/root/bitcoin/src/crypto/chacha20.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2017-2022 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | // Based on the public domain implementation 'merged' by D. J. Bernstein |
6 | | // See https://cr.yp.to/chacha.html. |
7 | | |
8 | | #include <crypto/common.h> |
9 | | #include <crypto/chacha20.h> |
10 | | #include <support/cleanse.h> |
11 | | #include <span.h> |
12 | | |
13 | | #include <algorithm> |
14 | | #include <bit> |
15 | | #include <string.h> |
16 | | |
17 | | #define QUARTERROUND(a,b,c,d) \ |
18 | | a += b; d = std::rotl(d ^ a, 16); \ |
19 | | c += d; b = std::rotl(b ^ c, 12); \ |
20 | | a += b; d = std::rotl(d ^ a, 8); \ |
21 | | c += d; b = std::rotl(b ^ c, 7); |
22 | | |
23 | 0 | #define REPEAT10(a) do { {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; {a}; } while(0) |
24 | | |
25 | | void ChaCha20Aligned::SetKey(Span<const std::byte> key) noexcept |
26 | 0 | { |
27 | 0 | assert(key.size() == KEYLEN); |
28 | 0 | input[0] = ReadLE32(UCharCast(key.data() + 0)); |
29 | 0 | input[1] = ReadLE32(UCharCast(key.data() + 4)); |
30 | 0 | input[2] = ReadLE32(UCharCast(key.data() + 8)); |
31 | 0 | input[3] = ReadLE32(UCharCast(key.data() + 12)); |
32 | 0 | input[4] = ReadLE32(UCharCast(key.data() + 16)); |
33 | 0 | input[5] = ReadLE32(UCharCast(key.data() + 20)); |
34 | 0 | input[6] = ReadLE32(UCharCast(key.data() + 24)); |
35 | 0 | input[7] = ReadLE32(UCharCast(key.data() + 28)); |
36 | 0 | input[8] = 0; |
37 | 0 | input[9] = 0; |
38 | 0 | input[10] = 0; |
39 | 0 | input[11] = 0; |
40 | 0 | } |
41 | | |
42 | | ChaCha20Aligned::~ChaCha20Aligned() |
43 | 1 | { |
44 | 1 | memory_cleanse(input, sizeof(input)); |
45 | 1 | } |
46 | | |
47 | | ChaCha20Aligned::ChaCha20Aligned(Span<const std::byte> key) noexcept |
48 | 0 | { |
49 | 0 | SetKey(key); |
50 | 0 | } |
51 | | |
52 | | void ChaCha20Aligned::Seek(Nonce96 nonce, uint32_t block_counter) noexcept |
53 | 0 | { |
54 | 0 | input[8] = block_counter; |
55 | 0 | input[9] = nonce.first; |
56 | 0 | input[10] = nonce.second; |
57 | 0 | input[11] = nonce.second >> 32; |
58 | 0 | } |
59 | | |
60 | | inline void ChaCha20Aligned::Keystream(Span<std::byte> output) noexcept |
61 | 0 | { |
62 | 0 | unsigned char* c = UCharCast(output.data()); |
63 | 0 | size_t blocks = output.size() / BLOCKLEN; |
64 | 0 | assert(blocks * BLOCKLEN == output.size()); |
65 | | |
66 | 0 | uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
67 | 0 | uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; |
68 | |
|
69 | 0 | if (!blocks) return; |
70 | | |
71 | 0 | j4 = input[0]; |
72 | 0 | j5 = input[1]; |
73 | 0 | j6 = input[2]; |
74 | 0 | j7 = input[3]; |
75 | 0 | j8 = input[4]; |
76 | 0 | j9 = input[5]; |
77 | 0 | j10 = input[6]; |
78 | 0 | j11 = input[7]; |
79 | 0 | j12 = input[8]; |
80 | 0 | j13 = input[9]; |
81 | 0 | j14 = input[10]; |
82 | 0 | j15 = input[11]; |
83 | |
|
84 | 0 | for (;;) { |
85 | 0 | x0 = 0x61707865; |
86 | 0 | x1 = 0x3320646e; |
87 | 0 | x2 = 0x79622d32; |
88 | 0 | x3 = 0x6b206574; |
89 | 0 | x4 = j4; |
90 | 0 | x5 = j5; |
91 | 0 | x6 = j6; |
92 | 0 | x7 = j7; |
