Coverage Report

Created: 2024-10-21 15:10

/root/bitcoin/src/script/interpreter.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-2022 The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <script/interpreter.h>
7
8
#include <crypto/ripemd160.h>
9
#include <crypto/sha1.h>
10
#include <crypto/sha256.h>
11
#include <pubkey.h>
12
#include <script/script.h>
13
#include <uint256.h>
14
15
typedef std::vector<unsigned char> valtype;
16
17
namespace {
18
19
inline bool set_success(ScriptError* ret)
20
0
{
21
0
    if (ret)
22
0
        *ret = SCRIPT_ERR_OK;
23
0
    return true;
24
0
}
25
26
inline bool set_error(ScriptError* ret, const ScriptError serror)
27
0
{
28
0
    if (ret)
29
0
        *ret = serror;
30
0
    return false;
31
0
}
32
33
} // namespace
34
35
bool CastToBool(const valtype& vch)
36
0
{
37
0
    for (unsigned int i = 0; i < vch.size(); i++)
38
0
    {
39
0
        if (vch[i] != 0)
40
0
        {
41
            // Can be negative zero
42
0
            if (i == vch.size()-1 && vch[i] == 0x80)
43
0
                return false;
44
0
            return true;
45
0
        }
46
0
    }
47
0
    return false;
48
0
}
49
50
/**
51
 * Script is a stack machine (like Forth) that evaluates a predicate
52
 * returning a bool indicating valid or not.  There are no loops.
53
 */
54
0
#define stacktop(i)  (stack.at(stack.size()+(i)))
55
0
#define altstacktop(i)  (altstack.at(altstack.size()+(i)))
56
static inline void popstack(std::vector<valtype>& stack)
57
0
{
58
0
    if (stack.empty())
59
0
        throw std::runtime_error("popstack(): stack empty");
60
0
    stack.pop_back();
61
0
}
62
63
0
bool static IsCompressedOrUncompressedPubKey(const valtype &vchPubKey) {
64
0
    if (vchPubKey.size() < CPubKey::COMPRESSED_SIZE) {
65
        //  Non-canonical public key: too short
66
0
        return false;
67
0
    }
68
0
    if (vchPubKey[0] == 0x04) {
69
0
        if (vchPubKey.size() != CPubKey::SIZE) {
70
            //  Non-canonical public key: invalid length for uncompressed key
71
0
            return false;
72
0
        }
73
0
    } else if (vchPubKey[0] == 0x02 || vchPubKey[0] == 0x03) {
74
0
        if (vchPubKey.size() != CPubKey::COMPRESSED_SIZE) {
75
            //  Non-canonical public key: invalid length for compressed key
76
0
            return false;
77
0
        }
78
0
    } else {
79
        //  Non-canonical public key: neither compressed nor uncompressed
80
0
        return false;
81
0
    }
82
0
    return true;
83
0
}
84
85
0
bool static IsCompressedPubKey(const valtype &vchPubKey) {
86
0
    if (vchPubKey.size() != CPubKey::COMPRESSED_SIZE) {
87
        //  Non-canonical public key: invalid length for compressed key
88
0
        return false;
89
0
    }
90
0
    if (vchPubKey[0] != 0x02 && vchPubKey[0] != 0x03) {
91
        //  Non-canonical public key: invalid prefix for compressed key
92
0
        return false;
93
0
    }
94
0
    return true;
95
0
}
96
97
/**
98
 * A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
99
 * Where R and S are not negative (their first byte has its highest bit not set), and not
100
 * excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
101
 * in which case a single 0 byte is necessary and even required).
102
 *
103
 * See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
104
 *
105
 * This function is consensus-critical since BIP66.
106
 */
107
0
bool static IsValidSignatureEncoding(const std::vector<unsigned char> &sig) {
108
    // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
109
    // * total-length: 1-byte length descriptor of everything that follows,
110
    //   excluding the sighash byte.
111
    // * R-length: 1-byte length descriptor of the R value that follows.
112
    // * R: arbitrary-length big-endian encoded R value. It must use the shortest
113
    //   possible encoding for a positive integer (which means no null bytes at
114
    //   the start, except a single one when the next byte has its highest bit set).
115
    // * S-length: 1-byte length descriptor of the S value that follows.
116
    // * S: arbitrary-length big-endian encoded S value. The same rules apply.
117
    // * sighash: 1-byte value indicating what data is hashed (not part of the DER
118
    //   signature)
119
120
    // Minimum and maximum size constraints.
121
0
    if (sig.size() < 9) return false;
122
0
    if (sig.size() > 73) return false;
123
124
    // A signature is of type 0x30 (compound).
125
0
    if (sig[0] != 0x30) return false;
126
127
    // Make sure the length covers the entire signature.
128
0
    if (sig[1] != sig.size() - 3) return false;
129
130
    // Extract the length of the R element.
131
0
    unsigned int lenR = sig[3];
132
133
    // Make sure the length of the S element is still inside the signature.
134
0
    if (5 + lenR >= sig.size()) return false;
135
136
    // Extract the length of the S element.
137
0
    unsigned int lenS = sig[5 + lenR];
138
139
    // Verify that the length of the signature matches the sum of the length
140
    // of the elements.
141
0
    if ((size_t)(lenR + lenS + 7) != sig.size()) return false;
142
143
    // Check whether the R element is an integer.
144
0
    if (sig[2] != 0x02) return false;
145
146
    // Zero-length integers are not allowed for R.
147
0
    if (lenR == 0) return false;
148
149
    // Negative numbers are not allowed for R.
150
0
    if (sig[4] & 0x80) return false;
151
152
    // Null bytes at the start of R are not allowed, unless R would
153
    // otherwise be interpreted as a negative number.
154
0
    if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;
155
156
    // Check whether the S element is an integer.
157
0
    if (sig[lenR + 4] != 0x02) return false;
158
159
    // Zero-length integers are not allowed for S.
160
0
    if (lenS == 0) return false;
161
162
    // Negative numbers are not allowed for S.
163
0
    if (sig[lenR + 6] & 0x80) return false;
164
165
    // Null bytes at the start of S are not allowed, unless S would otherwise be
166
    // interpreted as a negative number.
167
0
    if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;
168
169
0
    return true;
170
0
}
171
172
0
bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) {
173
0
    if (!IsValidSignatureEncoding(vchSig)) {
174
0
        return set_error(serror, SCRIPT_ERR_SIG_DER);
175
0
    }
176
    // https://bitcoin.stackexchange.com/a/12556:
177
    //     Also note that inside transaction signatures, an extra hashtype byte
178
    //     follows the actual signature data.
179
0
    std::vector<unsigned char> vchSigCopy(vchSig.begin(), vchSig.begin() + vchSig.size() - 1);
180
    // If the S value is above the order of the curve divided by two, its
181
    // complement modulo the order could have been used instead, which is
182
    // one byte shorter when encoded correctly.
183
0
    if (!CPubKey::CheckLowS(vchSigCopy)) {
184
0
        return set_error(serror, SCRIPT_ERR_SIG_HIGH_S);
185
0
    }
186
0
    return true;
187
0
}
188
189
0
bool static IsDefinedHashtypeSignature(const valtype &vchSig) {
190
0
    if (vchSig.size() == 0) {
191
0
        return false;
192
0
    }
193
0
    unsigned char nHashType = vchSig[vchSig.size() - 1] & (~(SIGHASH_ANYONECANPAY));
194
0
    if (nHashType < SIGHASH_ALL || nHashType > SIGHASH_SINGLE)
195
0
        return false;
196
197
0
    return true;
198
0
}
199
200
0
bool CheckSignatureEncoding(const std::vector<unsigned char> &vchSig, unsigned int flags, ScriptError* serror) {
201
    // Empty signature. Not strictly DER encoded, but allowed to provide a
202
    // compact way to provide an invalid signature for use with CHECK(MULTI)SIG
203
0
    if (vchSig.size() == 0) {
204
0
        return true;
205
0
    }
206
0
    if ((flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_STRICTENC)) != 0 && !IsValidSignatureEncoding(vchSig)) {
207
0
        return set_error(serror, SCRIPT_ERR_SIG_DER);
208
0
    } else if ((flags & SCRIPT_VERIFY_LOW_S) != 0 && !IsLowDERSignature(vchSig, serror)) {
209
        // serror is set
210
0
        return false;
211
0
    } else if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsDefinedHashtypeSignature(vchSig)) {
212
0
        return set_error(serror, SCRIPT_ERR_SIG_HASHTYPE);
213
0
    }
214
0
    return true;
215
0
}
216
217
0
bool static CheckPubKeyEncoding(const valtype &vchPubKey, unsigned int flags, const SigVersion &sigversion, ScriptError* serror) {
218
0
    if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsCompressedOrUncompressedPubKey(vchPubKey)) {
219
0
        return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
220
0
    }
221
    // Only compressed keys are accepted in segwit
222
0
    if ((flags & SCRIPT_VERIFY_WITNESS_PUBKEYTYPE) != 0 && sigversion == SigVersion::WITNESS_V0 && !IsCompressedPubKey(vchPubKey)) {
223
0
        return set_error(serror, SCRIPT_ERR_WITNESS_PUBKEYTYPE);
224
0
    }
225
0
    return true;
226
0
}
227
228
int FindAndDelete(CScript& script, const CScript& b)
229
0
{
230
0
    int nFound = 0;
231
0
    if (b.empty())
232
0
        return nFound;
233
0
    CScript result;
234
0
    CScript::const_iterator pc = script.begin(), pc2 = script.begin(), end = script.end();
235
0
    opcodetype opcode;
236
0
    do
237
0
    {
238
0
        result.insert(result.end(), pc2, pc);
239
0
        while (static_cast<size_t>(end - pc) >= b.size() && std::equal(b.begin(), b.end(), pc))
240
0
        {
241
0
            pc = pc + b.size();
242
0
            ++nFound;
243
0
        }
244
0
        pc2 = pc;
245
0
    }
246
0
    while (script.GetOp(pc, opcode));
247
248
0
    if (nFound > 0) {
249
0
        result.insert(result.end(), pc2, end);
250
0
        script = std::move(result);
251
0
    }
252
253
0
    return nFound;
254
0
}
255
256
namespace {
257
/** A data type to abstract out the condition stack during script execution.
258
 *
259
 * Conceptually it acts like a vector of booleans, one for each level of nested
260
 * IF/THEN/ELSE, indicating whether we're in the active or inactive branch of
261
 * each.
262
 *
263
 * The elements on the stack cannot be observed individually; we only need to
264
 * expose whether the stack is empty and whether or not any false values are
265
 * present at all. To implement OP_ELSE, a toggle_top modifier is added, which
266
 * flips the last value without returning it.
267
 *
268
 * This uses an optimized implementation that does not materialize the
269
 * actual stack. Instead, it just stores the size of the would-be stack,
270
 * and the position of the first false value in it.
271
 */
272
class ConditionStack {
273
private:
274
    //! A constant for m_first_false_pos to indicate there are no falses.
275
    static constexpr uint32_t NO_FALSE = std::numeric_limits<uint32_t>::max();
276
277
    //! The size of the implied stack.
278
    uint32_t m_stack_size = 0;
279
    //! The position of the first false value on the implied stack, or NO_FALSE if all true.
280
    uint32_t m_first_false_pos = NO_FALSE;
281
282
public:
283
0
    bool empty() const { return m_stack_size == 0; }
284
0
    bool all_true() const { return m_first_false_pos == NO_FALSE; }
285
    void push_back(bool f)
286
0
    {
287
0
        if (m_first_false_pos == NO_FALSE && !f) {
288
            // The stack consists of all true values, and a false is added.
289
            // The first false value will appear at the current size.
290
0
            m_first_false_pos = m_stack_size;
291
0
        }
292
0
        ++m_stack_size;
293
0
    }
294
    void pop_back()
295
0
    {
296
0
        assert(m_stack_size > 0);
297
0
        --m_stack_size;
298
0
        if (m_first_false_pos == m_stack_size) {
299
            // When popping off the first false value, everything becomes true.
300
0
            m_first_false_pos = NO_FALSE;
301
0
        }
302
0
    }
303
    void toggle_top()
304
0
    {
305
0
        assert(m_stack_size > 0);
306
0
        if (m_first_false_pos == NO_FALSE) {
307
            // The current stack is all true values; the first false will be the top.
308
0
            m_first_false_pos = m_stack_size - 1;
309
0
        } else if (m_first_false_pos == m_stack_size - 1) {
310
            // The top is the first false value; toggling it will make everything true.
