/root/bitcoin/src/test/fuzz/feefrac.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2024 The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #include <util/feefrac.h> |
6 | | #include <test/fuzz/FuzzedDataProvider.h> |
7 | | #include <test/fuzz/fuzz.h> |
8 | | #include <test/fuzz/util.h> |
9 | | |
10 | | #include <compare> |
11 | | #include <cstdint> |
12 | | #include <iostream> |
13 | | |
14 | | namespace { |
15 | | |
16 | | /** Compute a * b, represented in 4x32 bits, highest limb first. */ |
17 | | std::array<uint32_t, 4> Mul128(uint64_t a, uint64_t b) |
18 | 0 | { |
19 | 0 | std::array<uint32_t, 4> ret{0, 0, 0, 0}; |
20 | | |
21 | | /** Perform ret += v << (32 * pos), at 128-bit precision. */ |
22 | 0 | auto add_fn = [&](uint64_t v, int pos) { |
23 | 0 | uint64_t accum{0}; |
24 | 0 | for (int i = 0; i + pos < 4; ++i) { |
25 | | // Add current value at limb pos in ret. |
26 | 0 | accum += ret[3 - pos - i]; |
27 | | // Add low or high half of v. |
28 | 0 | if (i == 0) accum += v & 0xffffffff; |
29 | 0 | if (i == 1) accum += v >> 32; |
30 | | // Store lower half of result in limb pos in ret. |
31 | 0 | ret[3 - pos - i] = accum & 0xffffffff; |
32 | | // Leave carry in accum. |
33 | 0 | accum >>= 32; |
34 | 0 | } |
35 | | // Make sure no overflow. |
36 | 0 | assert(accum == 0); |
37 | 0 | }; |
38 | | |
39 | | // Multiply the 4 individual limbs (schoolbook multiply, with base 2^32). |
40 | 0 | add_fn((a & 0xffffffff) * (b & 0xffffffff), 0); |
41 | 0 | add_fn((a >> 32) * (b & 0xffffffff), 1); |
42 | 0 | add_fn((a & 0xffffffff) * (b >> 32), 1); |
43 | 0 | add_fn((a >> 32) * (b >> 32), 2); |
44 | 0 | return ret; |
45 | 0 | } |
46 | | |
47 | | /* comparison helper for std::array */ |
48 | 0 | std::strong_ordering compare_arrays(const std::array<uint32_t, 4>& a, const std::array<uint32_t, 4>& b) { |
49 | 0 | for (size_t i = 0; i < a.size(); ++i) { |
50 | 0 | if (a[i] != b[i]) return a[i] <=> b[i]; |
51 | 0 | } |
52 | 0 | return std::strong_ordering::equal; |
53 | 0 | } |
54 | | |
55 | | std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2) |
56 | 0 | { |
57 | | // Compute and compare signs. |
58 | 0 | int sign_a = (a1 == 0 ? 0 : a1 < 0 ? -1 : 1) * (a2 == 0 ? 0 : a2 < 0 ? -1 : 1); |
59 | 0 | int sign_b = (b1 == 0 ? 0 : b1 < 0 ? -1 : 1) * (b2 == 0 ? 0 : b2 < 0 ? -1 : 1); |
60 | 0 | if (sign_a != sign_b) return sign_a <=> sign_b; |
61 | | |
62 | | // Compute absolute values. |
63 | 0 | uint64_t abs_a1 = static_cast<uint64_t>(a1), abs_a2 = static_cast<uint64_t>(a2); |
64 | 0 | uint64_t abs_b1 = static_cast<uint64_t>(b1), abs_b2 = static_cast<uint64_t>(b2); |
65 | | // Use (~x + 1) instead of the equivalent (-x) to silence the linter; mod 2^64 behavior is |
66 | | // intentional here. |
67 | 0 | if (a1 < 0) abs_a1 = ~abs_a1 + 1; |
68 | 0 | if (a2 < 0) abs_a2 = ~abs_a2 + 1; |
69 | 0 | if (b1 < 0) abs_b1 = ~abs_b1 + 1; |
70 | 0 | if (b2 < 0) abs_b2 = ~abs_b2 + 1; |
71 | | |
72 | | // Compute products of absolute values. |
73 | 0 | auto mul_abs_a = Mul128(abs_a1, abs_a2); |
74 | 0 | auto mul_abs_b = Mul128(abs_b1, abs_b2); |
75 | 0 | if (sign_a < 0) { |
76 | 0 | return compare_arrays(mul_abs_b, mul_abs_a); |
77 | 0 | } else { |
78 | 0 | return compare_arrays(mul_abs_a, mul_abs_b); |
79 | 0 | } |
80 | 0 | } |
81 | | |
82 | | } // namespace |
83 | | |
84 | | FUZZ_TARGET(feefrac) |
85 | 0 | { |
86 | 0 | FuzzedDataProvider provider(buffer.data(), buffer.size()); |
87 | |
|
88 | 0 | int64_t f1 = provider.ConsumeIntegral<int64_t>(); |
89 | 0 | int32_t s1 = provider.ConsumeIntegral<int32_t>(); |
90 | 0 | if (s1 == 0) f1 = 0; |
91 | 0 | FeeFrac fr1(f1, s1); |
92 | 0 | assert(fr1.IsEmpty() == (s1 == 0)); |
93 | | |
94 | 0 | int64_t f2 = provider.ConsumeIntegral<int64_t>(); |
95 | 0 | int32_t s2 = provider.ConsumeIntegral<int32_t>(); |
96 | 0 | if (s2 == 0) f2 = 0; |
97 | 0 | FeeFrac fr2(f2, s2); |
98 | 0 | assert(fr2.IsEmpty() == (s2 == 0)); |
99 | | |
100 | | // Feerate comparisons |
101 | 0 | auto cmp_feerate = MulCompare(f1, s2, f2, s1); |
102 | 0 | assert(FeeRateCompare(fr1, fr2) == cmp_feerate); |
103 | 0 | assert((fr1 << fr2) == std::is_lt(cmp_feerate)); |
104 | 0 | assert((fr1 >> fr2) == std::is_gt(cmp_feerate)); |
105 | | |
106 | | // Compare with manual invocation of FeeFrac::Mul. |
107 | 0 | auto cmp_mul = FeeFrac::Mul(f1, s2) <=> FeeFrac::Mul(f2, s1); |
108 | 0 | assert(cmp_mul == cmp_feerate); |
109 | | |
110 | | // Same, but using FeeFrac::MulFallback. |
111 | 0 | auto cmp_fallback = FeeFrac::MulFallback(f1, s2) <=> FeeFrac::MulFallback(f2, s1); |
112 | 0 | assert(cmp_fallback == cmp_feerate); |
113 | | |
114 | | // Total order comparisons |
115 | 0 | auto cmp_total = std::is_eq(cmp_feerate) ? (s2 <=> s1) : cmp_feerate; |
116 | 0 | assert((fr1 <=> fr2) == cmp_total); |
117 | 0 | assert((fr1 < fr2) == std::is_lt(cmp_total)); |
118 | 0 | assert((fr1 > fr2) == std::is_gt(cmp_total)); |
119 | 0 | assert((fr1 <= fr2) == std::is_lteq(cmp_total)); |
120 | 0 | assert((fr1 >= fr2) == std::is_gteq(cmp_total)); |
121 | 0 | assert((fr1 == fr2) == std::is_eq(cmp_total)); |
122 | 0 | assert((fr1 != fr2) == std::is_neq(cmp_total)); |
123 | 0 | } |