93 | 0 | x8 = j8; |
94 | 0 | x9 = j9; |
95 | 0 | x10 = j10; |
96 | 0 | x11 = j11; |
97 | 0 | x12 = j12; |
98 | 0 | x13 = j13; |
99 | 0 | x14 = j14; |
100 | 0 | x15 = j15; |
101 | | |
102 | | // The 20 inner ChaCha20 rounds are unrolled here for performance. |
103 | 0 | REPEAT10( |
104 | 0 | QUARTERROUND( x0, x4, x8,x12); |
105 | 0 | QUARTERROUND( x1, x5, x9,x13); |
106 | 0 | QUARTERROUND( x2, x6,x10,x14); |
107 | 0 | QUARTERROUND( x3, x7,x11,x15); |
108 | 0 | QUARTERROUND( x0, x5,x10,x15); |
109 | 0 | QUARTERROUND( x1, x6,x11,x12); |
110 | 0 | QUARTERROUND( x2, x7, x8,x13); |
111 | 0 | QUARTERROUND( x3, x4, x9,x14); |
112 | 0 | ); |
113 | |
|
114 | 0 | x0 += 0x61707865; |
115 | 0 | x1 += 0x3320646e; |
116 | 0 | x2 += 0x79622d32; |
117 | 0 | x3 += 0x6b206574; |
118 | 0 | x4 += j4; |
119 | 0 | x5 += j5; |
120 | 0 | x6 += j6; |
121 | 0 | x7 += j7; |
122 | 0 | x8 += j8; |
123 | 0 | x9 += j9; |
124 | 0 | x10 += j10; |
125 | 0 | x11 += j11; |
126 | 0 | x12 += j12; |
127 | 0 | x13 += j13; |
128 | 0 | x14 += j14; |
129 | 0 | x15 += j15; |
130 | |
|
131 | 0 | ++j12; |
132 | 0 | if (!j12) ++j13; |
133 | |
|
134 | 0 | WriteLE32(c + 0, x0); |
135 | 0 | WriteLE32(c + 4, x1); |
136 | 0 | WriteLE32(c + 8, x2); |
137 | 0 | WriteLE32(c + 12, x3); |
138 | 0 | WriteLE32(c + 16, x4); |
139 | 0 | WriteLE32(c + 20, x5); |
140 | 0 | WriteLE32(c + 24, x6); |
141 | 0 | WriteLE32(c + 28, x7); |
142 | 0 | WriteLE32(c + 32, x8); |
143 | 0 | WriteLE32(c + 36, x9); |
144 | 0 | WriteLE32(c + 40, x10); |
145 | 0 | WriteLE32(c + 44, x11); |
146 | 0 | WriteLE32(c + 48, x12); |
147 | 0 | WriteLE32(c + 52, x13); |
148 | 0 | WriteLE32(c + 56, x14); |
149 | 0 | WriteLE32(c + 60, x15); |
150 | |
|
151 | 0 | if (blocks == 1) { |
152 | 0 | input[8] = j12; |
153 | 0 | input[9] = j13; |
154 | 0 | return; |
155 | 0 | } |
156 | 0 | blocks -= 1; |
157 | 0 | c += BLOCKLEN; |
158 | 0 | } |
159 | 0 | } |
160 | | |
161 | | inline void ChaCha20Aligned::Crypt(Span<const std::byte> in_bytes, Span<std::byte> out_bytes) noexcept |
162 | 0 | { |
163 | 0 | assert(in_bytes.size() == out_bytes.size()); |
164 | 0 | const unsigned char* m = UCharCast(in_bytes.data()); |
165 | 0 | unsigned char* c = UCharCast(out_bytes.data()); |
166 | 0 | size_t blocks = out_bytes.size() / BLOCKLEN; |
167 | 0 | assert(blocks * BLOCKLEN == out_bytes.size()); |
168 | | |
169 | 0 | uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
170 | 0 | uint32_t j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15; |
171 | |
|
172 | 0 | if (!blocks) return; |
173 | | |
174 | 0 | j4 = input[0]; |
175 | 0 | j5 = input[1]; |
176 | 0 | j6 = input[2]; |
177 | 0 | j7 = input[3]; |
178 | 0 | j8 = input[4]; |
179 | 0 | j9 = input[5]; |
180 | 0 | j10 = input[6]; |
181 | 0 | j11 = input[7]; |
182 | 0 | j12 = input[8]; |
183 | 0 | j13 = input[9]; |
184 | 0 | j14 = input[10]; |
185 | 0 | j15 = input[11]; |
186 | |
|
187 | 0 | for (;;) { |
188 | 0 | x0 = 0x61707865; |
189 | 0 | x1 = 0x3320646e; |
190 | 0 | x2 = 0x79622d32; |
191 | 0 | x3 = 0x6b206574; |
192 | 0 | x4 = j4; |
193 | 0 | x5 = j5; |
194 | 0 | x6 = j6; |
195 | 0 | x7 = j7; |
196 | 0 | x8 = j8; |
197 | 0 | x9 = j9; |