311
0
            m_first_false_pos = NO_FALSE;
312
0
        } else {
313
            // There is a false value, but not on top. No action is needed as toggling
314
            // anything but the first false value is unobservable.
315
0
        }
316
0
    }
317
};
318
}
319
320
static bool EvalChecksigPreTapscript(const valtype& vchSig, const valtype& vchPubKey, CScript::const_iterator pbegincodehash, CScript::const_iterator pend, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& fSuccess)
321
0
{
322
0
    assert(sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0);
323
324
    // Subset of script starting at the most recent codeseparator
325
0
    CScript scriptCode(pbegincodehash, pend);
326
327
    // Drop the signature in pre-segwit scripts but not segwit scripts
328
0
    if (sigversion == SigVersion::BASE) {
329
0
        int found = FindAndDelete(scriptCode, CScript() << vchSig);
330
0
        if (found > 0 && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
331
0
            return set_error(serror, SCRIPT_ERR_SIG_FINDANDDELETE);
332
0
    }
333
334
0
    if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, sigversion, serror)) {
335
        //serror is set
336
0
        return false;
337
0
    }
338
0
    fSuccess = checker.CheckECDSASignature(vchSig, vchPubKey, scriptCode, sigversion);
339
340
0
    if (!fSuccess && (flags & SCRIPT_VERIFY_NULLFAIL) && vchSig.size())
341
0
        return set_error(serror, SCRIPT_ERR_SIG_NULLFAIL);
342
343
0
    return true;
344
0
}
345
346
static bool EvalChecksigTapscript(const valtype& sig, const valtype& pubkey, ScriptExecutionData& execdata, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& success)
347
0
{
348
0
    assert(sigversion == SigVersion::TAPSCRIPT);
349
350
    /*
351
     *  The following validation sequence is consensus critical. Please note how --
352
     *    upgradable public key versions precede other rules;
353
     *    the script execution fails when using empty signature with invalid public key;
354
     *    the script execution fails when using non-empty invalid signature.
355
     */
356
0
    success = !sig.empty();
357
0
    if (success) {
358
        // Implement the sigops/witnesssize ratio test.
359
        // Passing with an upgradable public key version is also counted.
360
0
        assert(execdata.m_validation_weight_left_init);
361
0
        execdata.m_validation_weight_left -= VALIDATION_WEIGHT_PER_SIGOP_PASSED;
362
0
        if (execdata.m_validation_weight_left < 0) {
363
0
            return set_error(serror, SCRIPT_ERR_TAPSCRIPT_VALIDATION_WEIGHT);
364
0
        }
365
0
    }
366
0
    if (pubkey.size() == 0) {
367
0
        return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
368
0
    } else if (pubkey.size() == 32) {
369
0
        if (success && !checker.CheckSchnorrSignature(sig, pubkey, sigversion, execdata, serror)) {
370
0
            return false; // serror is set
371
0
        }
372
0
    } else {
373
        /*
374
         *  New public key version softforks should be defined before this `else` block.
375
         *  Generally, the new code should not do anything but failing the script execution. To avoid
376
         *  consensus bugs, it should not modify any existing values (including `success`).
377
         */
378
0
        if ((flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_PUBKEYTYPE) != 0) {
379
0
            return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_PUBKEYTYPE);
380
0
        }
381
0
    }
382
383
0
    return true;
384
0
}
385
386
/** Helper for OP_CHECKSIG, OP_CHECKSIGVERIFY, and (in Tapscript) OP_CHECKSIGADD.
387
 *
388
 * A return value of false means the script fails entirely. When true is returned, the
389
 * success variable indicates whether the signature check itself succeeded.
390
 */
391
static bool EvalChecksig(const valtype& sig, const valtype& pubkey, CScript::const_iterator pbegincodehash, CScript::const_iterator pend, ScriptExecutionData& execdata, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror, bool& success)
392
0
{
393
0
    switch (sigversion) {
394
0
    case SigVersion::BASE:
395
0
    case SigVersion::WITNESS_V0:
396
0
        return EvalChecksigPreTapscript(sig, pubkey, pbegincodehash, pend, flags, checker, sigversion, serror, success);
397
0
    case SigVersion::TAPSCRIPT:
398
0
        return EvalChecksigTapscript(sig, pubkey, execdata, flags, checker, sigversion, serror, success);
399
0
    case SigVersion::TAPROOT:
400
        // Key path spending in Taproot has no script, so this is unreachable.
401
0
        break;
402
0
    }
403
0
    assert(false);
404
0
}
405
406
bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptExecutionData& execdata, ScriptError* serror)
407
0
{
408
0
    static const CScriptNum bnZero(0);
409
0
    static const CScriptNum bnOne(1);
410
    // static const CScriptNum bnFalse(0);
411
    // static const CScriptNum bnTrue(1);
412
0
    static const valtype vchFalse(0);
413
    // static const valtype vchZero(0);
414
0
    static const valtype vchTrue(1, 1);
415
416
    // sigversion cannot be TAPROOT here, as it admits no script execution.
417
0
    assert(sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0 || sigversion == SigVersion::TAPSCRIPT);
418
419
0
    CScript::const_iterator pc = script.begin();
420
0
    CScript::const_iterator pend = script.end();
421
0
    CScript::const_iterator pbegincodehash = script.begin();
422
0
    opcodetype opcode;
423
0
    valtype vchPushValue;
424
0
    ConditionStack vfExec;
425
0
    std::vector<valtype> altstack;
426
0
    set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
427
0
    if ((sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) && script.size() > MAX_SCRIPT_SIZE) {
428
0
        return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE);
429
0
    }
430
0
    int nOpCount = 0;
431
0
    bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0;
432
0
    uint32_t opcode_pos = 0;
433
0
    execdata.m_codeseparator_pos = 0xFFFFFFFFUL;
434
0
    execdata.m_codeseparator_pos_init = true;
435
436
0
    try
437
0
    {
438
0
        for (; pc < pend; ++opcode_pos) {
439
0
            bool fExec = vfExec.all_true();
440
441
            //
442
            // Read instruction
443
            //
444
0
            if (!script.GetOp(pc, opcode, vchPushValue))
445
0
                return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
446
0
            if (vchPushValue.size() > MAX_SCRIPT_ELEMENT_SIZE)
447
0
                return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
448
449
0
            if (sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) {
450
                // Note how OP_RESERVED does not count towards the opcode limit.
451
0
                if (opcode > OP_16 && ++nOpCount > MAX_OPS_PER_SCRIPT) {
452
0
                    return set_error(serror, SCRIPT_ERR_OP_COUNT);
453
0
                }
454
0
            }
455
456
0
            if (opcode == OP_CAT ||
457
0
                opcode == OP_SUBSTR ||
458
0
                opcode == OP_LEFT ||
459
0
                opcode == OP_RIGHT ||
460
0
                opcode == OP_INVERT ||
461
0
                opcode == OP_AND ||
462
0
                opcode == OP_OR ||
463
0
                opcode == OP_XOR ||
464
0
                opcode == OP_2MUL ||
465
0
                opcode == OP_2DIV ||
466
0
                opcode == OP_MUL ||
467
0
                opcode == OP_DIV ||
468
0
                opcode == OP_MOD ||
469
0
                opcode == OP_LSHIFT ||
470
0
                opcode == OP_RSHIFT)
471
0
                return set_error(serror, SCRIPT_ERR_DISABLED_OPCODE); // Disabled opcodes (CVE-2010-5137).
472
473
            // With SCRIPT_VERIFY_CONST_SCRIPTCODE, OP_CODESEPARATOR in non-segwit script is rejected even in an unexecuted branch
474
0
            if (opcode == OP_CODESEPARATOR && sigversion == SigVersion::BASE && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
475
0
                return set_error(serror, SCRIPT_ERR_OP_CODESEPARATOR);
476
477
0
            if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
478
0
                if (fRequireMinimal && !CheckMinimalPush(vchPushValue, opcode)) {
479
0
                    return set_error(serror, SCRIPT_ERR_MINIMALDATA);
480
0
                }
481
0
                stack.push_back(vchPushValue);
482
0
            } else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
483
0
            switch (opcode)
484
0
            {
485
                //
486
                // Push value
487
                //
488
0
                case OP_1NEGATE:
489
0
                case OP_1:
490
0
                case OP_2:
491
0
                case OP_3:
492
0
                case OP_4:
493
0
                case OP_5:
494
0
                case OP_6:
495
0
                case OP_7:
496
0
                case OP_8:
497
0
                case OP_9:
498
0
                case OP_10:
499
0
                case OP_11:
500
0
                case OP_12:
501
0
                case OP_13:
502
0
                case OP_14:
503
0
                case OP_15:
504
0
                case OP_16:
505
0
                {
506
                    // ( -- value)
507
0
                    CScriptNum bn((int)opcode - (int)(OP_1 - 1));
508
0
                    stack.push_back(bn.getvch());
509
                    // The result of these opcodes should always be the minimal way to push the data
510
                    // they push, so no need for a CheckMinimalPush here.
511
0
                }
512
0
                break;
513
514
515
                //
516
                // Control
517
                //
518
0
                case OP_NOP:
519
0
                    break;
520
521
0
                case OP_CHECKLOCKTIMEVERIFY:
522
0
                {
523
0
                    if (!(flags & SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY)) {
524
                        // not enabled; treat as a NOP2
525
0
                        break;
526
0
                    }
527
528
0
                    if (stack.size() < 1)
529
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
530
531
                    // Note that elsewhere numeric opcodes are limited to
532
                    // operands in the range -2**31+1 to 2**31-1, however it is
533
                    // legal for opcodes to produce results exceeding that
534
                    // range. This limitation is implemented by CScriptNum's
535
                    // default 4-byte limit.
536
                    //
537
                    // If we kept to that limit we'd have a year 2038 problem,
538
                    // even though the nLockTime field in transactions
539
                    // themselves is uint32 which only becomes meaningless
540
                    // after the year 2106.
541
                    //
542
                    // Thus as a special case we tell CScriptNum to accept up
543
                    // to 5-byte bignums, which are good until 2**39-1, well
544
                    // beyond the 2**32-1 limit of the nLockTime field itself.
545
0
                    const CScriptNum nLockTime(stacktop(-1), fRequireMinimal, 5);
546
547
                    // In the rare event that the argument may be < 0 due to
548
                    // some arithmetic being done first, you can always use
549
                    // 0 MAX CHECKLOCKTIMEVERIFY.
550
0
                    if (nLockTime < 0)
551
0
                        return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);
552
553
                    // Actually compare the specified lock time with the transaction.
554
0
                    if (!checker.CheckLockTime(nLockTime))
555
0
                        return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);
556
557
0
                    break;
558
0
                }
559
560
0
                case OP_CHECKSEQUENCEVERIFY:
561
0
                {
562
0
                    if (!(flags & SCRIPT_VERIFY_CHECKSEQUENCEVERIFY)) {
563
                        // not enabled; treat as a NOP3
564
0
                        break;
565
0
                    }
566
567
0
                    if (stack.size() < 1)
568
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
569
570
                    // nSequence, like nLockTime, is a 32-bit unsigned integer
571
                    // field. See the comment in CHECKLOCKTIMEVERIFY regarding
572
                    // 5-byte numeric operands.
573
0
                    const CScriptNum nSequence(stacktop(-1), fRequireMinimal, 5);
574
575
                    // In the rare event that the argument may be < 0 due to
576
                    // some arithmetic being done first, you can always use
577
                    // 0 MAX CHECKSEQUENCEVERIFY.
578
0
                    if (nSequence < 0)
579
0
                        return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);
580
581
                    // To provide for future soft-fork extensibility, if the
582
                    // operand has the disabled lock-time flag set,
583
                    // CHECKSEQUENCEVERIFY behaves as a NOP.
584
0
                    if ((nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) != 0)
585
0
                        break;
586
587
                    // Compare the specified sequence number with the input.
588
0
                    if (!checker.CheckSequence(nSequence))
589
0
                        return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);
590
591
0
                    break;
592
0
                }
593
594
0
                case OP_NOP1: case OP_NOP4: case OP_NOP5:
595
0
                case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
596
0
                {
597
0
                    if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
598
0
                        return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS);
599
0
                }
600
0
                break;
601
602
0
                case OP_IF:
603
0
                case OP_NOTIF:
604
0
                {
605
                    // <expression> if [statements] [else [statements]] endif
606
0
                    bool fValue = false;
607
0
                    if (fExec)
608
0
                    {
609
0
                        if (stack.size() < 1)
610
0
                            return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
611
0
                        valtype& vch = stacktop(-1);
612
                        // Tapscript requires minimal IF/NOTIF inputs as a consensus rule.
