); |
199 | 0 | x11 = PLUS(x11, j11); |
200 | 0 | x12 = PLUS(x12, j12); |
201 | 0 | x13 = PLUS(x13, j13); |
202 | 0 | x14 = PLUS(x14, j14); |
203 | 0 | x15 = PLUS(x15, j15); |
204 | |
|
205 | 0 | x0 = XOR(x0, U8TO32_LITTLE(m + 0)); |
206 | 0 | x1 = XOR(x1, U8TO32_LITTLE(m + 4)); |
207 | 0 | x2 = XOR(x2, U8TO32_LITTLE(m + 8)); |
208 | 0 | x3 = XOR(x3, U8TO32_LITTLE(m + 12)); |
209 | 0 | x4 = XOR(x4, U8TO32_LITTLE(m + 16)); |
210 | 0 | x5 = XOR(x5, U8TO32_LITTLE(m + 20)); |
211 | 0 | x6 = XOR(x6, U8TO32_LITTLE(m + 24)); |
212 | 0 | x7 = XOR(x7, U8TO32_LITTLE(m + 28)); |
213 | 0 | x8 = XOR(x8, U8TO32_LITTLE(m + 32)); |
214 | 0 | x9 = XOR(x9, U8TO32_LITTLE(m + 36)); |
215 | 0 | x10 = XOR(x10, U8TO32_LITTLE(m + 40)); |
216 | 0 | x11 = XOR(x11, U8TO32_LITTLE(m + 44)); |
217 | 0 | x12 = XOR(x12, U8TO32_LITTLE(m + 48)); |
218 | 0 | x13 = XOR(x13, U8TO32_LITTLE(m + 52)); |
219 | 0 | x14 = XOR(x14, U8TO32_LITTLE(m + 56)); |
220 | 0 | x15 = XOR(x15, U8TO32_LITTLE(m + 60)); |
221 | |
|
222 | 0 | j12 = PLUSONE(j12); |
223 | 0 | if (!j12) { |
224 | 0 | j13 = PLUSONE(j13); |
225 | | /* stopping at 2^70 bytes per nonce is user's responsibility */ |
226 | 0 | } |
227 | |
|
228 | 0 | U32TO8_LITTLE(c + 0, x0); |
229 | 0 | U32TO8_LITTLE(c + 4, x1); |
230 | 0 | U32TO8_LITTLE(c + 8, x2); |
231 | 0 | U32TO8_LITTLE(c + 12, x3); |
232 | 0 | U32TO8_LITTLE(c + 16, x4); |
233 | 0 | U32TO8_LITTLE(c + 20, x5); |
234 | 0 | U32TO8_LITTLE(c + 24, x6); |
235 | 0 | U32TO8_LITTLE(c + 28, x7); |
236 | 0 | U32TO8_LITTLE(c + 32, x8); |
237 | 0 | U32TO8_LITTLE(c + 36, x9); |
238 | 0 | U32TO8_LITTLE(c + 40, x10); |
239 | 0 | U32TO8_LITTLE(c + 44, x11); |
240 | 0 | U32TO8_LITTLE(c + 48, x12); |
241 | 0 | U32TO8_LITTLE(c + 52, x13); |
242 | 0 | U32TO8_LITTLE(c + 56, x14); |
243 | 0 | U32TO8_LITTLE(c + 60, x15); |
244 | |
|
245 | 0 | if (bytes <= 64) { |
246 | 0 | if (bytes < 64) { |
247 | 0 | for (i = 0; i < bytes; ++i) |
248 | 0 | ctarget[i] = c[i]; |
249 | 0 | } |
250 | 0 | x->input[12] = j12; |
251 | 0 | x->input[13] = j13; |
252 | 0 | return; |
253 | 0 | } |
254 | 0 | bytes -= 64; |
255 | 0 | c += 64; |
256 | 0 | m += 64; |
257 | 0 | } |
258 | 0 | } |
259 | | |
260 | | void ECRYPT_keystream_bytes(ECRYPT_ctx* x, u8* stream, u32 bytes) |
261 | 0 | { |
262 | 0 | u32 i; |
263 | 0 | for (i = 0; i < bytes; ++i) |
264 | 0 | stream[i] = 0; |
265 | 0 | ECRYPT_encrypt_bytes(x, stream, stream, bytes); |
266 | 0 | } |
267 | | |
268 | | FUZZ_TARGET(crypto_diff_fuzz_chacha20) |
269 | 0 | { |
270 | 0 | FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()}; |
271 | |
|
272 | 0 | ECRYPT_ctx ctx; |
273 | |
|
274 | 0 | const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32); |
275 | 0 | ChaCha20 chacha20{MakeByteSpan(key)}; |
276 | 0 | ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); |
277 | | |
278 | | // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does |
279 | 0 | static const uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
280 | 0 | ChaCha20::Nonce96 nonce{0, 0}; |