198 | 0 | x10 = j10; |
199 | 0 | x11 = j11; |
200 | 0 | x12 = j12; |
201 | 0 | x13 = j13; |
202 | 0 | x14 = j14; |
203 | 0 | x15 = j15; |
204 | | |
205 | | // The 20 inner ChaCha20 rounds are unrolled here for performance. |
206 | 0 | REPEAT10( |
207 | 0 | QUARTERROUND( x0, x4, x8,x12); |
208 | 0 | QUARTERROUND( x1, x5, x9,x13); |
209 | 0 | QUARTERROUND( x2, x6,x10,x14); |
210 | 0 | QUARTERROUND( x3, x7,x11,x15); |
211 | 0 | QUARTERROUND( x0, x5,x10,x15); |
212 | 0 | QUARTERROUND( x1, x6,x11,x12); |
213 | 0 | QUARTERROUND( x2, x7, x8,x13); |
214 | 0 | QUARTERROUND( x3, x4, x9,x14); |
215 | 0 | ); |
216 | |
|
217 | 0 | x0 += 0x61707865; |
218 | 0 | x1 += 0x3320646e; |
219 | 0 | x2 += 0x79622d32; |
220 | 0 | x3 += 0x6b206574; |
221 | 0 | x4 += j4; |
222 | 0 | x5 += j5; |
223 | 0 | x6 += j6; |
224 | 0 | x7 += j7; |
225 | 0 | x8 += j8; |
226 | 0 | x9 += j9; |
227 | 0 | x10 += j10; |
228 | 0 | x11 += j11; |
229 | 0 | x12 += j12; |
230 | 0 | x13 += j13; |
231 | 0 | x14 += j14; |
232 | 0 | x15 += j15; |
233 | |
|
234 | 0 | x0 ^= ReadLE32(m + 0); |
235 | 0 | x1 ^= ReadLE32(m + 4); |
236 | 0 | x2 ^= ReadLE32(m + 8); |
237 | 0 | x3 ^= ReadLE32(m + 12); |
238 | 0 | x4 ^= ReadLE32(m + 16); |
239 | 0 | x5 ^= ReadLE32(m + 20); |
240 | 0 | x6 ^= ReadLE32(m + 24); |
241 | 0 | x7 ^= ReadLE32(m + 28); |
242 | 0 | x8 ^= ReadLE32(m + 32); |
243 | 0 | x9 ^= ReadLE32(m + 36); |
244 | 0 | x10 ^= ReadLE32(m + 40); |
245 | 0 | x11 ^= ReadLE32(m + 44); |
246 | 0 | x12 ^= ReadLE32(m + 48); |
247 | 0 | x13 ^= ReadLE32(m + 52); |
248 | 0 | x14 ^= ReadLE32(m + 56); |
249 | 0 | x15 ^= ReadLE32(m + 60); |
250 | |
|
251 | 0 | ++j12; |
252 | 0 | if (!j12) ++j13; |
253 | |
|
254 | 0 | WriteLE32(c + 0, x0); |
255 | 0 | WriteLE32(c + 4, x1); |
256 | 0 | WriteLE32(c + 8, x2); |
257 | 0 | WriteLE32(c + 12, x3); |
258 | 0 | WriteLE32(c + 16, x4); |
259 | 0 | WriteLE32(c + 20, x5); |
260 | 0 | WriteLE32(c + 24, x6); |
261 | 0 | WriteLE32(c + 28, x7); |
262 | 0 | WriteLE32(c + 32, x8); |
263 | 0 | WriteLE32(c + 36, x9); |
264 | 0 | WriteLE32(c + 40, x10); |
265 | 0 | WriteLE32(c + 44, x11); |
266 | 0 | WriteLE32(c + 48, x12); |
267 | 0 | WriteLE32(c + 52, x13); |
268 | 0 | WriteLE32(c + 56, x14); |
269 | 0 | WriteLE32(c + 60, x15); |
270 | |
|
271 | 0 | if (blocks == 1) { |
272 | 0 | input[8] = j12; |
273 | 0 | input[9] = j13; |
274 | 0 | return; |
275 | 0 | } |
276 | 0 | blocks -= 1; |
277 | 0 | c += BLOCKLEN; |
278 | 0 | m += BLOCKLEN; |
279 | 0 | } |
280 | 0 | } |
281 | | |
282 | | void ChaCha20::Keystream(Span<std::byte> out) noexcept |
283 | 0 | { |
284 | 0 | if (out.empty()) return; |
285 | 0 | if (m_bufleft) { |
286 | 0 | unsigned reuse = std::min<size_t>(m_bufleft, out.size()); |
287 | 0 | std::copy(m_buffer.end() - m_bufleft, m_buffer.end() - m_bufleft + reuse, out.begin()); |
288 | 0 | m_bufleft -= reuse; |
289 | 0 | out = out.subspan(reuse); |
290 | 0 | } |
291 | 0 | if (out.size() >= m_aligned.BLOCKLEN) { |
292 | 0 | size_t blocks = out.size() / m_aligned.BLOCKLEN; |
293 | 0 | m_aligned.Keystream(out.first(blocks * m_aligned.BLOCKLEN)); |
294 | 0 | out = out.subspan(blocks * m_aligned.BLOCKLEN); |