613
0
                        if (sigversion == SigVersion::TAPSCRIPT) {
614
                            // The input argument to the OP_IF and OP_NOTIF opcodes must be either
615
                            // exactly 0 (the empty vector) or exactly 1 (the one-byte vector with value 1).
616
0
                            if (vch.size() > 1 || (vch.size() == 1 && vch[0] != 1)) {
617
0
                                return set_error(serror, SCRIPT_ERR_TAPSCRIPT_MINIMALIF);
618
0
                            }
619
0
                        }
620
                        // Under witness v0 rules it is only a policy rule, enabled through SCRIPT_VERIFY_MINIMALIF.
621
0
                        if (sigversion == SigVersion::WITNESS_V0 && (flags & SCRIPT_VERIFY_MINIMALIF)) {
622
0
                            if (vch.size() > 1)
623
0
                                return set_error(serror, SCRIPT_ERR_MINIMALIF);
624
0
                            if (vch.size() == 1 && vch[0] != 1)
625
0
                                return set_error(serror, SCRIPT_ERR_MINIMALIF);
626
0
                        }
627
0
                        fValue = CastToBool(vch);
628
0
                        if (opcode == OP_NOTIF)
629
0
                            fValue = !fValue;
630
0
                        popstack(stack);
631
0
                    }
632
0
                    vfExec.push_back(fValue);
633
0
                }
634
0
                break;
635
636
0
                case OP_ELSE:
637
0
                {
638
0
                    if (vfExec.empty())
639
0
                        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
640
0
                    vfExec.toggle_top();
641
0
                }
642
0
                break;
643
644
0
                case OP_ENDIF:
645
0
                {
646
0
                    if (vfExec.empty())
647
0
                        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
648
0
                    vfExec.pop_back();
649
0
                }
650
0
                break;
651
652
0
                case OP_VERIFY:
653
0
                {
654
                    // (true -- ) or
655
                    // (false -- false) and return
656
0
                    if (stack.size() < 1)
657
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
658
0
                    bool fValue = CastToBool(stacktop(-1));
659
0
                    if (fValue)
660
0
                        popstack(stack);
661
0
                    else
662
0
                        return set_error(serror, SCRIPT_ERR_VERIFY);
663
0
                }
664
0
                break;
665
666
0
                case OP_RETURN:
667
0
                {
668
0
                    return set_error(serror, SCRIPT_ERR_OP_RETURN);
669
0
                }
670
0
                break;
671
672
673
                //
674
                // Stack ops
675
                //
676
0
                case OP_TOALTSTACK:
677
0
                {
678
0
                    if (stack.size() < 1)
679
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
680
0
                    altstack.push_back(stacktop(-1));
681
0
                    popstack(stack);
682
0
                }
683
0
                break;
684
685
0
                case OP_FROMALTSTACK:
686
0
                {
687
0
                    if (altstack.size() < 1)
688
0
                        return set_error(serror, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION);
689
0
                    stack.push_back(altstacktop(-1));
690
0
                    popstack(altstack);
691
0
                }
692
0
                break;
693
694
0
                case OP_2DROP:
695
0
                {
696
                    // (x1 x2 -- )
697
0
                    if (stack.size() < 2)
698
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
699
0
                    popstack(stack);
700
0
                    popstack(stack);
701
0
                }
702
0
                break;
703
704
0
                case OP_2DUP:
705
0
                {
706
                    // (x1 x2 -- x1 x2 x1 x2)
707
0
                    if (stack.size() < 2)
708
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
709
0
                    valtype vch1 = stacktop(-2);
710
0
                    valtype vch2 = stacktop(-1);
711
0
                    stack.push_back(vch1);
712
0
                    stack.push_back(vch2);
713
0
                }
714
0
                break;
715
716
0
                case OP_3DUP:
717
0
                {
718
                    // (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
719
0
                    if (stack.size() < 3)
720
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
721
0
                    valtype vch1 = stacktop(-3);
722
0
                    valtype vch2 = stacktop(-2);
723
0
                    valtype vch3 = stacktop(-1);
724
0
                    stack.push_back(vch1);
725
0
                    stack.push_back(vch2);
726
0
                    stack.push_back(vch3);
727
0
                }
728
0
                break;
729
730
0
                case OP_2OVER:
731
0
                {
732
                    // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
733
0
                    if (stack.size() < 4)
734
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
735
0
                    valtype vch1 = stacktop(-4);
736
0
                    valtype vch2 = stacktop(-3);
737
0
                    stack.push_back(vch1);
738
0
                    stack.push_back(vch2);
739
0
                }
740
0
                break;
741
742
0
                case OP_2ROT:
743
0
                {
744
                    // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
745
0
                    if (stack.size() < 6)
746
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
747
0
                    valtype vch1 = stacktop(-6);
748
0
                    valtype vch2 = stacktop(-5);
749
0
                    stack.erase(stack.end()-6, stack.end()-4);
750
0
                    stack.push_back(vch1);
751
0
                    stack.push_back(vch2);
752
0
                }
753
0
                break;
754
755
0
                case OP_2SWAP:
756
0
                {
757
                    // (x1 x2 x3 x4 -- x3 x4 x1 x2)
758
0
                    if (stack.size() < 4)
759
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
760
0
                    swap(stacktop(-4), stacktop(-2));
761
0
                    swap(stacktop(-3), stacktop(-1));
762
0
                }
763
0
                break;
764
765
0
                case OP_IFDUP:
766
0
                {
767
                    // (x - 0 | x x)
768
0
                    if (stack.size() < 1)
769
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
770
0
                    valtype vch = stacktop(-1);
771
0
                    if (CastToBool(vch))
772
0
                        stack.push_back(vch);
773
0
                }
774
0
                break;
775
776
0
                case OP_DEPTH:
777
0
                {
778
                    // -- stacksize
779
0
                    CScriptNum bn(stack.size());
780
0
                    stack.push_back(bn.getvch());
781
0
                }
782
0
                break;
783
784
0
                case OP_DROP:
785
0
                {
786
                    // (x -- )
787
0
                    if (stack.size() < 1)
788
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
789
0
                    popstack(stack);
790
0
                }
791
0
                break;
792
793
0
                case OP_DUP:
794
0
                {
795
                    // (x -- x x)
796
0
                    if (stack.size() < 1)
797
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
798
0
                    valtype vch = stacktop(-1);
799
0
                    stack.push_back(vch);
800
0
                }
801
0
                break;
802
803
0
                case OP_NIP:
804
0
                {
805
                    // (x1 x2 -- x2)
806
0
                    if (stack.size() < 2)
807
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
808
0
                    stack.erase(stack.end() - 2);
809
0
                }
810
0
                break;
811
812
0
                case OP_OVER:
813
0
                {
814
                    // (x1 x2 -- x1 x2 x1)
815
0
                    if (stack.size() < 2)
816
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
817
0
                    valtype vch = stacktop(-2);
818
0
                    stack.push_back(vch);
819
0
                }
820
0
                break;
821
822
0
                case OP_PICK:
823
0
                case OP_ROLL:
824
0
                {
825
                    // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
826
                    // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
827
0
                    if (stack.size() < 2)
828
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
829
0
                    int n = CScriptNum(stacktop(-1), fRequireMinimal).getint();
830
0
                    popstack(stack);
831
0
                    if (n < 0 || n >= (int)stack.size())
832
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
833
0
                    valtype vch = stacktop(-n-1);
834
0
                    if (opcode == OP_ROLL)
835
0
                        stack.erase(stack.end()-n-1);
836
0
                    stack.push_back(vch);
837
0
                }
838
0
                break;
839
840
0
                case OP_ROT:
841
0
                {
842
                    // (x1 x2 x3 -- x2 x3 x1)
843
                    //  x2 x1 x3  after first swap
844
                    //  x2 x3 x1  after second swap
845
0
                    if (stack.size() < 3)
846
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
847
0
                    swap(stacktop(-3), stacktop(-2));
848
0
                    swap(stacktop(-2), stacktop(-1));
849
0
                }
850
0
                break;
851
852
0
                case OP_SWAP:
853
0
                {
854
                    // (x1 x2 -- x2 x1)
855
0
                    if (stack.size() < 2)
856
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
857
0
                    swap(stacktop(-2), stacktop(-1));
858
0
                }
859
0
                break;
860
861
0
                case OP_TUCK:
862
0
                {
863
                    // (x1 x2 -- x2 x1 x2)
864
0
                    if (stack.size() < 2)
865
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
866
0
                    valtype vch = stacktop(-1);
867
0
                    stack.insert(stack.end()-2, vch);
868
0
                }
869
0
                break;
870
871
872
0
                case OP_SIZE:
873
0
                {
874
                    // (in -- in size)
875
0
                    if (stack.size() < 1)
876
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
877
0
                    CScriptNum bn(stacktop(-1).size());
878
0
                    stack.push_back(bn.getvch());
879
0
                }
880
0
                break;
881
882
883
                //
884
                // Bitwise logic
885
                //
886
0
                case OP_EQUAL:
887
0
                case OP_EQUALVERIFY:
888
                //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
889
0
                {
890
                    // (x1 x2 - bool)
891
0
                    if (stack.size() < 2)
892
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
893
0
                    valtype& vch1 = stacktop(-2);
894
0
                    valtype& vch2 = stacktop(-1);
895
0
                    bool fEqual = (vch1 == vch2);
896
                    // OP_NOTEQUAL is disabled because it would be too easy to say
897
                    // something like n != 1 and have some wiseguy pass in 1 with extra
898
                    // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
899
                    //if (opcode == OP_NOTEQUAL)
900
                    //    fEqual = !fEqual;
901
0
                    popstack(stack);
902
0
                    popstack(stack);
903
0
                    stack.push_back(fEqual ? vchTrue : vchFalse);
904
0
                    if (opcode == OP_EQUALVERIFY)
905
0
                    {
906
0
                        if (fEqual)
907
0
                            popstack(stack);
908
0
                        else
909
0
                            return set_error(serror, SCRIPT_ERR_EQUALVERIFY);
910
0
                    }
911
0
                }
912
0
                break;
913
914
915
                //
916
                // Numeric
917
                //
918
0
                case OP_1ADD:
919
0
                case OP_1SUB:
920
0
                case OP_NEGATE:
921
0
                case OP_ABS:
922
0
                case OP_NOT:
923
0
                case OP_0NOTEQUAL:
924
0
                {
925
                    // (in -- out)
926
0
                    if (stack.size() < 1)
927
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
928
0
                    CScriptNum bn(stacktop(-1), fRequireMinimal);
929
0
                    switch (opcode)
930
0
                    {
931
0
                    case OP_1ADD:       bn += bnOne; break;
932
0
                    case OP_1SUB:       bn -= bnOne; break;
933
0
                    case OP_NEGATE:     bn = -bn; break;
934
0
                    case OP_ABS:        if (bn < bnZero) bn = -bn; break;
935
0
                    case OP_NOT:        bn = (bn == bnZero); break;
936
0
                    case OP_0NOTEQUAL:  bn = (bn != bnZero); break;
937
0
                    default:            assert(!"invalid opcode"); break;
938
0
                    }
939
0
                    popstack(stack);
940
0
                    stack.push_back(bn.getvch());
941
0
                }
942
0
                break;
943
944
0
                case OP_ADD:
945
0
                case OP_SUB:
946
0
                case OP_BOOLAND:
947
0
                case OP_BOOLOR:
948
0
                case OP_NUMEQUAL:
949
0
                case OP_NUMEQUALVERIFY:
950
0
                case OP_NUMNOTEQUAL:
951
0
                case OP_LESSTHAN:
952
0