281 | 0 | uint32_t counter{0}; |
282 | 0 | ECRYPT_ivsetup(&ctx, iv); |
283 | |
|
284 | 0 | LIMITED_WHILE (fuzzed_data_provider.ConsumeBool(), 3000) { |
285 | 0 | CallOneOf( |
286 | 0 | fuzzed_data_provider, |
287 | 0 | [&] { |
288 | 0 | const std::vector<unsigned char> key = ConsumeFixedLengthByteVector(fuzzed_data_provider, 32); |
289 | 0 | chacha20.SetKey(MakeByteSpan(key)); |
290 | 0 | nonce = {0, 0}; |
291 | 0 | counter = 0; |
292 | 0 | ECRYPT_keysetup(&ctx, key.data(), key.size() * 8, 0); |
293 | | // ECRYPT_keysetup() doesn't set the counter and nonce to 0 while SetKey() does |
294 | 0 | uint8_t iv[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
295 | 0 | ECRYPT_ivsetup(&ctx, iv); |
296 | 0 | }, |
297 | 0 | [&] { |
298 | 0 | uint32_t iv_prefix = fuzzed_data_provider.ConsumeIntegral<uint32_t>(); |
299 | 0 | uint64_t iv = fuzzed_data_provider.ConsumeIntegral<uint64_t>(); |
300 | 0 | nonce = {iv_prefix, iv}; |
301 | 0 | counter = fuzzed_data_provider.ConsumeIntegral<uint32_t>(); |
302 | 0 | chacha20.Seek(nonce, counter); |
303 | 0 | ctx.input[12] = counter; |
304 | 0 | ctx.input[13] = iv_prefix; |
305 | 0 | ctx.input[14] = iv; |
306 | 0 | ctx.input[15] = iv >> 32; |
307 | 0 | }, |
308 | 0 | [&] { |
309 | 0 | uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); |
310 | 0 | std::vector<uint8_t> output(integralInRange); |
311 | 0 | chacha20.Keystream(MakeWritableByteSpan(output)); |
312 | 0 | std::vector<uint8_t> djb_output(integralInRange); |
313 | 0 | ECRYPT_keystream_bytes(&ctx, djb_output.data(), djb_output.size()); |
314 | 0 | assert(output == djb_output); |
315 | | // DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that. |
316 | 0 | uint32_t old_counter = counter; |
317 | 0 | counter += (integralInRange + 63) >> 6; |
318 | 0 | if (counter < old_counter) ++nonce.first; |
319 | 0 | if (integralInRange & 63) { |
320 | 0 | chacha20.Seek(nonce, counter); |
321 | 0 | } |
322 | 0 | assert(counter == ctx.input[12]); |
323 | 0 | }, |
324 | 0 | [&] { |
325 | 0 | uint32_t integralInRange = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096); |
326 | 0 | std::vector<uint8_t> output(integralInRange); |
327 | 0 | const std::vector<uint8_t> input = ConsumeFixedLengthByteVector(fuzzed_data_provider, output.size()); |
328 | 0 | chacha20.Crypt(MakeByteSpan(input), MakeWritableByteSpan(output)); |
329 | 0 | std::vector<uint8_t> djb_output(integralInRange); |
330 | 0 | ECRYPT_encrypt_bytes(&ctx, input.data(), djb_output.data(), input.size()); |
331 | 0 | assert(output == djb_output); |
332 | | // DJB's version seeks forward to a multiple of 64 bytes after every operation. Correct for that. |
333 | 0 | uint32_t old_counter = counter; |
334 | 0 | counter += (integralInRange + 63) >> 6; |
335 | 0 | if (counter < old_counter) ++nonce.first; |
336 | 0 | if (integralInRange & 63) { |
337 | 0 | chacha20.Seek(nonce, counter); |
338 | 0 | } |
339 | | assert(counter == ctx.input[12]); |
340 | 0 | }); |
341 | 0 | } |
342 | 0 | } |