295 | 0 | } |
296 | 0 | if (!out.empty()) { |
297 | 0 | m_aligned.Keystream(m_buffer); |
298 | 0 | std::copy(m_buffer.begin(), m_buffer.begin() + out.size(), out.begin()); |
299 | 0 | m_bufleft = m_aligned.BLOCKLEN - out.size(); |
300 | 0 | } |
301 | 0 | } |
302 | | |
303 | | void ChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept |
304 | 0 | { |
305 | 0 | assert(input.size() == output.size()); |
306 | | |
307 | 0 | if (!input.size()) return; |
308 | 0 | if (m_bufleft) { |
309 | 0 | unsigned reuse = std::min<size_t>(m_bufleft, input.size()); |
310 | 0 | for (unsigned i = 0; i < reuse; i++) { |
311 | 0 | output[i] = input[i] ^ m_buffer[m_aligned.BLOCKLEN - m_bufleft + i]; |
312 | 0 | } |
313 | 0 | m_bufleft -= reuse; |
314 | 0 | output = output.subspan(reuse); |
315 | 0 | input = input.subspan(reuse); |
316 | 0 | } |
317 | 0 | if (input.size() >= m_aligned.BLOCKLEN) { |
318 | 0 | size_t blocks = input.size() / m_aligned.BLOCKLEN; |
319 | 0 | m_aligned.Crypt(input.first(blocks * m_aligned.BLOCKLEN), output.first(blocks * m_aligned.BLOCKLEN)); |
320 | 0 | output = output.subspan(blocks * m_aligned.BLOCKLEN); |
321 | 0 | input = input.subspan(blocks * m_aligned.BLOCKLEN); |
322 | 0 | } |
323 | 0 | if (!input.empty()) { |
324 | 0 | m_aligned.Keystream(m_buffer); |
325 | 0 | for (unsigned i = 0; i < input.size(); i++) { |
326 | 0 | output[i] = input[i] ^ m_buffer[i]; |
327 | 0 | } |
328 | 0 | m_bufleft = m_aligned.BLOCKLEN - input.size(); |
329 | 0 | } |
330 | 0 | } |
331 | | |
332 | | ChaCha20::~ChaCha20() |
333 | 1 | { |
334 | 1 | memory_cleanse(m_buffer.data(), m_buffer.size()); |
335 | 1 | } |
336 | | |
337 | | void ChaCha20::SetKey(Span<const std::byte> key) noexcept |
338 | 0 | { |
339 | 0 | m_aligned.SetKey(key); |
340 | 0 | m_bufleft = 0; |
341 | 0 | memory_cleanse(m_buffer.data(), m_buffer.size()); |
342 | 0 | } |
343 | | |
344 | | FSChaCha20::FSChaCha20(Span<const std::byte> key, uint32_t rekey_interval) noexcept : |
345 | 0 | m_chacha20(key), m_rekey_interval(rekey_interval) |
346 | 0 | { |
347 | 0 | assert(key.size() == KEYLEN); |
348 | 0 | } |
349 | | |
350 | | void FSChaCha20::Crypt(Span<const std::byte> input, Span<std::byte> output) noexcept |
351 | 0 | { |
352 | 0 | assert(input.size() == output.size()); |
353 | | |
354 | | // Invoke internal stream cipher for actual encryption/decryption. |
355 | 0 | m_chacha20.Crypt(input, output); |
356 | | |
357 | | // Rekey after m_rekey_interval encryptions/decryptions. |
358 | 0 | if (++m_chunk_counter == m_rekey_interval) { |
359 | | // Get new key from the stream cipher. |
360 | 0 | std::byte new_key[KEYLEN]; |
361 | 0 | m_chacha20.Keystream(new_key); |
362 | | // Update its key. |
363 | 0 | m_chacha20.SetKey(new_key); |
364 | | // Wipe the key (a copy remains inside m_chacha20, where it'll be wiped on the next rekey |
365 | | // or on destruction). |
366 | 0 | memory_cleanse(new_key, sizeof(new_key)); |
367 | | // Set the nonce for the new section of output. |
368 | 0 | m_chacha20.Seek({0, ++m_rekey_counter}, 0); |
369 | | // Reset the chunk counter. |
370 | 0 | m_chunk_counter = 0; |
371 | 0 | } |
372 | 0 | } |