                case OP_GREATERTHAN:
953
0
                case OP_LESSTHANOREQUAL:
954
0
                case OP_GREATERTHANOREQUAL:
955
0
                case OP_MIN:
956
0
                case OP_MAX:
957
0
                {
958
                    // (x1 x2 -- out)
959
0
                    if (stack.size() < 2)
960
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
961
0
                    CScriptNum bn1(stacktop(-2), fRequireMinimal);
962
0
                    CScriptNum bn2(stacktop(-1), fRequireMinimal);
963
0
                    CScriptNum bn(0);
964
0
                    switch (opcode)
965
0
                    {
966
0
                    case OP_ADD:
967
0
                        bn = bn1 + bn2;
968
0
                        break;
969
970
0
                    case OP_SUB:
971
0
                        bn = bn1 - bn2;
972
0
                        break;
973
974
0
                    case OP_BOOLAND:             bn = (bn1 != bnZero && bn2 != bnZero); break;
975
0
                    case OP_BOOLOR:              bn = (bn1 != bnZero || bn2 != bnZero); break;
976
0
                    case OP_NUMEQUAL:            bn = (bn1 == bn2); break;
977
0
                    case OP_NUMEQUALVERIFY:      bn = (bn1 == bn2); break;
978
0
                    case OP_NUMNOTEQUAL:         bn = (bn1 != bn2); break;
979
0
                    case OP_LESSTHAN:            bn = (bn1 < bn2); break;
980
0
                    case OP_GREATERTHAN:         bn = (bn1 > bn2); break;
981
0
                    case OP_LESSTHANOREQUAL:     bn = (bn1 <= bn2); break;
982
0
                    case OP_GREATERTHANOREQUAL:  bn = (bn1 >= bn2); break;
983
0
                    case OP_MIN:                 bn = (bn1 < bn2 ? bn1 : bn2); break;
984
0
                    case OP_MAX:                 bn = (bn1 > bn2 ? bn1 : bn2); break;
985
0
                    default:                     assert(!"invalid opcode"); break;
986
0
                    }
987
0
                    popstack(stack);
988
0
                    popstack(stack);
989
0
                    stack.push_back(bn.getvch());
990
991
0
                    if (opcode == OP_NUMEQUALVERIFY)
992
0
                    {
993
0
                        if (CastToBool(stacktop(-1)))
994
0
                            popstack(stack);
995
0
                        else
996
0
                            return set_error(serror, SCRIPT_ERR_NUMEQUALVERIFY);
997
0
                    }
998
0
                }
999
0
                break;
1000
1001
0
                case OP_WITHIN:
1002
0
                {
1003
                    // (x min max -- out)
1004
0
                    if (stack.size() < 3)
1005
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1006
0
                    CScriptNum bn1(stacktop(-3), fRequireMinimal);
1007
0
                    CScriptNum bn2(stacktop(-2), fRequireMinimal);
1008
0
                    CScriptNum bn3(stacktop(-1), fRequireMinimal);
1009
0
                    bool fValue = (bn2 <= bn1 && bn1 < bn3);
1010
0
                    popstack(stack);
1011
0
                    popstack(stack);
1012
0
                    popstack(stack);
1013
0
                    stack.push_back(fValue ? vchTrue : vchFalse);
1014
0
                }
1015
0
                break;
1016
1017
1018
                //
1019
                // Crypto
1020
                //
1021
0
                case OP_RIPEMD160:
1022
0
                case OP_SHA1:
1023
0
                case OP_SHA256:
1024
0
                case OP_HASH160:
1025
0
                case OP_HASH256:
1026
0
                {
1027
                    // (in -- hash)
1028
0
                    if (stack.size() < 1)
1029
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1030
0
                    valtype& vch = stacktop(-1);
1031
0
                    valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
1032
0
                    if (opcode == OP_RIPEMD160)
1033
0
                        CRIPEMD160().Write(vch.data(), vch.size()).Finalize(vchHash.data());
1034
0
                    else if (opcode == OP_SHA1)
1035
0
                        CSHA1().Write(vch.data(), vch.size()).Finalize(vchHash.data());
1036
0
                    else if (opcode == OP_SHA256)
1037
0
                        CSHA256().Write(vch.data(), vch.size()).Finalize(vchHash.data());
1038
0
                    else if (opcode == OP_HASH160)
1039
0
                        CHash160().Write(vch).Finalize(vchHash);
1040
0
                    else if (opcode == OP_HASH256)
1041
0
                        CHash256().Write(vch).Finalize(vchHash);
1042
0
                    popstack(stack);
1043
0
                    stack.push_back(vchHash);
1044
0
                }
1045
0
                break;
1046
1047
0
                case OP_CODESEPARATOR:
1048
0
                {
1049
                    // If SCRIPT_VERIFY_CONST_SCRIPTCODE flag is set, use of OP_CODESEPARATOR is rejected in pre-segwit
1050
                    // script, even in an unexecuted branch (this is checked above the opcode case statement).
1051
1052
                    // Hash starts after the code separator
1053
0
                    pbegincodehash = pc;
1054
0
                    execdata.m_codeseparator_pos = opcode_pos;
1055
0
                }
1056
0
                break;
1057
1058
0
                case OP_CHECKSIG:
1059
0
                case OP_CHECKSIGVERIFY:
1060
0
                {
1061
                    // (sig pubkey -- bool)
1062
0
                    if (stack.size() < 2)
1063
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1064
1065
0
                    valtype& vchSig    = stacktop(-2);
1066
0
                    valtype& vchPubKey = stacktop(-1);
1067
1068
0
                    bool fSuccess = true;
1069
0
                    if (!EvalChecksig(vchSig, vchPubKey, pbegincodehash, pend, execdata, flags, checker, sigversion, serror, fSuccess)) return false;
1070
0
                    popstack(stack);
1071
0
                    popstack(stack);
1072
0
                    stack.push_back(fSuccess ? vchTrue : vchFalse);
1073
0
                    if (opcode == OP_CHECKSIGVERIFY)
1074
0
                    {
1075
0
                        if (fSuccess)
1076
0
                            popstack(stack);
1077
0
                        else
1078
0
                            return set_error(serror, SCRIPT_ERR_CHECKSIGVERIFY);
1079
0
                    }
1080
0
                }
1081
0
                break;
1082
1083
0
                case OP_CHECKSIGADD:
1084
0
                {
1085
                    // OP_CHECKSIGADD is only available in Tapscript
1086
0
                    if (sigversion == SigVersion::BASE || sigversion == SigVersion::WITNESS_V0) return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
1087
1088
                    // (sig num pubkey -- num)
1089
0
                    if (stack.size() < 3) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1090
1091
0
                    const valtype& sig = stacktop(-3);
1092
0
                    const CScriptNum num(stacktop(-2), fRequireMinimal);
1093
0
                    const valtype& pubkey = stacktop(-1);
1094
1095
0
                    bool success = true;
1096
0
                    if (!EvalChecksig(sig, pubkey, pbegincodehash, pend, execdata, flags, checker, sigversion, serror, success)) return false;
1097
0
                    popstack(stack);
1098
0
                    popstack(stack);
1099
0
                    popstack(stack);
1100
0
                    stack.push_back((num + (success ? 1 : 0)).getvch());
1101
0
                }
1102
0
                break;
1103
1104
0
                case OP_CHECKMULTISIG:
1105
0
                case OP_CHECKMULTISIGVERIFY:
1106
0
                {
1107
0
                    if (sigversion == SigVersion::TAPSCRIPT) return set_error(serror, SCRIPT_ERR_TAPSCRIPT_CHECKMULTISIG);
1108
1109
                    // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool)
1110
1111
0
                    int i = 1;
1112
0
                    if ((int)stack.size() < i)
1113
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1114
1115
0
                    int nKeysCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
1116
0
                    if (nKeysCount < 0 || nKeysCount > MAX_PUBKEYS_PER_MULTISIG)
1117
0
                        return set_error(serror, SCRIPT_ERR_PUBKEY_COUNT);
1118
0
                    nOpCount += nKeysCount;
1119
0
                    if (nOpCount > MAX_OPS_PER_SCRIPT)
1120
0
                        return set_error(serror, SCRIPT_ERR_OP_COUNT);
1121
0
                    int ikey = ++i;
1122
                    // ikey2 is the position of last non-signature item in the stack. Top stack item = 1.
1123
                    // With SCRIPT_VERIFY_NULLFAIL, this is used for cleanup if operation fails.
1124
0
                    int ikey2 = nKeysCount + 2;
1125
0
                    i += nKeysCount;
1126
0
                    if ((int)stack.size() < i)
1127
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1128
1129
0
                    int nSigsCount = CScriptNum(stacktop(-i), fRequireMinimal).getint();
1130
0
                    if (nSigsCount < 0 || nSigsCount > nKeysCount)
1131
0
                        return set_error(serror, SCRIPT_ERR_SIG_COUNT);
1132
0
                    int isig = ++i;
1133
0
                    i += nSigsCount;
1134
0
                    if ((int)stack.size() < i)
1135
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1136
1137
                    // Subset of script starting at the most recent codeseparator
1138
0
                    CScript scriptCode(pbegincodehash, pend);
1139
1140
                    // Drop the signature in pre-segwit scripts but not segwit scripts
1141
0
                    for (int k = 0; k < nSigsCount; k++)
1142
0
                    {
1143
0
                        valtype& vchSig = stacktop(-isig-k);
1144
0
                        if (sigversion == SigVersion::BASE) {
1145
0
                            int found = FindAndDelete(scriptCode, CScript() << vchSig);
1146
0
                            if (found > 0 && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
1147
0
                                return set_error(serror, SCRIPT_ERR_SIG_FINDANDDELETE);
1148
0
                        }
1149
0
                    }
1150
1151
0
                    bool fSuccess = true;
1152
0
                    while (fSuccess && nSigsCount > 0)
1153
0
                    {
1154
0
                        valtype& vchSig    = stacktop(-isig);
1155
0
                        valtype& vchPubKey = stacktop(-ikey);
1156
1157
                        // Note how this makes the exact order of pubkey/signature evaluation
1158
                        // distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set.
1159
                        // See the script_(in)valid tests for details.
1160
0
                        if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, sigversion, serror)) {
1161
                            // serror is set
1162
0
                            return false;
1163
0
                        }
1164
1165
                        // Check signature
1166
0
                        bool fOk = checker.CheckECDSASignature(vchSig, vchPubKey, scriptCode, sigversion);
1167
1168
0
                        if (fOk) {
1169
0
                            isig++;
1170
0
                            nSigsCount--;
1171
0
                        }
1172
0
                        ikey++;
1173
0
                        nKeysCount--;
1174
1175
                        // If there are more signatures left than keys left,
1176
                        // then too many signatures have failed. Exit early,
1177
                        // without checking any further signatures.
1178
0
                        if (nSigsCount > nKeysCount)
1179
0
                            fSuccess = false;
1180
0
                    }
1181
1182
                    // Clean up stack of actual arguments
1183
0
                    while (i-- > 1) {
1184
                        // If the operation failed, we require that all signatures must be empty vector
1185
0
                        if (!fSuccess && (flags & SCRIPT_VERIFY_NULLFAIL) && !ikey2 && stacktop(-1).size())
1186
0
                            return set_error(serror, SCRIPT_ERR_SIG_NULLFAIL);
1187
0
                        if (ikey2 > 0)
1188
0
                            ikey2--;
1189
0
                        popstack(stack);
1190
0
                    }
1191
1192
                    // A bug causes CHECKMULTISIG to consume one extra argument
1193
                    // whose contents were not checked in any way.
1194
                    //
1195
                    // Unfortunately this is a potential source of mutability,
1196
                    // so optionally verify it is exactly equal to zero prior
1197
                    // to removing it from the stack.
1198
0
                    if (stack.size() < 1)
1199
0
                        return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
1200
0
                    if ((flags & SCRIPT_VERIFY_NULLDUMMY) && stacktop(-1).size())
1201
0
                        return set_error(serror, SCRIPT_ERR_SIG_NULLDUMMY);
1202
0
                    popstack(stack);
1203
1204
0
                    stack.push_back(fSuccess ? vchTrue : vchFalse);
1205
1206
0
                    if (opcode == OP_CHECKMULTISIGVERIFY)
1207
0
                    {
1208
0
                        if (fSuccess)
1209
0
                            popstack(stack);
1210
0
                        else
1211
0
                            return set_error(serror, SCRIPT_ERR_CHECKMULTISIGVERIFY);
1212
0
                    }
1213
0
                }
1214
0
                break;
1215
1216
0
                default:
1217
0
                    return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
1218
0
            }
1219
1220
            // Size limits
1221
0
            if (stack.size() + altstack.size() > MAX_STACK_SIZE)
1222
0
                return set_error(serror, SCRIPT_ERR_STACK_SIZE);
1223
0
        }
1224
0
    }
1225
0
    catch (...)
1226
0
    {
1227
0
        return set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
1228
0
    }
1229
1230
0
    if (!vfExec.empty())
1231
0
        return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
1232
1233
0
    return set_success(serror);
1234
0
}
1235
1236
bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror)
1237
0
{
1238
0
    ScriptExecutionData execdata;
1239
0
    return EvalScript(stack, script, flags, checker, sigversion, execdata, serror);
1240
0
}
1241
1242
namespace {
1243
1244
/**
1245
 * Wrapper that serializes like CTransaction, but with the modifications
1246
 *  required for the signature hash done in-place
1247
 */
1248
template <class T>
1249
class CTransactionSignatureSerializer
1250
{
1251
private:
1252
    const T& txTo;             //!< reference to the spending transaction (the one being serialized)
1253
    const CScript& scriptCode; //!< output script being consumed
1254
    const unsigned int nIn;    //!< input index of txTo being signed
1255
    const bool fAnyoneCanPay;  //!< whether the hashtype has the SIGHASH_ANYONECANPAY flag set
1256
    const bool fHashSingle;    //!< whether the hashtype is SIGHASH_SINGLE
1257
    const bool fHashNone;      //!< whether the hashtype is SIGHASH_NONE
1258
1259
public:
1260
    CTransactionSignatureSerializer(const T& txToIn, const CScript& scriptCodeIn, unsigned int nInIn, int nHashTypeIn) :
1261
0
        txTo(txToIn), scriptCode(scriptCodeIn), nIn(nInIn),
1262
0
        fAnyoneCanPay(!!(nHashTypeIn & SIGHASH_ANYONECANPAY)),
1263
0
        fHashSingle((nHashTypeIn & 0x1f) == SIGHASH_SINGLE),
1264
0
        fHashNone((nHashTypeIn & 0x1f) == SIGHASH_NONE) {}
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_131CTransactionSignatureSerializerI12CTransactionEC2ERKS1_RK7CScriptji
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_131CTransactionSignatureSerializerI19CMutableTransactionEC2ERKS1_RK7CScriptji
1265
1266
    /** Serialize the passed scriptCode, skipping OP_CODESEPARATORs */
1267
    template<typename S>
1268
0
    void SerializeScriptCode(S &s) const {
1269
0
        CScript::const_iterator it = scriptCode.begin();
1270
0
        CScript::const_iterator itBegin = it;
1271
0
        opcodetype opcode;
1272
0
        unsigned int nCodeSeparators = 0;
1273
0
        while (scriptCode.GetOp(it, opcode)) {
1274
0
            if (opcode == OP_CODESEPARATOR)
1275
0
                nCodeSeparators++;
1276
0
        }
1277
0
        ::WriteCompactSize(s, scriptCode.size() - nCodeSeparators);
1278
0
        it = itBegin;
1279
0
        while (scriptCode.GetOp(it, opcode)) {
1280
0
            if (opcode == OP_CODESEPARATOR) {
1281
0
                s.write(AsBytes(Span{&itBegin[0], size_t(it - itBegin - 1)}));
1282
0
                itBegin = it;
1283
0
            }
1284
0
        }
1285
0
        if (itBegin != scriptCode.end())
1286
0
            s.write(AsBytes(Span{&itBegin[0], size_t(it - itBegin)}));
1287
0
    }
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI12CTransactionE19SerializeScriptCodeI10HashWriterEEvRT_
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI19CMutableTransactionE19SerializeScriptCodeI10HashWriterEEvRT_
1288
1289
    /** Serialize an input of txTo */
1290
    template<typename S>
1291
0
    void SerializeInput(S &s, unsigned int nInput) const {
1292
        // In case of SIGHASH_ANYONECANPAY, only the input being signed is serialized
1293
0
        if (fAnyoneCanPay)
1294
0
            nInput = nIn;
1295
        // Serialize the prevout
1296
0
        ::Serialize(s, txTo.vin[nInput].prevout);
1297
        // Serialize the script
1298
0
        if (nInput != nIn)
1299
            // Blank out other inputs' signatures
1300
0
            ::Serialize(s, CScript());
1301
0
        else
1302
0
            SerializeScriptCode(s);
1303
        // Serialize the nSequence
1304
0
        if (nInput != nIn && (fHashSingle || fHashNone))
1305
            // let the others update at will
1306
0
            ::Serialize(s, int32_t{0});
1307
0
        else
1308
0
            ::Serialize(s, txTo.vin[nInput].nSequence);
1309
0
    }
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI12CTransactionE14SerializeInputI10HashWriterEEvRT_j
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI19CMutableTransactionE14SerializeInputI10HashWriterEEvRT_j
1310
1311
    /** Serialize an output of txTo */
1312
    template<typename S>
1313
0
    void SerializeOutput(S &s, unsigned int nOutput) const {
1314
0
        if (fHashSingle && nOutput != nIn)
1315
            // Do not lock-in the txout payee at other indices as txin
1316
0
            ::Serialize(s, CTxOut());
1317
0
        else
1318
0
            ::Serialize(s, txTo.vout[nOutput]);
1319
0
    }
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI12CTransactionE15SerializeOutputI10HashWriterEEvRT_j
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI19CMutableTransactionE15SerializeOutputI10HashWriterEEvRT_j
1320
1321
    /** Serialize txTo */
1322
    template<typename S>
1323
0
    void Serialize(S &s) const {
1324
        // Serialize version
1325
0
        ::Serialize(s, txTo.version);
1326
        // Serialize vin
1327
0
        unsigned int nInputs = fAnyoneCanPay ? 1 : txTo.vin.size();
1328
0
        ::WriteCompactSize(s, nInputs);
1329
0
        for (unsigned int nInput = 0; nInput < nInputs; nInput++)
1330
0
             SerializeInput(s, nInput);
1331
        // Serialize vout
1332
0
        unsigned int nOutputs = fHashNone ? 0 : (fHashSingle ? nIn+1 : txTo.vout.size());
1333
0
        ::WriteCompactSize(s, nOutputs);
1334
0
        for (unsigned int nOutput = 0; nOutput < nOutputs; nOutput++)
1335
0
             SerializeOutput(s, nOutput);
1336
        // Serialize nLockTime
1337
0
        ::Serialize(s, txTo.nLockTime);
1338
0
    }
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI12CTransactionE9SerializeI10HashWriterEEvRT_
Unexecuted instantiation: interpreter.cpp:_ZNK12_GLOBAL__N_131CTransactionSignatureSerializerI19CMutableTransactionE9SerializeI10HashWriterEEvRT_
1339
};
1340
1341
/** Compute the (single) SHA256 of the concatenation of all prevouts of a tx. */
1342
template <class T>
1343
uint256 GetPrevoutsSHA256(const T& txTo)
1344
0
{
1345
0
    HashWriter ss{};
1346
0
    for (const auto& txin : txTo.vin) {
1347
0
        ss << txin.prevout;
1348
0
    }
1349
0
    return ss.GetSHA256();
1350
0
}
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_117GetPrevoutsSHA256I12CTransactionEE7uint256RKT_
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_117GetPrevoutsSHA256I19CMutableTransactionEE7uint256RKT_
1351
1352
/** Compute the (single) SHA256 of the concatenation of all nSequences of a tx. */
1353
template <class T>
1354
uint256 GetSequencesSHA256(const T& txTo)
1355
0
{
1356
0
    HashWriter ss{};
1357
0
    for (const auto& txin : txTo.vin) {
1358
0
        ss << txin.nSequence;
1359
0
    }
1360
0
    return ss.GetSHA256();
1361
0
}
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_118GetSequencesSHA256I12CTransactionEE7uint256RKT_
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_118GetSequencesSHA256I19CMutableTransactionEE7uint256RKT_
1362
1363
/** Compute the (single) SHA256 of the concatenation of all txouts of a tx. */
1364
template <class T>
1365
uint256 GetOutputsSHA256(const T& txTo)
1366
0
{
1367
0
    HashWriter ss{};
1368
0
    for (const auto& txout : txTo.vout) {
1369
0
        ss << txout;
1370
0
    }
1371
0
    return ss.GetSHA256();
1372
0
}
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_116GetOutputsSHA256I12CTransactionEE7uint256RKT_
Unexecuted instantiation: interpreter.cpp:_ZN12_GLOBAL__N_116GetOutputsSHA256I19CMutableTransactionEE7uint256RKT_
1373
1374
/** Compute the (single) SHA256 of the concatenation of all amounts spent by a tx. */
1375
uint256 GetSpentAmountsSHA256(const std::vector<CTxOut>& outputs_spent)
1376
0
{
1377
0
    HashWriter ss{};
1378
0
    for (const auto& txout : outputs_spent) {
1379
0
        ss << txout.nValue;
1380
0
    }
1381
0
    return ss.GetSHA256();
1382
0
}
1383
1384
/** Compute the (single) SHA256 of the concatenation of all scriptPubKeys spent by a tx. */
1385
uint256 GetSpentScriptsSHA256(const std::vector<CTxOut>& outputs_spent)
1386
0
{
1387
0
    HashWriter ss{};
1388
0
    for (const auto& txout : outputs_spent) {
1389
0
        ss << txout.scriptPubKey;
1390
0
    }
1391
0
    return ss.GetSHA256();
1392
0
}
1393
1394
1395
} // namespace
1396
1397
template <class T>
1398
void PrecomputedTransactionData::Init(const T& txTo, std::vector<CTxOut>&& spent_outputs, bool force)
1399
0
{
1400
0
    assert(!m_spent_outputs_ready);
1401
1402
0
    m_spent_outputs = std::move(spent_outputs);
1403
0
    if (!m_spent_outputs.empty()) {
1404
0
        assert(m_spent_outputs.size() == txTo.vin.size());
1405
0
        m_spent_outputs_ready = true;
1406
0
    }
1407
1408
    // Determine which precomputation-impacting features this transaction uses.
1409
0
    bool uses_bip143_segwit = force;
1410
0
    bool uses_bip341_taproot = force;
1411
0
    for (size_t inpos = 0; inpos < txTo.vin.size() && !(uses_bip143_segwit && uses_bip341_taproot); ++inpos) {
1412
0
        if (!txTo.vin[inpos].scriptWitness.IsNull()) {
1413
0
            if (m_spent_outputs_ready && m_spent_outputs[inpos].scriptPubKey.size() == 2 + WITNESS_V1_TAPROOT_SIZE &&
1414
0
                m_spent_outputs[inpos].scriptPubKey[0] == OP_1) {
1415
                // Treat every witness-bearing spend with 34-byte scriptPubKey that starts with OP_1 as a Taproot
1416
                // spend. This only works if spent_outputs was provided as well, but if it wasn't, actual validation
1417
                // will fail anyway. Note that this branch may trigger for scriptPubKeys that aren't actually segwit
1418
                // but in that case validation will fail as SCRIPT_ERR_WITNESS_UNEXPECTED anyway.
1419
0
                uses_bip341_taproot = true;
1420
0
            } else {
1421
                // Treat every spend that's not known to native witness v1 as a Witness v0 spend. This branch may
1422
                // also be taken for unknown witness versions, but it is harmless, and being precise would require
1423
                // P2SH evaluation to find the redeemScript.
1424
0
                uses_bip143_segwit = true;
1425
0
            }
1426
0
        }
1427
0
        if (uses_bip341_taproot && uses_bip143_segwit) break; // No need to scan further if we already need all.
1428
0
    }
1429
1430
0
    if (uses_bip143_segwit || uses_bip341_taproot) {
1431
        // Computations shared between both sighash schemes.
1432
0
        m_prevouts_single_hash = GetPrevoutsSHA256(txTo);
1433
0
        m_sequences_single_hash = GetSequencesSHA256(txTo);
1434
0
        m_outputs_single_hash = GetOutputsSHA256(txTo);
1435
0
    }
1436
0
    if (uses_bip143_segwit) {
1437
0
        hashPrevouts = SHA256Uint256(m_prevouts_single_hash);
1438
0
        hashSequence = SHA256Uint256(m_sequences_single_hash);
1439
0
        hashOutputs = SHA256Uint256(m_outputs_single_hash);
1440
0
        m_bip143_segwit_ready = true;
1441
0
    }
1442
0
    if (uses_bip341_taproot && m_spent_outputs_ready) {
1443
0
        m_spent_amounts_single_hash = GetSpentAmountsSHA256(m_spent_outputs);
1444
0
        m_spent_scripts_single_hash = GetSpentScriptsSHA256(m_spent_outputs);
1445
0
        m_bip341_taproot_ready = true;
1446
0
    }
1447
0
}
Unexecuted instantiation: _ZN26PrecomputedTransactionData4InitI12CTransactionEEvRKT_OSt6vectorI6CTxOutSaIS6_EEb
Unexecuted instantiation: _ZN26PrecomputedTransactionData4InitI19CMutableTransactionEEvRKT_OSt6vectorI6CTxOutSaIS6_EEb
1448
1449
template <class T>
1450
PrecomputedTransactionData::PrecomputedTransactionData(const T& txTo)
1451
0
{
1452
0
    Init(txTo, {});
1453
0
}
Unexecuted instantiation: _ZN26PrecomputedTransactionDataC2I12CTransactionEERKT_
Unexecuted instantiation: _ZN26PrecomputedTransactionDataC2I19CMutableTransactionEERKT_
1454
1455
// explicit instantiation
1456
template void PrecomputedTransactionData::Init(const CTransaction& txTo, std::vector<CTxOut>&& spent_outputs, bool force);
1457
template void PrecomputedTransactionData::Init(const CMutableTransaction& txTo, std::vector<CTxOut>&& spent_outputs, bool force);
1458
template PrecomputedTransactionData::PrecomputedTransactionData(const CTransaction& txTo);
1459
template PrecomputedTransactionData::PrecomputedTransactionData(const CMutableTransaction& txTo);
1460
1461
const HashWriter HASHER_TAPSIGHASH{TaggedHash("TapSighash")};
1462
const HashWriter HASHER_TAPLEAF{TaggedHash("TapLeaf")};
1463
const HashWriter HASHER_TAPBRANCH{TaggedHash("TapBranch")};
1464
1465
static bool HandleMissingData(MissingDataBehavior mdb)
1466
0
{
1467
0
    switch (mdb) {
1468
0
    case MissingDataBehavior::ASSERT_FAIL:
1469
0
        assert(!"Missing data");
1470
0
        break;
1471
0
    case MissingDataBehavior::FAIL:
1472
0
        return false;
1473
0
    }
1474
0
    assert(!"Unknown MissingDataBehavior value");
1475
0
}
1476
1477
template<typename T>
1478
bool SignatureHashSchnorr(uint256& hash_out, ScriptExecutionData& execdata, const T& tx_to, uint32_t in_pos, uint8_t hash_type, SigVersion sigversion, const PrecomputedTransactionData& cache, MissingDataBehavior mdb)
1479
0
{
1480
0
    uint8_t ext_flag, key_version;
1481
0
    switch (sigversion) {
1482
0
    case SigVersion::TAPROOT:
1483
0
        ext_flag = 0;
1484
        // key_version is not used and left uninitialized.
1485
0
        break;
1486
0
    case SigVersion::TAPSCRIPT:
1487
0
        ext_flag = 1;
1488
        // key_version must be 0 for now, representing the current version of
1489
        // 32-byte public keys in the tapscript signature opcode execution.
1490
        // An upgradable public key version (with a size not 32-byte) may
1491
        // request a different key_version with a new sigversion.
1492
0
        key_version = 0;
1493
0
        break;
1494
0
    default:
1495
0
        assert(false);
1496
0
    }
1497
0
    assert(in_pos < tx_to.vin.size());
1498
0
    if (!(cache.m_bip341_taproot_ready && cache.m_spent_outputs_ready)) {
1499
0
        return HandleMissingData(mdb);
1500
0
    }
1501
1502
0
    HashWriter ss{HASHER_TAPSIGHASH};
1503
1504
    // Epoch
1505
0
    static constexpr uint8_t EPOCH = 0;
1506
0
    ss << EPOCH;
1507
1508
    // Hash type
1509
0
    const uint8_t output_type = (hash_type == SIGHASH_DEFAULT) ? SIGHASH_ALL : (hash_type & SIGHASH_OUTPUT_MASK); // Default (no sighash byte) is equivalent to SIGHASH_ALL
1510
0
    const uint8_t input_type = hash_type & SIGHASH_INPUT_MASK;
1511
0
    if (!(hash_type <= 0x03 || (hash_type >= 0x81 && hash_type <= 0x83))) return false;
1512
0
    ss << hash_type;
1513
1514
    // Transaction level data
1515
0
    ss << tx_to.version;
1516
0
    ss << tx_to.nLockTime;
1517
0
    if (input_type != SIGHASH_ANYONECANPAY) {
1518
0
        ss << cache.m_prevouts_single_hash;
1519
0
        ss << cache.m_spent_amounts_single_hash;
1520
0
        ss << cache.m_spent_scripts_single_hash;
1521
0
        ss << cache.m_sequences_single_hash;
1522
0
    }
1523
0
    if (output_type == SIGHASH_ALL) {
1524
0
        ss << cache.m_outputs_single_hash;
1525
0
    }
1526
1527
    // Data about the input/prevout being spent
1528
0
    assert(execdata.m_annex_init);
1529
0
    const bool have_annex = execdata.m_annex_present;
1530
0
    const uint8_t spend_type = (ext_flag << 1) + (have_annex ? 1 : 0); // The low bit indicates whether an annex is present.
1531
0
    ss << spend_type;
1532
0
    if (input_type == SIGHASH_ANYONECANPAY) {
1533
0
        ss << tx_to.vin[in_pos].prevout;
1534
0
        ss << cache.m_spent_outputs[in_pos];
1535
0
        ss << tx_to.vin[in_pos].nSequence;
1536
0
    } else {
1537
0
        ss << in_pos;
1538
0
    }
1539
0
    if (have_annex) {
1540
0
        ss << execdata.m_annex_hash;
1541
0
    }
1542
1543
    // Data about the output (if only one).
1544
0
    if (output_type == SIGHASH_SINGLE) {
1545
0
        if (in_pos >= tx_to.vout.size()) return false;
1546
0
        if (!execdata.m_output_hash) {
1547
0
            HashWriter sha_single_output{};
1548
0
            sha_single_output << tx_to.vout[in_pos];
1549
0
            execdata.m_output_hash = sha_single_output.GetSHA256();
1550
0
        }
1551
0
        ss << execdata.m_output_hash.value();
1552
0
    }
1553
1554
    // Additional data for BIP 342 signatures
1555
0
    if (sigversion == SigVersion::TAPSCRIPT) {
1556
0
        assert(execdata.m_tapleaf_hash_init);
1557
0
        ss << execdata.m_tapleaf_hash;
1558
0
        ss << key_version;
1559
0
        assert(execdata.m_codeseparator_pos_init);
1560
0
        ss << execdata.m_codeseparator_pos;
1561
0
    }
1562
1563
0
    hash_out = ss.GetSHA256();
1564
0
    return true;
1565
0
}
Unexecuted instantiation: _Z20SignatureHashSchnorrI12CTransactionEbR7uint256R19ScriptExecutionDataRKT_jh10SigVersionRK26PrecomputedTransactionData19MissingDataBehavior
Unexecuted instantiation: _Z20SignatureHashSchnorrI19CMutableTransactionEbR7uint256R19ScriptExecutionDataRKT_jh10SigVersionRK26PrecomputedTransactionData19MissingDataBehavior
1566
1567
template <class T>
1568
uint256 SignatureHash(const CScript& scriptCode, const T& txTo, unsigned int nIn, int32_t nHashType, const CAmount& amount, SigVersion sigversion, const PrecomputedTransactionData* cache)
1569
0
{
1570
0
    assert(nIn < txTo.vin.size());
1571
1572
0
    if (sigversion == SigVersion::WITNESS_V0) {
1573
0
        uint256 hashPrevouts;
1574
0
        uint256 hashSequence;
1575
0
        uint256 hashOutputs;
1576
0
        const bool cacheready = cache && cache->m_bip143_segwit_ready;
1577
1578
0
        if (!(nHashType & SIGHASH_ANYONECANPAY)) {
1579
0
            hashPrevouts = cacheready ? cache->hashPrevouts : SHA256Uint256(GetPrevoutsSHA256(txTo));
1580
0
        }
1581
1582
0
        if (!(nHashType & SIGHASH_ANYONECANPAY) && (nHashType & 0x1f) != SIGHASH_SINGLE && (nHashType & 0x1f) != SIGHASH_NONE) {
1583
0
            hashSequence = cacheready ? cache->hashSequence : SHA256Uint256(GetSequencesSHA256(txTo));
1584
0
        }
1585
1586
1587
0
        if ((nHashType & 0x1f) != SIGHASH_SINGLE && (nHashType & 0x1f) != SIGHASH_NONE) {
1588
0
            hashOutputs = cacheready ? cache->hashOutputs : SHA256Uint256(GetOutputsSHA256(txTo));
1589
0
        } else if ((nHashType & 0x1f) == SIGHASH_SINGLE && nIn < txTo.vout.size()) {
1590
0
            HashWriter ss{};
1591
0
            ss << txTo.vout[nIn];
1592
0
            hashOutputs = ss.GetHash();
1593
0
        }
1594
1595
0
        HashWriter ss{};
1596
        // Version
1597
0
        ss << txTo.version;
1598
        // Input prevouts/nSequence (none/all, depending on flags)
1599
0
        ss << hashPrevouts;
1600
0
        ss << hashSequence;
1601
        // The input being signed (replacing the scriptSig with scriptCode + amount)
1602
        // The prevout may already be contained in hashPrevout, and the nSequence
1603
        // may already be contain in hashSequence.
1604
0
        ss << txTo.vin[nIn].prevout;
1605
0
        ss << scriptCode;
1606
0
        ss << amount;
1607
0
        ss << txTo.vin[nIn].nSequence;
1608
        // Outputs (none/one/all, depending on flags)
1609
0
        ss << hashOutputs;
1610
        // Locktime
1611
0
        ss << txTo.nLockTime;
1612
        // Sighash type
1613
0
        ss << nHashType;
1614
1615
0
        return ss.GetHash();
1616
0
    }
1617
1618
    // Check for invalid use of SIGHASH_SINGLE
1619
0
    if ((nHashType & 0x1f) == SIGHASH_SINGLE) {
1620
0
        if (nIn >= txTo.vout.size()) {
1621
            //  nOut out of range
1622
0
            return uint256::ONE;
1623
0
        }
1624
0
    }
1625
1626
    // Wrapper to serialize only the necessary parts of the transaction being signed
1627
0
    CTransactionSignatureSerializer<T> txTmp(txTo, scriptCode, nIn, nHashType);
1628
1629
    // Serialize and hash
1630
0
    HashWriter ss{};
1631
0
    ss << txTmp << nHashType;
1632
0
    return ss.GetHash();
1633
0
}
Unexecuted instantiation: _Z13SignatureHashI12CTransactionE7uint256RK7CScriptRKT_jiRKl10SigVersionPK26PrecomputedTransactionData
Unexecuted instantiation: _Z13SignatureHashI19CMutableTransactionE7uint256RK7CScriptRKT_jiRKl10SigVersionPK26PrecomputedTransactionData
1634
1635
template <class T>
1636
bool GenericTransactionSignatureChecker<T>::VerifyECDSASignature(const std::vector<unsigned char>& vchSig, const CPubKey& pubkey, const uint256& sighash) const
1637
0
{
1638
0
    return pubkey.Verify(sighash, vchSig);
1639
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE20VerifyECDSASignatureERKSt6vectorIhSaIhEERK7CPubKeyRK7uint256
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE20VerifyECDSASignatureERKSt6vectorIhSaIhEERK7CPubKeyRK7uint256
1640
1641
template <class T>
1642
bool GenericTransactionSignatureChecker<T>::VerifySchnorrSignature(Span<const unsigned char> sig, const XOnlyPubKey& pubkey, const uint256& sighash) const
1643
0
{
1644
0
    return pubkey.VerifySchnorr(sighash, sig);
1645
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE22VerifySchnorrSignatureE4SpanIKhERK11XOnlyPubKeyRK7uint256
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE22VerifySchnorrSignatureE4SpanIKhERK11XOnlyPubKeyRK7uint256
1646
1647
template <class T>
1648
bool GenericTransactionSignatureChecker<T>::CheckECDSASignature(const std::vector<unsigned char>& vchSigIn, const std::vector<unsigned char>& vchPubKey, const CScript& scriptCode, SigVersion sigversion) const
1649
0
{
1650
0
    CPubKey pubkey(vchPubKey);
1651
0
    if (!pubkey.IsValid())
1652
0
        return false;
1653
1654
    // Hash type is one byte tacked on to the end of the signature
1655
0
    std::vector<unsigned char> vchSig(vchSigIn);
1656
0
    if (vchSig.empty())
1657
0
        return false;
1658
0
    int nHashType = vchSig.back();
1659
0
    vchSig.pop_back();
1660
1661
    // Witness sighashes need the amount.
1662
0
    if (sigversion == SigVersion::WITNESS_V0 && amount < 0) return HandleMissingData(m_mdb);
1663
1664
0
    uint256 sighash = SignatureHash(scriptCode, *txTo, nIn, nHashType, amount, sigversion, this->txdata);
1665
1666
0
    if (!VerifyECDSASignature(vchSig, pubkey, sighash))
1667
0
        return false;
1668
1669
0
    return true;
1670
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE19CheckECDSASignatureERKSt6vectorIhSaIhEES6_RK7CScript10SigVersion
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE19CheckECDSASignatureERKSt6vectorIhSaIhEES6_RK7CScript10SigVersion
1671
1672
template <class T>
1673
bool GenericTransactionSignatureChecker<T>::CheckSchnorrSignature(Span<const unsigned char> sig, Span<const unsigned char> pubkey_in, SigVersion sigversion, ScriptExecutionData& execdata, ScriptError* serror) const
1674
0
{
1675
0
    assert(sigversion == SigVersion::TAPROOT || sigversion == SigVersion::TAPSCRIPT);
1676
    // Schnorr signatures have 32-byte public keys. The caller is responsible for enforcing this.
1677
0
    assert(pubkey_in.size() == 32);
1678
    // Note that in Tapscript evaluation, empty signatures are treated specially (invalid signature that does not
1679
    // abort script execution). This is implemented in EvalChecksigTapscript, which won't invoke
1680
    // CheckSchnorrSignature in that case. In other contexts, they are invalid like every other signature with
1681
    // size different from 64 or 65.
1682
0
    if (sig.size() != 64 && sig.size() != 65) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_SIZE);
1683
1684
0
    XOnlyPubKey pubkey{pubkey_in};
1685
1686
0
    uint8_t hashtype = SIGHASH_DEFAULT;
1687
0
    if (sig.size() == 65) {
1688
0
        hashtype = SpanPopBack(sig);
1689
0
        if (hashtype == SIGHASH_DEFAULT) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_HASHTYPE);
1690
0
    }
1691
0
    uint256 sighash;
1692
0
    if (!this->txdata) return HandleMissingData(m_mdb);
1693
0
    if (!SignatureHashSchnorr(sighash, execdata, *txTo, nIn, hashtype, sigversion, *this->txdata, m_mdb)) {
1694
0
        return set_error(serror, SCRIPT_ERR_SCHNORR_SIG_HASHTYPE);
1695
0
    }
1696
0
    if (!VerifySchnorrSignature(sig, pubkey, sighash)) return set_error(serror, SCRIPT_ERR_SCHNORR_SIG);
1697
0
    return true;
1698
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE21CheckSchnorrSignatureE4SpanIKhES4_10SigVersionR19ScriptExecutionDataP13ScriptError_t
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE21CheckSchnorrSignatureE4SpanIKhES4_10SigVersionR19ScriptExecutionDataP13ScriptError_t
1699
1700
template <class T>
1701
bool GenericTransactionSignatureChecker<T>::CheckLockTime(const CScriptNum& nLockTime) const
1702
0
{
1703
    // There are two kinds of nLockTime: lock-by-blockheight
1704
    // and lock-by-blocktime, distinguished by whether
1705
    // nLockTime < LOCKTIME_THRESHOLD.
1706
    //
1707
    // We want to compare apples to apples, so fail the script
1708
    // unless the type of nLockTime being tested is the same as
1709
    // the nLockTime in the transaction.
1710
0
    if (!(
1711
0
        (txTo->nLockTime <  LOCKTIME_THRESHOLD && nLockTime <  LOCKTIME_THRESHOLD) ||
1712
0
        (txTo->nLockTime >= LOCKTIME_THRESHOLD && nLockTime >= LOCKTIME_THRESHOLD)
1713
0
    ))
1714
0
        return false;
1715
1716
    // Now that we know we're comparing apples-to-apples, the
1717
    // comparison is a simple numeric one.
1718
0
    if (nLockTime > (int64_t)txTo->nLockTime)
1719
0
        return false;
1720
1721
    // Finally the nLockTime feature can be disabled in IsFinalTx()
1722
    // and thus CHECKLOCKTIMEVERIFY bypassed if every txin has
1723
    // been finalized by setting nSequence to maxint. The
1724
    // transaction would be allowed into the blockchain, making
1725
    // the opcode ineffective.
1726
    //
1727
    // Testing if this vin is not final is sufficient to
1728
    // prevent this condition. Alternatively we could test all
1729
    // inputs, but testing just this input minimizes the data
1730
    // required to prove correct CHECKLOCKTIMEVERIFY execution.
1731
0
    if (CTxIn::SEQUENCE_FINAL == txTo->vin[nIn].nSequence)
1732
0
        return false;
1733
1734
0
    return true;
1735
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE13CheckLockTimeERK10CScriptNum
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE13CheckLockTimeERK10CScriptNum
1736
1737
template <class T>
1738
bool GenericTransactionSignatureChecker<T>::CheckSequence(const CScriptNum& nSequence) const
1739
0
{
1740
    // Relative lock times are supported by comparing the passed
1741
    // in operand to the sequence number of the input.
1742
0
    const int64_t txToSequence = (int64_t)txTo->vin[nIn].nSequence;
1743
1744
    // Fail if the transaction's version number is not set high
1745
    // enough to trigger BIP 68 rules.
1746
0
    if (txTo->version < 2)
1747
0
        return false;
1748
1749
    // Sequence numbers with their most significant bit set are not
1750
    // consensus constrained. Testing that the transaction's sequence
1751
    // number do not have this bit set prevents using this property
1752
    // to get around a CHECKSEQUENCEVERIFY check.
1753
0
    if (txToSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG)
1754
0
        return false;
1755
1756
    // Mask off any bits that do not have consensus-enforced meaning
1757
    // before doing the integer comparisons
1758
0
    const uint32_t nLockTimeMask = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | CTxIn::SEQUENCE_LOCKTIME_MASK;
1759
0
    const int64_t txToSequenceMasked = txToSequence & nLockTimeMask;
1760
0
    const CScriptNum nSequenceMasked = nSequence & nLockTimeMask;
1761
1762
    // There are two kinds of nSequence: lock-by-blockheight
1763
    // and lock-by-blocktime, distinguished by whether
1764
    // nSequenceMasked < CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG.
1765
    //
1766
    // We want to compare apples to apples, so fail the script
1767
    // unless the type of nSequenceMasked being tested is the same as
1768
    // the nSequenceMasked in the transaction.
1769
0
    if (!(
1770
0
        (txToSequenceMasked <  CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG && nSequenceMasked <  CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) ||
1771
0
        (txToSequenceMasked >= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG && nSequenceMasked >= CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG)
1772
0
    )) {
1773
0
        return false;
1774
0
    }
1775
1776
    // Now that we know we're comparing apples-to-apples, the
1777
    // comparison is a simple numeric one.
1778
0
    if (nSequenceMasked > txToSequenceMasked)
1779
0
        return false;
1780
1781
0
    return true;
1782
0
}
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI12CTransactionE13CheckSequenceERK10CScriptNum
Unexecuted instantiation: _ZNK34GenericTransactionSignatureCheckerI19CMutableTransactionE13CheckSequenceERK10CScriptNum
1783
1784
// explicit instantiation
1785
template class GenericTransactionSignatureChecker<CTransaction>;
1786
template class GenericTransactionSignatureChecker<CMutableTransaction>;
1787
1788
static bool ExecuteWitnessScript(const Span<const valtype>& stack_span, const CScript& exec_script, unsigned int flags, SigVersion sigversion, const BaseSignatureChecker& checker, ScriptExecutionData& execdata, ScriptError* serror)
1789
0
{
1790
0
    std::vector<valtype> stack{stack_span.begin(), stack_span.end()};
1791
1792
0
    if (sigversion == SigVersion::TAPSCRIPT) {
1793
        // OP_SUCCESSx processing overrides everything, including stack element size limits
1794
0
        CScript::const_iterator pc = exec_script.begin();
1795
0
        while (pc < exec_script.end()) {
1796
0
            opcodetype opcode;
1797
0
            if (!exec_script.GetOp(pc, opcode)) {
1798
                // Note how this condition would not be reached if an unknown OP_SUCCESSx was found
1799
0
                return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
1800
0
            }
1801
            // New opcodes will be listed here. May use a different sigversion to modify existing opcodes.
1802
0
            if (IsOpSuccess(opcode)) {
1803
0
                if (flags & SCRIPT_VERIFY_DISCOURAGE_OP_SUCCESS) {
1804
0
                    return set_error(serror, SCRIPT_ERR_DISCOURAGE_OP_SUCCESS);
1805
0
                }
1806
0
                return set_success(serror);
1807
0
            }
1808
0
        }
1809
1810
        // Tapscript enforces initial stack size limits (altstack is empty here)
1811
0
        if (stack.size() > MAX_STACK_SIZE) return set_error(serror, SCRIPT_ERR_STACK_SIZE);
1812
0
    }
1813
1814
    // Disallow stack item size > MAX_SCRIPT_ELEMENT_SIZE in witness stack
1815
0
    for (const valtype& elem : stack) {
1816
0
        if (elem.size() > MAX_SCRIPT_ELEMENT_SIZE) return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
1817
0
    }
1818
1819
    // Run the script interpreter.
1820
0
    if (!EvalScript(stack, exec_script, flags, checker, sigversion, execdata, serror)) return false;
1821
1822
    // Scripts inside witness implicitly require cleanstack behaviour
1823
0
    if (stack.size() != 1) return set_error(serror, SCRIPT_ERR_CLEANSTACK);
1824
0
    if (!CastToBool(stack.back())) return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
1825
0
    return true;
1826
0
}
1827
1828
uint256 ComputeTapleafHash(uint8_t leaf_version, Span<const unsigned char> script)
1829
0
{
1830
0
    return (HashWriter{HASHER_TAPLEAF} << leaf_version << CompactSizeWriter(script.size()) << script).GetSHA256();
1831
0
}
1832
1833
uint256 ComputeTapbranchHash(Span<const unsigned char> a, Span<const unsigned char> b)
1834
0
{
1835
0
    HashWriter ss_branch{HASHER_TAPBRANCH};
1836
0
    if (std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end())) {
1837
0
        ss_branch << a << b;
1838
0
    } else {
1839
0
        ss_branch << b << a;
1840
0
    }
1841
0
    return ss_branch.GetSHA256();
1842
0
}
1843
1844
uint256 ComputeTaprootMerkleRoot(Span<const unsigned char> control, const uint256& tapleaf_hash)
1845
0
{
1846
0
    assert(control.size() >= TAPROOT_CONTROL_BASE_SIZE);
1847
0
    assert(control.size() <= TAPROOT_CONTROL_MAX_SIZE);
1848
0
    assert((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE == 0);
1849
1850
0
    const int path_len = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
1851
0
    uint256 k = tapleaf_hash;
1852
0
    for (int i = 0; i < path_len; ++i) {
1853
0
        Span node{Span{control}.subspan(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * i, TAPROOT_CONTROL_NODE_SIZE)};
1854
0
        k = ComputeTapbranchHash(k, node);
1855
0
    }
1856
0
    return k;
1857
0
}
1858
1859
static bool VerifyTaprootCommitment(const std::vector<unsigned char>& control, const std::vector<unsigned char>& program, const uint256& tapleaf_hash)
1860
0
{
1861
0
    assert(control.size() >= TAPROOT_CONTROL_BASE_SIZE);
1862
0
    assert(program.size() >= uint256::size());
1863
    //! The internal pubkey (x-only, so no Y coordinate parity).
1864
0
    const XOnlyPubKey p{Span{control}.subspan(1, TAPROOT_CONTROL_BASE_SIZE - 1)};
1865
    //! The output pubkey (taken from the scriptPubKey).
1866
0
    const XOnlyPubKey q{program};
1867
    // Compute the Merkle root from the leaf and the provided path.
1868
0
    const uint256 merkle_root = ComputeTaprootMerkleRoot(control, tapleaf_hash);
1869
    // Verify that the output pubkey matches the tweaked internal pubkey, after correcting for parity.
1870
0
    return q.CheckTapTweak(p, merkle_root, control[0] & 1);
1871
0
}
1872
1873
static bool VerifyWitnessProgram(const CScriptWitness& witness, int witversion, const std::vector<unsigned char>& program, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror, bool is_p2sh)
1874
0
{
1875
0
    CScript exec_script; //!< Actually executed script (last stack item in P2WSH; implied P2PKH script in P2WPKH; leaf script in P2TR)
1876
0
    Span stack{witness.stack};
1877
0
    ScriptExecutionData execdata;
1878
1879
0
    if (witversion == 0) {
1880
0
        if (program.size() == WITNESS_V0_SCRIPTHASH_SIZE) {
1881
            // BIP141 P2WSH: 32-byte witness v0 program (which encodes SHA256(script))
1882
0
            if (stack.size() == 0) {
1883
0
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WITNESS_EMPTY);
1884
0
            }
1885
0
            const valtype& script_bytes = SpanPopBack(stack);
1886
0
            exec_script = CScript(script_bytes.begin(), script_bytes.end());
1887
0
            uint256 hash_exec_script;
1888
0
            CSHA256().Write(exec_script.data(), exec_script.size()).Finalize(hash_exec_script.begin());
1889
0
            if (memcmp(hash_exec_script.begin(), program.data(), 32)) {
1890
0
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH);
1891
0
            }
1892
0
            return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::WITNESS_V0, checker, execdata, serror);
1893
0
        } else if (program.size() == WITNESS_V0_KEYHASH_SIZE) {
1894
            // BIP141 P2WPKH: 20-byte witness v0 program (which encodes Hash160(pubkey))
1895
0
            if (stack.size() != 2) {
1896
0
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH); // 2 items in witness
1897
0
            }
1898
0
            exec_script << OP_DUP << OP_HASH160 << program << OP_EQUALVERIFY << OP_CHECKSIG;
1899
0
            return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::WITNESS_V0, checker, execdata, serror);
1900
0
        } else {
1901
0
            return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WRONG_LENGTH);
1902
0
        }
1903
0
    } else if (witversion == 1 && program.size() == WITNESS_V1_TAPROOT_SIZE && !is_p2sh) {
1904
        // BIP341 Taproot: 32-byte non-P2SH witness v1 program (which encodes a P2C-tweaked pubkey)
1905
0
        if (!(flags & SCRIPT_VERIFY_TAPROOT)) return set_success(serror);
1906
0
        if (stack.size() == 0) return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_WITNESS_EMPTY);
1907
0
        if (stack.size() >= 2 && !stack.back().empty() && stack.back()[0] == ANNEX_TAG) {
1908
            // Drop annex (this is non-standard; see IsWitnessStandard)
1909
0
            const valtype& annex = SpanPopBack(stack);
1910
0
            execdata.m_annex_hash = (HashWriter{} << annex).GetSHA256();
1911
0
            execdata.m_annex_present = true;
1912
0
        } else {
1913
0
            execdata.m_annex_present = false;
1914
0
        }
1915
0
        execdata.m_annex_init = true;
1916
0
        if (stack.size() == 1) {
1917
            // Key path spending (stack size is 1 after removing optional annex)
1918
0
            if (!checker.CheckSchnorrSignature(stack.front(), program, SigVersion::TAPROOT, execdata, serror)) {
1919
0
                return false; // serror is set
1920
0
            }
1921
0
            return set_success(serror);
1922
0
        } else {
1923
            // Script path spending (stack size is >1 after removing optional annex)
1924
0
            const valtype& control = SpanPopBack(stack);
1925
0
            const valtype& script = SpanPopBack(stack);
1926
0
            if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE || ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) {
1927
0
                return set_error(serror, SCRIPT_ERR_TAPROOT_WRONG_CONTROL_SIZE);
1928
0
            }
1929
0
            execdata.m_tapleaf_hash = ComputeTapleafHash(control[0] & TAPROOT_LEAF_MASK, script);
1930
0
            if (!VerifyTaprootCommitment(control, program, execdata.m_tapleaf_hash)) {
1931
0
                return set_error(serror, SCRIPT_ERR_WITNESS_PROGRAM_MISMATCH);
1932
0
            }
1933
0
            execdata.m_tapleaf_hash_init = true;
1934
0
            if ((control[0] & TAPROOT_LEAF_MASK) == TAPROOT_LEAF_TAPSCRIPT) {
1935
                // Tapscript (leaf version 0xc0)
1936
0
                exec_script = CScript(script.begin(), script.end());
1937
0
                execdata.m_validation_weight_left = ::GetSerializeSize(witness.stack) + VALIDATION_WEIGHT_OFFSET;
1938
0
                execdata.m_validation_weight_left_init = true;
1939
0
                return ExecuteWitnessScript(stack, exec_script, flags, SigVersion::TAPSCRIPT, checker, execdata, serror);
1940
0
            }
1941
0
            if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_TAPROOT_VERSION) {
1942
0
                return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_TAPROOT_VERSION);
1943
0
            }
1944
0
            return set_success(serror);
1945
0
        }
1946
0
    } else if (!is_p2sh && CScript::IsPayToAnchor(witversion, program)) {
1947
0
        return true;
1948
0
    } else {
1949
0
        if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM) {
1950
0
            return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM);
1951
0
        }
1952
        // Other version/size/p2sh combinations return true for future softfork compatibility
1953
0
        return true;
1954
0
    }
1955
    // There is intentionally no return statement here, to be able to use "control reaches end of non-void function" warnings to detect gaps in the logic above.
1956
0
}
1957
1958
bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CScriptWitness* witness, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror)
1959
0
{
1960
0
    static const CScriptWitness emptyWitness;
1961
0
    if (witness == nullptr) {
1962
0
        witness = &emptyWitness;
1963
0
    }
1964
0
    bool hadWitness = false;
1965
1966
0
    set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
1967
1968
0
    if ((flags & SCRIPT_VERIFY_SIGPUSHONLY) != 0 && !scriptSig.IsPushOnly()) {
1969
0
        return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);
1970
0
    }
1971
1972
    // scriptSig and scriptPubKey must be evaluated sequentially on the same stack
1973
    // rather than being simply concatenated (see CVE-2010-5141)
1974
0
    std::vector<std::vector<unsigned char> > stack, stackCopy;
1975
0
    if (!EvalScript(stack, scriptSig, flags, checker, SigVersion::BASE, serror))
1976
        // serror is set
1977
0
        return false;
1978
0
    if (flags & SCRIPT_VERIFY_P2SH)
1979
0
        stackCopy = stack;
1980
0
    if (!EvalScript(stack, scriptPubKey, flags, checker, SigVersion::BASE, serror))
1981
        // serror is set
1982
0
        return false;
1983
0
    if (stack.empty())
1984
0
        return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
1985
0
    if (CastToBool(stack.back()) == false)
1986
0
        return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
1987
1988
    // Bare witness programs
1989
0
    int witnessversion;
1990
0
    std::vector<unsigned char> witnessprogram;
1991
0
    if (flags & SCRIPT_VERIFY_WITNESS) {
1992
0
        if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
1993
0
            hadWitness = true;
1994
0
            if (scriptSig.size() != 0) {
1995
                // The scriptSig must be _exactly_ CScript(), otherwise we reintroduce malleability.
1996
0
                return set_error(serror, SCRIPT_ERR_WITNESS_MALLEATED);
1997
0
            }
1998
0
            if (!VerifyWitnessProgram(*witness, witnessversion, witnessprogram, flags, checker, serror, /*is_p2sh=*/false)) {
1999
0
                return false;
2000
0
            }
2001
            // Bypass the cleanstack check at the end. The actual stack is obviously not clean
2002
            // for witness programs.
2003
0
            stack.resize(1);
2004
0
        }
2005
0
    }
2006
2007
    // Additional validation for spend-to-script-hash transactions:
2008
0
    if ((flags & SCRIPT_VERIFY_P2SH) && scriptPubKey.IsPayToScriptHash())
2009
0
    {
2010
        // scriptSig must be literals-only or validation fails
2011
0
        if (!scriptSig.IsPushOnly())
2012
0
            return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY);
2013
2014
        // Restore stack.
2015
0
        swap(stack, stackCopy);
2016
2017
        // stack cannot be empty here, because if it was the
2018
        // P2SH  HASH <> EQUAL  scriptPubKey would be evaluated with
2019
        // an empty stack and the EvalScript above would return false.
2020
0
        assert(!stack.empty());
2021
2022
0
        const valtype& pubKeySerialized = stack.back();
2023
0
        CScript pubKey2(pubKeySerialized.begin(), pubKeySerialized.end());
2024
0
        popstack(stack);
2025
2026
0
        if (!EvalScript(stack, pubKey2, flags, checker, SigVersion::BASE, serror))
2027
            // serror is set
2028
0
            return false;
2029
0
        if (stack.empty())
2030
0
            return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
2031
0
        if (!CastToBool(stack.back()))
2032
0
            return set_error(serror, SCRIPT_ERR_EVAL_FALSE);
2033
2034
        // P2SH witness program
2035
0
        if (flags & SCRIPT_VERIFY_WITNESS) {
2036
0
            if (pubKey2.IsWitnessProgram(witnessversion, witnessprogram)) {
2037
0
                hadWitness = true;
2038
0
                if (scriptSig != CScript() << std::vector<unsigned char>(pubKey2.begin(), pubKey2.end())) {
2039
                    // The scriptSig must be _exactly_ a single push of the redeemScript. Otherwise we
2040
                    // reintroduce malleability.
2041
0
                    return set_error(serror, SCRIPT_ERR_WITNESS_MALLEATED_P2SH);
2042
0
                }
2043
0
                if (!VerifyWitnessProgram(*witness, witnessversion, witnessprogram, flags, checker, serror, /*is_p2sh=*/true)) {
2044
0
                    return false;
2045
0
                }
2046
                // Bypass the cleanstack check at the end. The actual stack is obviously not clean
2047
                // for witness programs.
2048
0
                stack.resize(1);
2049
0
            }
2050
0
        }
2051
0
    }
2052
2053
    // The CLEANSTACK check is only performed after potential P2SH evaluation,
2054
    // as the non-P2SH evaluation of a P2SH script will obviously not result in
2055
    // a clean stack (the P2SH inputs remain). The same holds for witness evaluation.
2056
0
    if ((flags & SCRIPT_VERIFY_CLEANSTACK) != 0) {
2057
        // Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK
2058
        // would be possible, which is not a softfork (and P2SH should be one).
2059
0
        assert((flags & SCRIPT_VERIFY_P2SH) != 0);
2060
0
        assert((flags & SCRIPT_VERIFY_WITNESS) != 0);
2061
0
        if (stack.size() != 1) {
2062
0
            return set_error(serror, SCRIPT_ERR_CLEANSTACK);
2063
0
        }
2064
0
    }
2065
2066
0
    if (flags & SCRIPT_VERIFY_WITNESS) {
2067
        // We can't check for correct unexpected witness data if P2SH was off, so require
2068
        // that WITNESS implies P2SH. Otherwise, going from WITNESS->P2SH+WITNESS would be
2069
        // possible, which is not a softfork.
2070
0
        assert((flags & SCRIPT_VERIFY_P2SH) != 0);
2071
0
        if (!hadWitness && !witness->IsNull()) {
2072
0
            return set_error(serror, SCRIPT_ERR_WITNESS_UNEXPECTED);
2073
0
        }
2074
0
    }
2075
2076
0
    return set_success(serror);
2077
0
}
2078
2079
size_t static WitnessSigOps(int witversion, const std::vector<unsigned char>& witprogram, const CScriptWitness& witness)
2080
0
{
2081
0
    if (witversion == 0) {
2082
0
        if (witprogram.size() == WITNESS_V0_KEYHASH_SIZE)
2083
0
            return 1;
2084
2085
0
        if (witprogram.size() == WITNESS_V0_SCRIPTHASH_SIZE && witness.stack.size() > 0) {
2086
0
            CScript subscript(witness.stack.back().begin(), witness.stack.back().end());
2087
0
            return subscript.GetSigOpCount(true);
2088
0
        }
2089
0
    }
2090
2091
    // Future flags may be implemented here.
2092
0
    return 0;
2093
0
}
2094
2095
size_t CountWitnessSigOps(const CScript& scriptSig, const CScript& scriptPubKey, const CScriptWitness* witness, unsigned int flags)
2096
0
{
2097
0
    static const CScriptWitness witnessEmpty;
2098
2099
0
    if ((flags & SCRIPT_VERIFY_WITNESS) == 0) {
2100
0
        return 0;
2101
0
    }
2102
0
    assert((flags & SCRIPT_VERIFY_P2SH) != 0);
2103
2104
0
    int witnessversion;
2105
0
    std::vector<unsigned char> witnessprogram;
2106
0
    if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
2107
0
        return WitnessSigOps(witnessversion, witnessprogram, witness ? *witness : witnessEmpty);
2108
0
    }
2109
2110
0
    if (scriptPubKey.IsPayToScriptHash() && scriptSig.IsPushOnly()) {
2111
0
        CScript::const_iterator pc = scriptSig.begin();
2112
0
        std::vector<unsigned char> data;
2113
0
        while (pc < scriptSig.end()) {
2114
0
            opcodetype opcode;
2115
0
            scriptSig.GetOp(pc, opcode, data);
2116
0
        }
2117
0
        CScript subscript(data.begin(), data.end());
2118
0
        if (subscript.IsWitnessProgram(witnessversion, witnessprogram)) {
2119
0
            return WitnessSigOps(witnessversion, witnessprogram, witness ? *witness : witnessEmpty);
2120
0
        }
2121
0
    }
2122
2123
0
    return 0;
2124
0
}